
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OpenStep Programming Reference

Part No 802-2112-10
Revision A, September 1996

A Sun Microsystems, Inc. Business

Please
Recycle

 1996 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

Portions Copyright 1995 NeXT Computer, Inc. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party font
software, including font technology in this product, is protected by copyright and licensed from Sun's suppliers. This product
incorporates technology licensed from Object Design, Inc.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-
19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, and OpenWindows are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of
Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Object Design is a trademark and the Object
Design logo is a registered trademark of Object Design, Inc. OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo,
Application Kit, Foundation Kit, Project Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Unicode is a
trademark of Unicode, Inc. VT100 is a trademark of Digital Equipment Corporation. All other product names mentioned herein
are the trademarks of their respective owners.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC-11, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and SunTM Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

X Window System is a product of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Part 1 —Application Kit

1. Classes. 1-1

Encapsulating an Application . 1-1

General Drawing and Event Handling . 1-1

Menus and Cursors . 1-2

Grouping and Scrolling Views . 1-2

Controlling an Application . 1-2

Text and Fonts . 1-3

Graphics and Color . 1-3

Printing and Faxing . 1-4

Accessing the File System . 1-4

Sharing Data with Other Applications . 1-4

Spell-Checking . 1-4

Application Kit Class Hierarchy . 1-5

NSActionCell . 1-7

iv OpenStep Programming Reference—September 1996

NSApplication . 1-13

NSBitmapImageRep . 1-38

NSBox . 1-49

NSBrowser . 1-55

NSBrowserCell . 1-79

NSBundle Additions . 1-83

NSButton. 1-85

NSButtonCell . 1-96

NSCachedImageRep . 1-107

NSCell . 1-109

NSClipView . 1-138

NSCoder Additions . 1-144

NSColor. 1-144

NSColorList . 1-160

NSColorPanel . 1-164

NSColorPicker . 1-172

NSColorWell . 1-175

NSControl . 1-178

NSCStringText . 1-197

NSCursor . 1-231

NSCustomImageRep . 1-239

NSDataLink . 1-241

NSDataLinkManager. 1-245

NSDataLinkPanel. 1-247

Contents v

NSEPSImageRep . 1-251

NSEvent . 1-253

NSFont. 1-263

NSFontManager . 1-273

NSFontPanel . 1-286

NSForm . 1-289

NSFormCell . 1-294

NSHelpPanel . 1-298

NSImage . 1-304

NSImageRep. 1-328

NSMatrix . 1-338

NSMenu . 1-366

NSMenuCell . 1-373

NSOpenPanel . 1-375

NSPageLayout . 1-378

NSPanel . 1-384

NSPasteboard . 1-387

NSPopUpButton. 1-399

NSPrinter . 1-407

NSPrintInfo. 1-420

NSPrintOperation . 1-430

NSResponder . 1-438

NSSavePanel. 1-445

NSScreen . 1-452

vi OpenStep Programming Reference—September 1996

NSScroller . 1-455

NSScrollView . 1-462

NSSelection . 1-472

NSSlider . 1-475

NSSliderCell . 1-480

NSSpellChecker . 1-487

NSSpellServer. 1-495

NSSplitView . 1-501

NSTableColumn . 1-504

NSTableHeaderCell . 1-510

NSTableHeaderView . 1-510

NSTableView . 1-512

NSText . 1-535

NSTextField. 1-559

NSTextFieldCell . 1-566

NSView . 1-568

NSWindow . 1-605

NSWorkspace . 1-649

2. Protocols . 659

NSChangeSpelling . 659

NSColorPickingCustom . 660

NSColorPickingDefault. 662

NSDraggingDestination (Informal Protocol) 666

NSDraggingInfo . 670

Contents vii

NSDraggingSource (Informal Protocol) 674

NSIgnoreMisspelledWords . 676

NSMenuActionResponder (Informal Protocol) 677

NSMenuItem . 679

NSNibAwaking (Informal Protocol) . 681

NSServicesRequests (Informal Protocol). 683

NSTableDataSource (Informal Protocol) 684

3. Functions . 3-1

Rectangle Drawing Functions . 3-1

Color Functions . 3-4

Text Functions . 3-6

Array Allocation Functions for Use by the NSText Class 3-8

Imaging Functions . 3-10

Attention Panel Functions . 3-11

Services Menu Functions . 3-12

X-Windows Convenience Functions . 3-14

Other Application Kit Functions . 3-15

4. Types and Constants. 4-1

Applications . 4-1

Boxes . 4-2

Buttons . 4-2

Cells and Button Cells . 4-3

Colors . 4-5

Data Links . 4-6

viii OpenStep Programming Reference—September 1996

Drag Operations. 4-6

Event Handling . 4-7

Exceptions . 4-10

Fonts . 4-11

Graphics . 4-14

Matrices . 4-15

Notifications . 4-16

Panels. 4-18

Page Layouts . 4-19

Pasteboards. 4-19

Printing . 4-20

Save Panels . 4-23

Scrollers . 4-23

Text. 4-25

Views . 4-38

Windows . 4-39

Workspaces . 4-40

Part 2 —Foundation Kit

5. Classes. 5-1

NSArchiver . 5-3

NSArray . 5-7

NSAssertionHandler . 5-18

NSAutoreleasePool . 5-20

NSBundle . 5-25

Contents ix

NSCalendarDate . 5-33

NSCharacterSet . 5-42

NSCoder . 5-47

NSConditionLock . 5-57

NSConnection. 5-60

NSCountedSet . 5-67

NSData . 5-70

NSDate . 5-77

NSDateFormatter . 5-85

NSDeserializer . 5-88

NSDictionary . 5-90

NSDistantObject. 5-98

NSEnumerator . 5-100

NSException . 5-102

NSFormatter . 5-109

NSInvocation . 5-114

NSLock . 5-118

NSMethodSignature . 5-119

NSMutableArray . 5-122

NSMutableCharacterSet . 5-129

NSMutableData . 5-131

NSMutableDictionary . 5-137

NSMutableSet. 5-140

NSMutableString . 5-143

x OpenStep Programming Reference—September 1996

NSNotification . 5-146

NSNotificationCenter . 5-149

NSNotificationQueue . 5-153

NSNumber . 5-158

NSObject . 5-168

NSPosixFileDescriptor . 5-188

NSProcessInfo. 5-195

NSProxy . 5-198

NSRecursiveLock . 5-200

NSRunLoop . 5-202

NSScanner. 5-205

NSSerializer . 5-210

NSSet . 5-212

NSString . 5-218

NSThread . 5-242

NSTimer . 5-245

NSTimeZone . 5-249

NSTimeZoneDetail. 5-254

NSUnarchiver . 5-256

NSUserDefaults . 5-260

NSValue. 5-270

6. Protocols . 277

NSCoding . 277

NSCopying . 278

Contents xi

NSLocking . 279

NSMutableCopying . 281

NSObjCTypeSerializationCallBack . 282

NSObject . 285

7. Functions . 7-1

Memory Allocation Functions . 7-1

Object Allocation Functions . 7-5

Error-Handling Functions. 7-7

Geometric Functions . 7-11

Range Functions. 7-18

Hash Table Functions . 7-19

Map Table Functions . 7-23

Miscellaneous Functions . 7-27

8. Types and Constants. 8-1

Bundle Notification . 8-1

Exception Handling . 8-1

Geometry . 8-3

Hash Table . 8-4

Map Table . 8-6

Notification Queue. 8-9

Run Loop. 8-9

Searching. 8-10

String . 8-11

Threads . 8-12

xii OpenStep Programming Reference—September 1996

User Defaults . 8-12

Miscellaneous . 8-13

Part 3 —Display PostScript

9. Classes. 9-1

NSDPSContext . 9-2

10. Protocols . 10-1

NSDPSContextNotification. 10-1

11. Operators . 11-1

Compositing Operators. 11-1

Graphics State Operators . 11-5

12. Client Library Functions . 12-1

PostScript Execution Context Functions 12-1

Communication with the Display PostScript Server 12-2

13. Single-Operator Functions . 13-1

“PS” Prefix Functions . 13-2

“DPS” Prefix Functions . 13-2

14. Types and Constants. 14-1

Defined Types . 14-1

Enumerations . 14-4

Symbolic Constants . 14-4

Global Variables . 14-4

Part 4 —Sound Kit

15. Sound Classes . 9

Sound. 9

Contents xiii

SoundMeter . 30

SoundView . 36

Index Index-1

xiv OpenStep Programming Reference—September 1996

xv

Introduction

This book describes the Application Programming Interface (API) for the
OpenStep™ development environment. OpenStep is an operating system
independent, object-oriented application layer, based on NeXT’s advanced
object technology. See the “Further Reading” section at the end of this
introduction for a description of the other books in the OpenStep
documentation set.

The OpenStep software is divided into the following kits:

• The Application Kit contains the software for writing applications that use
windows, draw on the screen, and respond to user actions on the keyboard
and mouse.

• The Foundation Kit provides the fundamental building blocks that
applications use to manage data and resources. It defines facilities for
handling multibyte character sets, object persistency and distribution, and
provides an interface to common operating system facilities.

• Display Postscript Kit provides OpenStep with its device-independent
imaging model.

• The Sound Kit provides software for capturing, manipulating, reading, and
writing sounds.

Each kit is a combination of Objective C classes and protocols, along with C
functions, types, and constants. Please note that many of the types used for
method argument and return values in this book are defined in the Objective C
language. These include:

xvi OpenStep Programming Reference—September 1996

• BOOL
• Class
• id
• IMP
• nil
• Protocol
• SEL

In addition, the type codes used to encode method argument and return types
for archiving and other purposes are also defined in the Objective C language.

Book Organization
This book contains sections for each kit. Each section contains chapters
describing the kit’s classes, protocols, functions, and types and constants. The
following outline shows the book organization:

• Application Kit
• Classes
• Protocols
• Functions
• Types and Constants

• Foundation Kit
• Classes
• Protocols
• Functions
• Types and Constants

• Display PostScript System
• Classes
• Protocols
• Display PostScript Operators
• Client Library Functions
• Single-Operator Functions
• Types and Constants

• Sound Kit
• Classes
• Types and Constants

Introduction xvii

Chapter Organization
The following sections desribe each chapters organization, and briefly
discusses:

• Inheritance Hierarchies
• Delegates
• Formal and Informal Protocols

Classes

Each class chapter contains a kit’s class descriptions listed alphabetically. Each
class description starts with a table listing the class’s inheritance hierarchy,
protocol conformance, and header file containing the class interface. For
example:

The first line in this example specifies a class’s inheritance hierarchy, in this
case NSActionCell ’s inheritance hierarchy. It specifies that NSActionCell
inherits from NSCell , and that NSCell inherits from NSObject . NSCell is
called NSActionCell ’s superclass. NSObject is the root class of almost all
OpenStep inheritance hierarchies.

The second line in the previous example specifies the formal protocols that the
class conforms to. These include both protocols the class adopts and those it
inherits from other adopting classes. If inherited, the name of the adopting
class in given in parentheses.

The third line in the previous example specifies the header file that declares the
class interface.

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell),
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

xviii OpenStep Programming Reference—September 1996

After a general description of the class, the class’s methods are listed in
functional groups. For example, here is NSScroller’s list:

This list is followed by class methods in alphabetical order, then instance
methods in alphabetical order. Each method’s prototype is given, followed by a
brief description.

Some classes have separate sections with titles such as “Methods Implemented
by the Superview”, “Methods Implemented by ”, “Methods Implemented by
the Owner.” These are informal protocols. They document methods that can or
must be implemented to receive messages on behalf of instances of the class.

Methods Implemented by the Delegate

If the class describes a delegate, the delegate methods are listed last. These are
not methods defined in the class; they are methods that you can define to
respond to messages sent from instances of the class. If you define a delegate
method, the delegate will receive automatic messages to perform that delegate
method at the appropriate time. For example, if you define a
windowDidBecomeKey: method for an NSWindow object’s delegate, the
delegate will receive windowDidBecomeKey: messages whenever the

Activity Class Method

Laying out the NSScroller + scrollerWidth
– arrowsPosition
– checkSpaceForParts
– rectForPart:
– setArrowsPosition:
– usableParts

Setting the NSScroller’s values – knobProportion
– setFloatValue:knobProportion:

Displaying – drawArrow:highlight:
– drawKnob
– drawParts
– highlight:

Handling events – hitPart
– testPart:
– trackKnob:
– trackScrollButtons:

Introduction xix

NSWindow object becomes the key window. Messages are sent to an object’s
delegate only if you define a method that can respond to the message within
the delegate.

In essence, this section documents an informal protocol. But because these
methods are so closely tied to the behavior of a particular class, they’re
documented with the class rather than in the Protocols chapters.

Protocols

The protocol chapters describe OpenStep’s formal and informal protocols.
Formal protocols are declared using the @protocol compiler directive. They
can be formally adopted and implemented by a class and tested by sending an
object a conformsToProtocol: message.

Some formal protocols are adopted and implemented by OpenStep classes.
However, many formal protocols are declared by a kit, but not implemented by
it. These formal protocols list methods that you can implement to respond to
kit-generated messages.

A few formal protocols are implemented by a kit, but not by a class that’s part
of the OpenStep API. Rather, the protocol is implemented by an anonymous
object that the kit supplies. The protocol lets you know what messages you can
send to the object.

Like formal protocols, informal protocols declare a list of methods that others
are invited to implement. If an informal protocol is closely associated with one
particular class, for example, the list of methods implemented by the delegate,
it’s documented in the class description.

Note – Informal protocols associated with more than one class, or not
associated with any particular class, are documented in the Protocols chapters.

Protocol information is organized into many of the same sections as described
previously for a class specification. But protocols are not classes and therefore
differ somewhat in the kind of information provided.

xx OpenStep Programming Reference—September 1996

Each formal protocol description starts with a table listing the classes that
adopt the protocol, and the header file containing the protocol description. For
example:

Many protocols declare methods that applications must implement and so are
not adopted by any OpenStep classes. Some protocols are implemented by
anonymous objects (instances of an unknown class); the protocol is the only
information available about what messages the object can respond to. Protocols
that have an implementation available through an anonymous object generally
don’t have to be reimplemented by other classes.

An informal protocol cannot be formally adopted by a class and it cannot
formally incorporate another protocol. So its description begins with
information about the category where it’s declared:

Informal protocols are typically declared as categories of the NSObject class.
This gives them the widest possible scope. If the protocol includes enough
methods to warrant it, they’re divided by type and presented just as the
methods of a class are.

Functions

Within the function chapters related functions are grouped together under a
heading that describes that groups similarities. Here is a partial list of these
headings from the Application Kit:

• Rectangle Drawing Functions
• Color Functions
• Text Functions
• Array Allocation Functions
• Imaging Functions

Each function, its arguments, and its return value are briefly described in an
accompanying comment.

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Introduction xxi

Types and Constants

Within these chapters related defined types, enumeration constants, symbolic
constants, structures, and global variables are grouped together under a
heading that describes where the type or constant is used. Here is a partial list
of these headings from the Application Kit:

• Application
• Box
• Buttons
• Cells and Button Cells
• Color

A short description accompanies each group.

Further Reading
In addition to this document, the OpenStep documentation set consists of:

• QuickStart to Using the OpenStep Desktop—for beginning end-users. A
minimal set of instructions to get you started running OpenStep.

• Using the OpenStep Desktop—the complete end-user guide.

• User Interface Guidelines—for application developers; identifies the objects
supplied in the Application Kit, describes their appearances and behaviors,
and the kinds of application-specific behaviors that developers must
implement. Includes detailed discussions of the mouse and keyboard
operations performed by users to operate the interface. Provides detailed
guidelines for such things as choosing keyboard shortcut characters. Also
describes the behaviors that should be implemented for custom objects.

• OpenStep Development Tools—describes the essential tools for developing an
OpenStep application: the Project Builder, Interface Builder, Header Viewer,
Icon Builder, Edit applications, and the distributed Debugger. The manual
also included chapters on the Objective C language and the NSObject class.

xxii OpenStep Programming Reference—September 1996

Part 1 — Application Kit

1-1

Classes 1

The Application Kit classes are the core of OpenStep. They describe OpenStep’s
appearance and behavior. The following sections give an overview of the
Application Kit classes.

Encapsulating an Application
The central class of the Application Kit is NSApplication . Every application
that uses the Application Kit is a single NSApplication object, known to your
program as NSApp. Your NSApplication object

• Keeps track of the application’s windows and menus

• Controls the main event loop

• Opens Interface Builder files (with support from the NSAwakening
protocol)

• Maintains information about printing, languages, screens, color support,
and so on

General Drawing and Event Handling
The NSWindow and NSView classes are the centerpieces of drawing. More
specifically, NSWindow objects represent rectangular areas on the screen in which
the user works. To the extent that everything the user does is directed to an
NSWindow, an application’s set of NSWindows is the application. NSViews are
areas within NSWindows that perform your application’s drawing.

1-2 OpenStep Programming Reference—September 1996

1

NSPanel is a subclass of NSWindow that you use to display transient, global, or
pressing information. For example, you would use a Panel, rather than an
instance of NSWindow, to display error messages, or to query the user for a
response to remarkable or unusual circumstances.

The NSResponder class defines the responder chain, an ordered list of objects that
respond to user events. When the user clicks the mouse or presses a key, an
event is generated and passed up the responder chain in search of an object that
can respond to it.

Menus and Cursors
The NSMenu, NSMenuCell , and NSCursor classes define the look and behavior
of the menus and cursors that your application displays to the user.

Grouping and Scrolling Views
The NSBox, NSSplitView , and NSScrollView classes provide graphic
widgets to some other NSView or collection of NSViews. An NSBox groups some
number of other NSViews, and lets you draw a border around the entire group.
NSSplitView lets you stack NSViews vertically, apportioning to each NSView
some amount of a common territory; a sliding control bar lets the user
redistribute the territory among NSViews. NSScrollView , and its helper
NSClipView , provide a scrolling mechanism as well as the graphic objects that
let the user initiate and control a scroll.

Controlling an Application
The NSControl and NSCell classes, and their subclasses, define an easily
recognized set of buttons, sliders, and browsers that the user can manipulate
graphically to control some aspect of your application. Just what a particular
control affects is up to you: When a control is “touched,” it sends a specific
message to a specific object. This is the targeted/action paradigm; for each
NSControl , you define both the target (an object) and the action (the message
that’s sent to that object).

An NSCell completes the implementation of an NSControl . In general, for
each NSControl there is a corresponding NSCell ; thus a button comprises a
NSButton and an NSButtonCell , a slider is an NSSlider and an
NSSliderCell , and so on.

Text and Fonts 1-3

1

Text and Fonts
Most applications display text in some form. The NSCStringText and
NSTextField classes make this presentation as straightforward and simple as
possible. The size of the NSCStringText class is daunting at first, but for
simple text presentation only a handful of methods are actually needed (or you
can use the streamlined NSTextField class). More complicated text-based
applications, such as word processors, can take advantage of the
NSCStringText class’ more sophisticated features, such as rulers and break
tables.

The NSFont and NSFontManager classes encapsulate and manage different
font families, sizes, and variations. The NSFont class defines a single object for
each distinct font. For efficiency, these objects, which can be large, are shared by
all the objects in your application. The NSFontPanel class defines the font-
specification panel that’s presented to the user.

Graphics and Color
The NSImage, NSImageRep, and the other image representation classes
encapsulate graphic data, allowing you to easily and efficiently access images
stored in files on the disk. The presentation of an image is greatly influenced by
the hardware that it’s displayed on. For example, a particular image may look
good on a color monitor, but may be too “rich” for monochrome. Through the
image classes, you can group representations of the same image, where each
representation fits a specific type of display device—the decision of which
representation to use can be left to the NSImage class itself.

Colors are represented by the NSColor class. Applications incorporate and
support colors by using the NSColorPanel , NSColorList , NSColorPicker ,
and NSColorWell classes. These classes let the user to select and apply colors.
The NSColorPicking protocol lets you extend the standard color panel.

The four standard color formats—RGB, CMYK, HSB, and grayscale—are
recognized by the color classes. You can also tell the classes to recognize custom
representations.

1-4 OpenStep Programming Reference—September 1996

1

Printing and Faxing
The NSPrinter , NSPageLayout , and NSPrintInfo classes work together to
provide the means for printing and faxing the information that your application
displays in its NSWindows and NSViews. For more control, the NSWindow and
NSView classes define methods that can fine-tune the printing and faxing
mechanism.

Accessing the File System
The Application Kit does not provide a class that defines objects to correspond to
files on the disk. However, the NSOpenPanel and NSSavePanel provide a
convenient and familiar user interface to the file system.

Sharing Data with Other Applications
The NSPasteboard class defines a repository for data that’s copied from your
application, making this data available to any application that cares to use it.
This is the familiar cut-copy-paste mechanism. The NSServicesRequest
protocol uses the NSPasteboard to communicate data that’s passed between
applications by a registered service.

An intimate link between applications can be created through the NSDataLink ,
NSDataLinkManager , NSDataLinkPanel , and NSSelection classes.
Through these classes, multiple applications can share the same data. A change
to the data in one application is seen immediately in all others that display that
data.

Spell-Checking
The NSSpellServer class lets you define a spell-checking facility and provide
it as a service to other applications. To connect your application to a spelling
checker, you use the NSSpellChecker class. The
NSIgnoreMisspelledWords , and NSChangeSpelling protocols support the
spell-checking mechanism.

Application Kit Class Hierarchy 1-5

1

Application Kit Class Hierarchy
The Application Kit contains over 60 classes which inherit directly or indirectly
from NSObject , the root class defined in the Foundation Kit. The following
diagram shows the Application Kit’s class inheritance relationships.

1-6 OpenStep Programming Reference—September 1996

1

Figure 1-1 Application Kit Classes

NSObject

NSCell

NSColor

NSColorList

NSColorPicker

NSCursor

NSDataLink

NSDataLinkManager

NSEvent

NSFont

NSFontManager

NSImageRep

NSImage

NSPasteboard

NSPrintInfo

NSPrintOperation

NSPrinter

NSResponder

NSScreen

NSSelection

NSSpellChecker

NSSpellServer

NSWorkspace

NSActionCell

NSBrowserCell

NSBitmapImageRep

NSCachedImageRep

NSCustomImageRep

NSEPSImageRep

NSApplication

NSView

NSWindow

NSButtonCell

NSFormCell

NSSliderCell

NSTextFieldCell

NSBox

NSClipView

NSControl

NSScrollView

NSSplitView

NSText

NSPanel

NSMenuCell

NSBrowser

NSButton

NSColorWell

NSMatrix

NSSlider

NSScroller

NSTextField

NSCStringText

NSColorPanel

NSDataLinkPanel

NSFontPanel

NSHelpPanel

NSMenu

NSPageLayout

NSSavePanel

NSPopUpButton

NSForm

NSOpenPanel

NSActionCell 1-7

1

NSActionCell

Class Description

An NSActionCell defines an active area inside a control (an instance of
NSControl or one of its subclasses). As an NSControl ’s active area, an
NSActionCell does three things: it usually performs display of text or an icon
(the subclass NSSliderCell is an exception); it provides the NSControl with
a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor
movement. The only way to specify the NSControl for a particular
NSActionCell is to send the NSActionCell a drawWithFrame:inView:
message, passing the NSControl as the argument for the inView: keyword of
the method.

NSActionCell implements the target object and action method as defined by
its superclass, NSCell . As a user manipulates an NSControl ,
NSActionCell ’s trackMouse:inRect:ofView:untilMouseUp: method
(inherited from NSCell) updates its appearance and sends the action message
to the target object with the NSControl object as the only argument.

Usually, the responsibility for an NSControl ’s appearance and behavior is
completely given over to a corresponding NSActionCell . (NSMatrix , and its
subclass NSForm, are NSControl s that don’t follow this rule.)

A single NSControl may have more than one NSActionCell . To help
identify it in this case, every NSActionCell has an integer tag. Note, however,
that no checking is done by the NSActionCell object itself to ensure that the
tag is unique. See the NSMatrix class for an example of a subclass of
NSControl that contains multiple NSActionCell s.

Many of the methods that define the contents and look of an NSActionCell ,
such as setFont: and setBordered: , are reimplementations of methods
inherited from NSCell . They are subclassed to ensure that the NSActionCell
is redisplayed if it’s currently in an NSControl .

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell),
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

1-8 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

action

– (SEL)action

Returns the action cell’s action method. Keep in mind that the argument of an
action method sent by an action cell is its associated NSControl (the object
returned by controlView). See also setAction: , target , controlView .

controlView

– (NSView *)controlView

Returns the view (normally an NSControl) in which the action cell was last
drawn. In general, your code should use the object returned by this method
only to redisplay indirectly the action cell. For example, the subclasses of
NSActionCell defined by the Application Kit invoke this method in order to

Activity Class Method

Configuring an NSActionCell – setAlignment:
– setBezeled:
– setBordered:
– setEnabled:
– setFloatingPointFormat:left:right:
– setFont:
– setImage:

Manipulating NSActionCellValues – doubleValue
– floatValue
– intValue
– setStringValue:
– stringValue

Displaying – drawWithFrame:inView:
– controlView

Target and action – action
– setAction:
– setTarget:
– target

Assigning a tag – setTag:
– tag

NSActionCell 1-9

1

send the NSControl a message such as updateCellInside: . The
NSControl in which an action cell is drawn is set automatically by the
drawWithFrame:inView: method. You can’t explicitly set the NSControl .
See also drawWithFrame:inView: .

doubleValue

– (double)doubleValue

Returns the action cell’s contents as a double-precision floating point number.
If the action cell is being edited when this message is received, editing is
validated first. See also setDoubleValue: (NSCell), floatValue ,
intValue , stringValue , validateEditing (NSControl).

drawWithFrame:inView:

– (void)drawWithFrame:(NSRect)cellFrame
inView:(NSView *)controlView

Draws the action cell in the rectangle cellFrame of controlView (which
should normally be an NSControl). This sets the action cell’s control to
controlView and performs the drawing if and only if controlView is an
NSControl object (an instance of NSControl or a subclass thereof). Focus
must be locked on the NSControl before invoking this method. The
NSControl automatically performs this locking. See also
drawWithFrame:inView: (NSCell).

floatValue

– (float)floatValue

Returns the action cell’s contents as a single-precision floating point number. If
the action cell is being edited when this message is received, editing is
validated first. See also setFloatValue: (NSCell), doubleValue ,
intValue , stringValue , validateEditing (NSControl).

intValue

– (int)intValue

1-10 OpenStep Programming Reference—September 1996

1

Returns the action cell’s contents as an integer. If the action cell is being edited
when this message is received, editing is validated first. See also
setIntValue: (NSCell), doubleValue , floatValue , stringValue ,
validateEditing (NSControl).

setAction:

– (void)setAction:(SEL)aSelector

Sets the action cell’s action method to aSelector . The argument of an action
method sent by an action cell is its associated NSControl (the object returned
by controlView). See also action , setTarget: , controlView ,
sendAction:to: (NSControl).

setAlignment:

– (void)setAlignment:(NSTextAlignment)mode

If the action cell is a text cell (type NSTextCellType), this method sets its text
alignment mode to mode, which should be one of the following enumeration
constants:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

If it’s currently in an NSControl view, the action cell is redisplayed or marked
as needing redisplay. See also alignment (NSCell).

setBezeled:

– (void)setBezeled:(BOOL)flag

Adds or removes the action cell’s bezel, according to the value of flag .
Adding a bezel removes the action cell’s border, if any. If it’s currently in an
NSControl view, the action cell is redisplayed or marked as needing redisplay.
See also isBezeled (NSCell), setBordered: .

NSActionCell 1-11

1

setBordered:

– (void)setBordered:(BOOL)flag

Adds or removes the action cell’s border, according to the value of flag . The
border is black and has a width of 1.0. Adding a border removes the action
cell’s bezel, if any. If it’s currently in an NSControl view, the action cell is
redisplayed or marked as needing redisplay. See also isBordered (NSCell),
setBezeled: .

setEnabled:

– (void)setEnabled:(BOOL)flag

Enables or disables the action cell’s ability to receive mouse and keyboard
events, according to the value of flag . If it’s currently in an NSControl view,
the action cell is redisplayed or marked as needing redisplay. See also
isEnabled (NSCell).

setFloatingPointFormat:left:right:

– (void)setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits right:(unsigned int)rightDigits

Sets the action cell’s floating point format as described in the NSCell class
specification for the setFloatingPointFormat:left:right: method. If
it’s currently in an NSControl view, the action cell is redisplayed or marked as
needing redisplay. See also setFloatingPointFormat:left:right:
(NSCell).

setFont:

– (void)setFont:(NSFont *)fontObject

Sets the action cell’s font to fontObject . If the action cell is a text cell (type
NSTextCellType), this method sets its font to fontObject . In addition, if it’s
currently in an NSControl view, the action cell is redisplayed or marked as
needing redisplay. See also font (NSCell).

setImage:

– (void)setImage:(NSImage *)image

1-12 OpenStep Programming Reference—September 1996

1

Sets the action cell’s icon to image and sets its NSCell type to
NSImageCellType . If it’s currently in an NSControl view, the action cell is
redisplayed or marked as needing redisplay. See also setImage: (NSCell).

setStringValue:

– (void)setStringValue:(NSString *)aString

Sets the action cell’s contents to a copy of aString . If it’s currently in an
NSControl view, the action cell is redisplayed or marked as needing redisplay.
See also setStringValue: (NSCell), stringValue , doubleValue ,
floatValue , intValue .

setTag:

– (void)setTag:(int)anInt

Sets the action cell’s tag to anInt . The tag can be used to identify the action
cell in an NSControl that contains multiple NSCell s (an NSMatrix , for
example). See also tag , setTag: (NSControl).

setTarget:

– (void)setTarget:(id)anObject

Sets the action cell’s target object to anObject . This is the object that is sent
the action cell’s action method. See also target , setAction: .

stringValue

– (NSString *)stringValue

Returns the action cell’s contents as an NSString object. If the action cell is
being edited when this message is received, editing is validated first. See also
setStringValue: , stringValue (NSCell), validateEditing
(NSControl), doubleValue , floatValue , intValue .

tag

– (int)tag

NSApplication 1-13

1

Returns the action cell’s tag. The tag can be used to identify the action cell in
an NSControl that contains multiple NSCell s (an NSMatrix , for example).
See also setTag: , tag (NSControl).

target

– (id)target

Returns the action cell’s target object (the object that receives the action cell’s
action method). See also setTarget: , action .

NSApplication

Class Description

The NSApplication class provides the central framework for your
application’s execution. Every application must have exactly one instance of
NSApplication (or of a custom subclass of NSApplication). Your
program’s main() function should create this instance by calling the
sharedApplication class method. (Alternatively, you could use alloc and
init , making sure they’re called only once.) After creating the
NSApplication , the main() function should load your application’s main
nib file, and then start the event loop by sending the NSApplication a run
message. Here’s an example of a typical OpenStep main() function in its
entirety:

void main(int argc, char *argv[]) {
NSApplication *app = [NSApplication sharedApplication];
[NSBundle loadNibNamed:@"myMain" owner:app];
[app run];

}

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder),
NSObject (NSObject)

Declared In: AppKit/NSApplication.h
AppKit/NSColorPanel.h
AppKit/NSDataLinkPanel.h
AppKit/NSHelpPanel.h
AppKit/NSPageLayout.h

1-14 OpenStep Programming Reference—September 1996

1

Creating the NSApplication object connects the program to the window
system and the Display PostScript server, and initializes its PostScript
environment. The NSApplication object maintains a list of all the NSWindows
that the application uses, so it can retrieve any of the application’s NSViews.

The NSApplication object’s main task is to receive events from the window
system and distribute them to the proper NSResponder s. The
NSApplication translates an event into an NSEvent object, then forwards the
NSEvent to the affected NSWindow object. A key-down event that occurs while
the Command key is pressed results in a performKeyEquivalent: message,
and every NSWindow has an opportunity to respond to it. Other keyboard and
mouse events are sent to the NSWindow associated with the event; the
NSWindow then distributes these NSEvent s to the objects in its view hierarchy.

In general, it’s neater and cleaner to separate the code that embodies your
program’s functionality into a number of custom objects. Usually those custom
objects are subclasses of NSObject . Methods defined in your custom objects
can be invoked from a small dispatcher object without being closely tied to the
NSApplication object. It’s rarely necessary to create a custom subclass of
NSApplication . You will need to do so only if you need to provide your own
special response to messages that are routinely sent to the NSApplication
object. To use a custom subclass of NSApplication , simply substitute it for
NSApplication in the main() function above.

When you create an instance of NSApplication (or of a custom subclass of
NSApplication), it gets stored as the global variable NSApp. Although this
global variable isn’t used in the example main() function above, you might
find it convenient to refer to NSApp within the source code for your
application’s custom objects. Note that you can also retrieve the
NSApplication object by invoking sharedApplication .

The NSApplication class sets up autorelease pools during initialization and
during the event loop—that is, within its init (or sharedApplication) and
run methods. Similarly, the methods that the Application Kit adds to
NSBundle employ autorelease pools during the loading of nib files. The
autorelease pools aren’t accessible outside the scope of the respective
NSApplication and NSBundle methods. This isn’t usually a problem,
because a typical OpenStep application instantiates its objects by loading nib
files (and by having the objects from the nib file create other objects during
initialization and during the event loop). However, if you do need to use
OpenStep classes within the main() function itself (other than to invoke the
methods just mentioned), you should instantiate an autorelease pool before

NSApplication 1-15

1

using the classes, and then release the pool once you’re done. For more
information, see the description of the NSAutoreleasePool class in the
Foundation Kit section of this book.

The Delegate and Observers

The NSApplication object can be assigned a delegate that responds on behalf
of the NSApplication to certain messages addressed to the NSApplication
object. Some of these messages, such as
application:openFile:withType: , ask the delegate to open a file.
Another message, applicationShouldTerminate: , lets the delegate
determine whether the application should be allowed to quit.

An NSApplication can also have observers. Observers receive notifications of
changes in the NSApplication , but they don’t have the unique responsibility
that a delegate has. Any instance of a class that implements an observer
method can register to receive the corresponding notification. For example, if a
class implements applicationDidFinishLaunching: and registers to
receive the corresponding notification, instances of this class are given an
opportunity to react after the NSApplication has been initialized. The
observer methods are listed later in this class specification. For information
about how to register to receive notifications, see the class specification for the
Foundation Kit’s NSNotificationCenter class.

There can be only one delegate, but there can be many observers. The delegate
itself can be an observer—in fact, in many applications the delegate might be
the only observer. Most observers need to explicitly register with an
NSNotificationCenter before they can receive a particular notification
message, but the delegate only needs to implement the method. By simply
implementing an observer method, the NSApplication ’s delegate is
automatically registered to receive the corresponding notification.

1-16 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Creating and initializing the
NSApplication

+ sharedApplication
– finishLaunching

Changing the active application – activateIgnoringOtherApps:
– deactivate
– isActive

Running the event loop – abortModal
– beginModalSessionForWindow:
– endModalSession:
– isRunning
– run
– runModalForWindow:
– runModalSession:
– sendEvent:
– stop:
– stopModal
– stopModalWithCode:

Getting, removing, and posting
events

– currentEvent
– postEvent:atStart:
– discardEventsMatchingMask:beforeEvent:
– nextEventMatchingMask:untilDate:
inMode:dequeue:

Sending action messages – sendAction:to:from:
– targetForAction:
– tryToPerform:with:

Setting the application’s icon – setApplicationIconImage:
– applicationIconImage

Hiding all windows – hide:
– isHidden
– unhide:
– unhideWithoutActivation

Managing windows – keyWindow
– mainWindow
– makeWindowsPerform:inOrder:
– miniaturizeAll:
– preventWindowOrdering
– setWindowsNeedUpdate:
– updateWindows
– windows
– windowWithWindowNumber:

NSApplication 1-17

1

Showing standard panels – orderFrontColorPanel:
– orderFrontDataLinkPanel:
– orderFrontHelpPanel:
– runPageLayout:

Getting the main menu – mainMenu
– setMainMenu:

Managing the Windows menu – addWindowsItem:title:filename:
– arrangeInFront:
– changeWindowsItem:title:filename:
– removeWindowsItem:
– setWindowsMenu:
– updateWindowsItem:
– windowsMenu

Managing the Services menu – registerServicesMenuSendTypes:returnTypes:
– servicesMenu
– setServicesMenu:
– servicesProvider
– setServicesProvider:
– validRequestorForSendType:returnType:

Getting the Display PostScript
context

– context

Reporting an exception – reportException:

Terminating the application – terminate:

Assigning a delegate – delegate
– setDelegate:

Methods Implemented by the
Delegate

– applicationDidBecomeActive:
– applicationDidFinishLaunching:
– applicationDidHide:
– applicationDidResignActive:
– applicationDidUnhide:
– applicationDidUpdate:
– application:openFile:
– application:openFileWithoutUI:
– application:openTempFile:
– applicationOpenUntitledFile:
– applicationShouldTerminate:
– applicationWillBecomeActive:
– applicationWillFinishLaunching:
– applicationWillHide:
– applicationWillResignActive:
– applicationWillTerminate:
– applicationWillUnhide:
– applicationWillUpdate:

Activity Class Method

1-18 OpenStep Programming Reference—September 1996

1

Class Methods

sharedApplication

+ (NSApplication *)sharedApplication

Returns the NSApplication instance, creating it if it doesn’t yet exist.

Instance Methods

abortModal

– (void)abortModal

Aborts the modal event loop by raising the exception
NSAbortModalException , which is caught by runModalForWindow: , the
method that started the modal loop. Since this method raises an exception, it
never returns; runModalForWindow: , when stopped with this method,
returns the enumeration constant NSRunAbortedResponse . Note that you
can’t use this method to abort modal sessions where you control the modal
loop and periodically invoke runModalSession: . See also
runModalSession: , endModalSession: , stopModal ,
stopModalWithCode: .

activateIgnoringOtherApps:

– (void)activateIgnoringOtherApps:(BOOL)flag

Makes the receiving application the active application. If flag is NO, the
application is activated only if no other application is currently active.
Normally, this method is invoked with flag set to NO. When the Workspace
Manager launches an application, it deactivates itself, so
activateIgnoringOtherApps:NO allows the application to become active if
the user waits for it to launch, but the application remains unobtrusive if the
user activates another application. If flag is YES, the application will always
activate. Regardless of the setting of flag , there may be a time lag before the
application activates; you should not assume that the application will be active
immediately after sending this message.

NSApplication 1-19

1

Note – You can make one of your NSWindows the key window without
changing the active application; when you send a makeKeyWindow message to
an NSWindow object, you simply ensure that the NSWindow object will be the
key window when the application is active.

You should rarely need to invoke this method. Under most circumstances the
Application Kit takes care of proper activation. However, you might find this
method useful if you implement your own methods for interapplication
communication. See also deactivate .

addWindowsItem:title:filename:

– (void)addWindowsItem:(NSWindow *)aWindow
title:(NSString *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the window object
aWindow. If isFilename is NO, aString appears literally in the menu. If
isFilename is YES, aString is assumed to be a converted name with the
name of the file preceding the path (the way NSWindow’s
setTitleWithRepresentedFilename: method shows a title). If an item for
aWindow already exists in the Windows menu, this method has no effect. You
rarely invoke this method because an item is placed in the Windows menu for
you whenever a window object’s title is set. See also
changeWindowsItem:title:filename: ,
setTitleWithRepresentedFilename: (NSWindow).

applicationIconImage

– (NSImage *)applicationIconImage

Returns the NSImage used for the application’s icon. See also
setApplicationIconImage: .

arrangeInFront:

– (void)arrangeInFront:(id)sender

1-20 OpenStep Programming Reference—September 1996

1

Arranges all of the windows listed in the Windows menu in front of all other
windows. Windows associated with the application but not listed in the
Windows menu are not ordered to the front. See also removeWindowsItem: ,
orderFront: (NSWindow).

beginModalSessionForWindow:

– (NSModalSession)beginModalSessionForWindow:
(NSWindow *)theWindow

Prepares the application for a modal session with theWindow . In other words,
this method prepares the application so that mouse events get to it only if they
occur in theWindow . theWindow is made the key window and ordered to the
front. The return value is a structure that stores information used by the system
during a modal session. This structure is allocated by the method and is meant
to be used to refer to the session. The application should not access any of the
fields of this structure.

The method beginModalSessionForWindow: should be balanced by
endModalSession: . If an exception is raised,
beginModalSessionForWindow: arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession: message in the event of
an exception. See also runModalSession: , endModalSession: .

changeWindowsItem:title:filename:

– (void)changeWindowsItem:(NSWindow *)aWindow
title:(NSString *)aString
filename:(BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString . If aWindow
doesn’t have an item in the Windows menu, this method adds the item. If
isFilename is NO, aString appears literally in the menu. If isFilename is
YES, aString is assumed to be a converted name with the file’s name
preceding the path (the way NSWindow’s
setTitleWithRepresentedFilename: places a title). See also
addWindowsItem:title:filename: ,
setTitleWithRepresentedFilename: (NSWindow).

context

– (NSDPSContext *)context

NSApplication 1-21

1

Returns the NSApplication ’s Display PostScript context. See also
NSDPSContext .

currentEvent

– (NSEvent *)currentEvent

Returns a pointer to the last event the NSApplication object retrieved from
the event queue. A pointer to the current event is also passed with every event
message.

deactivate

– (void)deactivate

Deactivates the application if it’s active. Normally, you shouldn’t invoke this
method; the Application Kit is responsible for proper deactivation. See also
activateIgnoringOtherApps: .

delegate

– (id)delegate

Returns the NSApplication ’s delegate. See also setDelegate: .

discardEventsMatchingMask:beforeEvent:

– (void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent

Removes from the event queue all events matching mask that were generated
before lastEvent . If lastEvent is nil , all events matching mask are
removed from the queue.

endModalSession:

– (void)endModalSession:(NSModalSession)session

Finishes and cleans up after a modal session. The argument session should
be taken from a previous invocation of beginModalSession:for: . See also
runModalSession: , beginModalSessionForWindow: .

1-22 OpenStep Programming Reference—September 1996

1

finishLaunching

– (void)finishLaunching

Activates the application, opens any files specified by the “NSOpen” user
default, and unhighlights the application’s icon in the Workspace Manager.
This method is invoked by run before it starts the event loop. When this
method begins, it posts the notification
NSApplicationWillFinishLaunchingNotification with the receiving
object to the default notification center. When it successfully completes, it posts
the notification NSApplicationDidFinishLaunchingNotification . If
you override finishLaunching , the subclass method should invoke the
superclass method.

hide:

– (void)hide:(id)sender

Collapses the application’s graphics—including all its windows, menus, and
panels—into a single small window. The hide: message is usually sent using
the Hide command in the application’s main Menu. When this method begins,
it posts the notification NSApplicationWillHideNotification with the
receiving object to the default notification center. When it completes
successfully, it posts the notification NSApplicationDidHideNotification .
See also unhide: .

isActive

– (BOOL)isActive

Returns YES if the application is currently active, and NO if it isn’t. See also
activateIgnoringOtherApps: .

isHidden

– (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn’t.

isRunning

– (BOOL)isRunning

NSApplication 1-23

1

Returns YES if the application is running, and NO if the stop: method has
ended the main event loop. See also run , stop: , terminate: .

keyWindow

– (NSWindow *)keyWindow

Returns the key NSWindow, that is, the NSWindow that receives keyboard
events. If there is no key NSWindow, or if the key NSWindow belongs to another
application, this method returns nil . See also mainWindow , isKeyWindow
(NSWindow).

mainMenu

– (NSMenu *)mainMenu

Returns the id of the application’s main menu. See also NSMenu.

mainWindow

– (NSWindow *)mainWindow

Returns the application’s main window. See also NSWindow.

makeWindowsPerform:inOrder:

– (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Sends the application object’s NSWindows a message to perform the
aSelector method. The message is sent to each NSWindow in turn until one
of them returns YES; the method then returns a pointer to that window. If no
NSWindow returns YES, the method returns nil . If flag is YES, the application
object’s NSWindows receive the aSelector messages in the front-to-back order
in which they appear in the Window Server’s window list. If flag is NO, the
NSWindows receive the messages in the order they appear in the application
object’s window list. This order generally reflects the order in which the
NSWindows were created. The method designated by aSelector can’t take
any arguments.

miniaturizeAll:

– (void)miniaturizeAll:(id)sender

1-24 OpenStep Programming Reference—September 1996

1

Miniaturizes all the receiver’s application windows.

nextEventMatchingMask:untilDate:
inMode:dequeue:

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate:(NSDate *)expiration inMode:(NSString *)mode
dequeue:(BOOL)flag

Returns the next event matching mask, or nil if no such event is found before
the expiration date. If flag is YES, the event is removed from the queue.
The mode argument names an NSRunLoop mode that determines what other
ports are listened to and what timers may fire while the application is waiting
for the event.

orderFrontColorPanel:

– (void)orderFrontColorPanel:(id)sender

Brings up the color panel.

orderFrontDataLinkPanel:

– (void)orderFrontDataLinkPanel:(id)sender

Shows the shared instance of the data link panel, creating it first if necessary.
Note that this method is not part of the OpenStep specification.

orderFrontHelpPanel:

– (void)orderFrontHelpPanel:(id)sender

Shows the application’s help panel or the default help panel. Note that this
method is not part of the OpenStep specification.

postEvent:atStart:

– (void)postEvent:(NSEvent *)event atStart:(BOOL)flag

Adds event to the front of the application’s event queue if flag is YES, or to
the back of the queue otherwise.

NSApplication 1-25

1

preventWindowOrdering

– (void)preventWindowOrdering

Suppresses the usual window ordering in handling the most recent
mouse-down event. Most applications will not need to use this method since
the Application Kit support for dragging will call this method when dragging
is initiated.

registerServicesMenuSendTypes:returnTypes:

– (void)registerServicesMenuSendTypes:(NSArray *)sendTypes
returnTypes:(NSArray *)returnTypes

Registers pasteboard types that the application can send and receive in
response to service requests. If the application has a Services menu, a menu
item is added for each service provider that can accept one of the specified
send types or return one of the specified return types. This method should
typically be invoked at application startup time or when an object that can use
services is created. It can be invoked more than once; its purpose is to ensure
that there is a menu item for every service that the application may use. The
individual items will be dynamically enabled and disabled by the event
handling mechanism to indicate which services are currently appropriate. An
application (or object instance that can cut or paste) should register every
possible type that it can send and receive. See also
validRequestorForSendType:returnType: (NSResponder),
readSelectionFromPasteboard: (NSCStringText),
writeSelectionToPasteboard:types: (NSCStringText),
NSPasteboard .

removeWindowsItem:

–(void)removeWindowsItem:(NSWindow *)aWindow

Removes the item for aWindow in the Windows menu. Note that this method
doesn’t prevent the item from being automatically added again, so you must
use NSWindow’s setExcludedFromWindowsMenu: method if you want the
item to remain excluded from the Windows menu. See also
changeWindowsItem:title:filename: ,
setExcludedFromWindowsMenu: (NSWindow).

1-26 OpenStep Programming Reference—September 1996

1

reportException:

– (void)reportException:(NSException *)anException

Logs the given exception by calling NSLog() (Foundation Kit Functions).

run

– (void)run

Initiates the application object’s main event loop. The loop continues until a
stop: or terminate: message is received. Each iteration through the loop,
the next available event from the Window Server is stored, and is then
dispatched by sending the event to the application object using sendEvent: .
A run message should be sent as the last statement from main() , after the
application’s objects have been initialized. This method returns if it is
terminated by stop: , but never returns if it is terminated by terminate: . See
also runModalForWindow: , sendEvent: , stop: , terminate: .

runModalForWindow:

– (int)runModalForWindow:(NSWindow *)theWindow

Establishes a modal event loop for theWindow . Until the loop is broken by a
stopModal , stopModalWithCode: , or abortModal message, the application
won’t respond to any mouse, keyboard, or window-close events unless they’re
associated with theWindow . If stopModalWithCode: is used to stop the
modal event loop, this method returns the argument passed to
stopModalWithCode: . If stopModal is used, it returns the constant
NSRunStoppedResponse . If abortModal is used, it returns the constant
NSRunAbortedResponse . This method is functionally similar to the following
code:

NSWindow *theWindow;
NSModalSession session;

session = [NSApp beginModalSessionForWindow:theWindow];
for (;;) {
 if ([NSApp runModalSession:session] != NSRunContinuesResponse)
 break;
}
[NSApp endModalSession:session];

NSApplication 1-27

1

See also stopModal , stopModalWithCode: , abortModal ,
runModalSession: .

runModalSession:

– (int)runModalSession:(NSModalSession)session

Runs a modal session represented by session , as defined in a previous
invocation of beginModalSessionForWindow: . A loop using this method is
similar to a modal event loop run with runModalForWindow: except that the
application can continue processing between method invocations. When you
invoke this method, events for the NSWindow of this session are dispatched as
normal. This method returns when there are no more events. You must invoke
this method frequently enough that the window remains responsive to events.

If the modal session was not stopped, this method returns
NSRunContinuesResponse . If stopModal was invoked as the result of event
processing, NSRunStoppedResponse is returned. If stopModalWithCode:
was invoked, this method returns the value passed to stopModalWithCode: .
The NSAbortModalException exception raised by abortModal isn’t caught.
See also beginModalSessionForWindow:, endModalSession: , stopModal ,
stopModalWithCode: .

runPageLayout:

– (void)runPageLayout:(id)sender

Brings up the application object’s Page Layout panel, which allows the user to
select the page size and orientation.

sendAction:to:from:

– (BOOL)sendAction:(SEL)aSelector to:(id)aTarget from:(id)sender

Sends an action message to the object aTarget . If aTarget is nil , the
application object looks for an object that can respond to the message—that is,
for an object that implements a method matching aSelector . It begins with
the first responder of the key window. If the first responder can’t respond, it
tries the first responder’s next responder, and continues following next
responder links up the NSResponder chain. If none of the objects in the key
window’s responder chain can handle the message, the application object
attempts to send the message to the key NSWindow’s delegate.

1-28 OpenStep Programming Reference—September 1996

1

If the delegate doesn’t respond and the main window is different from the key
window, NSApp begins again with the first responder in the main window. If
objects in the main window can’t respond, the NSApplication object
attempts to send the message to the main window’s delegate. If still no object
has responded, NSApp tries to handle the message itself. If NSApp can’t
respond, it attempts to send the message to its own delegate. This method
returns YES if the action is applied; otherwise it returns NO.

sendEvent:

– (void)sendEvent:(NSEvent *)theEvent

Sends an event to the application object. You rarely send sendEvent:
messages directly although you might want to override this method to perform
some action on every event. The sendEvent: messages are sent from the main
event loop (the run method). This method dispatches events to the
appropriate responders: the application object handles application events; the
NSWindow indicated in the event record handles window related events; and
mouse and key events are forwarded to the appropriate NSWindow for further
dispatching.

When sending the activate application event, this method posts the
notifications NSApplicationWillBecomeActive and
NSApplicationDidBecomeActive with the receiving object to the default
notification center. When sending the deactivate application event, it posts the
NSApplicationWillResignActiveNotification and
NSApplicationDidResignActiveNotification notifications with the
receiving object to the default notification center.

servicesMenu

– (NSMenu *)servicesMenu

Returns the application object’s Services menu. Returns nil if no Services
menu has been created. See also setServicesMenu: .

servicesProvider

- (id)servicesProvider

NSApplication 1-29

1

Returns the application’s services provider application. The services provider
application responds to remote messages sent from the Services menus of other
applications. The services provider application should contain methods that a
service-providing application uses to give services to other applications. See also
setServicesProvider: , NSRegisterServicesProvider() .

setApplicationIconImage:

– (void)setApplicationIconImage:(NSImage *)anImage

Sets the application’s icon to anImage . See also applicationIconImage .

setDelegate:

– (void)setDelegate:(id)anObject

Makes anObject the application’s delegate. The notification messages that a
delegate can expect to receive are listed under “Methods Implemented by the
Delegate” on page -34. The delegate doesn’t need to implement all the
methods. See also delegate .

setMainMenu:

– (void)setMainMenu:(NSMenu *)aMenu

Makes aMenu the application’s main menu. See also mainMenu .

setServicesMenu:

– (void)setServicesMenu:(NSMenu *)aMenu

Makes aMenu the application object’s Services menu. See also servicesMenu .

setServicesProvider:

- (id)setServicesProvider:(id)provider

Registers the service provider application that will respond to remote messages.
Applications registered with this method should create an NSApplication
object. See also servicesProvider , NSRegisterServicesProvider() .

1-30 OpenStep Programming Reference—September 1996

1

setWindowsMenu:

– (void)setWindowsMenu:(id)aMenu

Makes aMenu the application object’s Windows menu. See also windowsMenu .

setWindowsNeedUpdate:

– (void)setWindowsNeedUpdate:(BOOL)flag

Sets whether the application’s windows need updating when the application
has finished processing the current event. This method is especially useful for
making sure menus are updated to reflect changes not initiated by user actions.

stop:

– (void)stop:(id)sender

Stops the main event loop. This method will break the flow of control out of
the run method, thereby returning to the main() function. A subsequent run
message will restart the loop. If this method is applied during a modal event
loop, it will break that loop but not the main event loop. See also terminate: ,
run , runModalSession: .

stopModal

– (void)stopModal

Stops a modal event loop. This method should always be paired with a
previous runModalForWindow: or beginModalSessionForWindow:
message. When runModalForWindow: is stopped with this method, it returns
NSRunStoppedResponse . This method will stop the loop only if it’s executed
by code responding to an event. See also stopModalWithCode: ,
runModalSession: , abortModal .

stopModalWithCode:

– (void)stopModalWithCode:(int)returnCode

This method is similar to stopModal except that the argument returnCode
allows you to specify the value that runModalForWindow: will return. See
also stopModal , abortModal .

NSApplication 1-31

1

targetForAction:

– (id)targetForAction:(SEL)aSelector

Returns the object that receives the action message aSelector .

terminate:

– (void)terminate:(id)sender

Frees the application object and exits the application. This is the default action
method for the application’s Quit menu item. Each use of terminate:
invokes applicationShouldTerminate: to notify the delegate that the
application is about to terminate. If applicationShouldTerminate: returns
NO, control is returned to the main event loop, and the application isn’t
terminated. Otherwise, this method frees the application object and terminates
the application.

Note – You should not put final cleanup code in your application’s main()
function; it will never be executed.

See also stop: , applicationShouldTerminate: (delegate method).

tryToPerform:with:

– (BOOL)tryToPerform:(SEL)aSelector with:(id)anObject

Aids in dispatching action messages. The application object tries to perform
the method aSelector using its inherited NSResponder method
tryToPerform:with: . If the application object doesn’t perform aSelector ,
the object’s delegate is given the opportunity to perform it using its inherited
NSObject method performSelector:object:afterDelay: . If either the
application object or the application object’s delegate accept aSelector , this
method returns YES; otherwise it returns NO. See also tryToPerform:with:
(NSResponder), instancesRespondToSelector: (NSObject),
performSelector:object:afterDelay: (NSObject).

unhide:

– (void)unhide:(id)sender

1-32 OpenStep Programming Reference—September 1996

1

Restores a hidden application to its former state (all of the windows, menus,
and panels visible), and makes it the active application. This method is usually
invoked as the result of double-clicking the icon for the hidden application. See
also hide: , unhideWithoutActivation , activateIgnoringOtherApps: .

unhideWithoutActivation

– (void)unhideWithoutActivation

Unhides the application but doesn’t make it the active application. You might
want to invoke activateIgnoringOtherApps:NO after invoking this
method to make the receiving application active if there is no active
application. When this method begins, it posts the notification
NSApplicationWillUnhideNotification with the receiving object to the
default notification center. When it completes successfully, it posts the
notification NSApplicationDidUnhideNotification . See also hide: ,
activateIgnoringOtherApps: .

updateWindows

– (void)updateWindows

Sends an update message to on-screen NSWindows. When this method begins,
it sends the notification NSApplicationWillUpdateNotification with the
receiving object to the default notification center. When it successfully
completes, it sends the notification
NSApplicationDidUpdateNotification . If the delegate implements
applicationWillUpdate: , that message is sent to the delegate before the
windows are updated. Similarly, if the delegate implements
applicationDidUpdate: , that message is sent to the delegate after the
windows are updated. See also applicationWillUpdate: (delegate
method), applicationDidUpdate: (delegate method).

updateWindowsItem:

– (void)updateWindowsItem:(NSWindow *)aWindow

NSApplication 1-33

1

Updates the item for aWindow in the Windows menu to reflect the edited
status of aWindow. You rarely need to invoke this method because it is invoked
automatically when the edited status of an NSWindow is set. See also
changeWindowsItem:title:filename: , setDocumentEdited:
(NSWindow).

validRequestorForSendType:returnType:

– (id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType

Indicates whether the application object can send and receive the specified
types. This message is passed on to the application object’s delegate if the
delegate can respond (and isn’t an NSResponder with its own next
responder). If the delegate can’t respond or returns nil , this method returns
nil , indicating that no object was found that could supply sendType data for
a remote message from the Services menu and accept back returnType data.
If such an object was found, it is returned. Messages to perform this method
are initiated by the Services menu. See also
validRequestorForSendType:returnType: (NSResponder),
registerServicesMenuSendTypes:returnTypes: ,
writeSelectionToPasteboard:types: (NSCStringText),
readSelectionFromPasteboard: (NSCStringText).

windows

– (NSArray *)windows

Returns a pointer to the NSArray object used to keep track of all the
application object’s NSWindows, including menus, panels, and the like. In the
current implementation, this array also contains global (shared) NSWindows.

windowsMenu

– (NSMenu *)windowsMenu

Returns the application object’s Windows menu. Returns nil if no Windows
menu has been created.

1-34 OpenStep Programming Reference—September 1996

1

windowWithWindowNumber:

– (NSWindow *)windowWithWindowNumber:(int)windowNum

Returns the NSWindow object corresponding to windowNum.

Methods Implemented by the Delegate

applicationDidBecomeActive:

– (void)applicationDidBecomeActive:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSApplicationDidBecomeActiveNotification . If the delegate
implements this method, it’s automatically registered to receive the
notification. See also applicationDidFinishLaunching: (delegate
method).

applicationDidFinishLaunching:

– (void)applicationDidFinishLaunching:
(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSApplicationDidFinishLaunchingNotification . If the
delegate implements this method, it’s automatically registered to receive the
notification. See also applicationDidBecomeActive: (delegate method).

applicationDidHide:

– (void)applicationDidHide:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSApplicationDidHideNotification . If the delegate implements
this method, it’s automatically registered to receive the notification. See also
hide: , applicationDidUnhide: (delegate method).

applicationDidResignActive:

– (void)applicationDidResignActive:(NSNotification *)aNotification

NSApplication 1-35

1

Sent by the default notification center to the delegate immediately after the
application is deactivated; aNotification is always
NSApplicationDidResignActiveNotification . If the delegate
implements this method, it’s automatically registered to receive the
notification.

applicationDidUnhide:

– (void)applicationDidUnhide:(NSNotification *)aNotification

Sent by the default notification center to the delegate immediately after the
application is unhidden; aNotification is always
NSApplicationDidUnhideNotification . If the delegate implements this
method, it’s automatically registered to receive the notification. See also
hide: , applicationDidHide: (delegate method).

applicationDidUpdate:

– (void)applicationDidUpdate:(NSNotification *)aNotification

Sent by the default notification center to the delegate immediately after the
application object updates its NSWindows.; aNotification is always
NSApplicationDidUpdateNotification . If the delegate implements this
method, it’s automatically registered to receive the notification. See also
updateWindows , updateWindowsItem: , applicationWillUpdate:
(delegate method).

application:openFile:

– (BOOL)application:(NSApplication *)application
openFile:(NSString *)filename

Sent directly by application to the delegate. This method is like
application:openFileWithoutUI: , but brings up the user interface of the
file’s application. The method returns YES if it is able to open the file, and
returns NO otherwise. See also application:openFileWithoutUI:
(delegate method), application:openTempFile: (delegate method).

1-36 OpenStep Programming Reference—September 1996

1

application:openFileWithoutUI:

– (BOOL)application:(NSApplication *)sender
openFileWithoutUI:(NSString *)filename

Sent directly by sender to the delegate. Opens the specified file to run without
a user interface. Work with the file will be under programmatic control of
sender , rather than under keyboard control of the user. Returns YES or NO to
indicate whether the file was successfully opened. See also
application:openFile: (delegate method).

application:openTempFile:

– (BOOL)application:(NSApplication *)application
openTempFile:(NSString *)filename

Sent directly by application to the delegate. This method is like
application:openFile: , except that a file opened through this method is
assumed to be temporary; it’s the application's responsibility to remove the file
at the appropriate time. This method returns YES if it is able to open the file,
and NO otherwise. See also application:openFile: (delegate method).

applicationOpenUntitledFile:

– (BOOL)applicationOpenUntitledFile:(NSApplication *)application

Sent directly by application to the delegate. This method is like
application:openFile: , but it opens a new, untitled document.

applicationShouldTerminate:

– (BOOL)applicationShouldTerminate:(NSApplication *)sender

Sent directly by sender to the delegate. Returns YES if the application should
terminate.

applicationWillBecomeActive:

– (void)applicationWillBecomeActive:(NSNotification *)aNotification

NSApplication 1-37

1

Sent by the default notification center to the delegate; aNotification is
always NSApplicationWillBecomeActiveNotification . If the delegate
implements this method, it’s automatically registered to receive this
notification.

applicationWillFinishLaunching:

– (void)applicationWillFinishLaunching:(NSNotification
*)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSApplicationWillFinishLaunchingNotification . If the
delegate implements this method, it’s automatically registered to receive this
notification.

applicationWillHide:

– (void)applicationWillHide:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSApplicationWillHideNotification . If the delegate implements
this method, it’s automatically registered to receive this notification.

applicationWillResignActive:

– (void)applicationWillResignActive:(NSNotification *)aNotification

Sent by the default notification center to the delegate to indicate that the
application is about to give up its active status; aNotification is always
NSApplicationWillResignActiveNotification . If the delegate
implements this method, it’s automatically registered to receive this
notification.

applicationWillTerminate:

- (void)applicationWillTerminate:(NSNotification *)notification

Sent by the default notification center to the delegate to indicate that the
application is about to terminate; aNotification is always
NSApplicationWillTerminateNotification . If the delegate implements
this method, it’s automatically registered to receive the notification.

1-38 OpenStep Programming Reference—September 1996

1

applicationWillUnhide:

– (void)applicationWillUnhide:(NSNotification *)aNotification

Sent by the default notification center to the delegate to indicate that the
application is about to unhide any hidden windows; aNotification is
always NSApplicationWillUnhideNotification . If the delegate
implements this method, it’s automatically registered to receive the
notification.

applicationWillUpdate:

– (void)applicationWillUpdate:(NSNotification *)aNotification

Sent by the default notification center to the delegate immediately before the
application object updates its NSWindows; aNotification is always
NSApplicationWillUpdateNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See also
updateWindows , updateWindowsItem: , applicationDidUpdate:
(delegate method).

NSBitmapImageRep

Class Description

An NSBitmapImageRep is an object that can render an image from bitmap
data. The data can be in Tag Image File Format (TIFF), or it can be raw image
data. If it’s raw data, the object must be informed about the structure of the
image when it’s first initialized—its size, the number of color components, the
number of bits per sample, and so on. If it’s TIFF data, the object can get this
information from the various TIFF fields included with the data.

Although NSBitmapImageRep s are often used indirectly, through instances of
the NSImage class, they can also be used directly—for example, to manipulate
the bits of an image as you might need to do in a paint program.

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying
(NSImageRep), NSObject (NSObject)

Declared In: AppKit/NSBitmapImageRep.h

NSBitmapImageRep 1-39

1

Setting Up an NSBitmapImageRep

A new NSBitmapImageRep is passed bitmap data for an image when it’s first
initialized. An NSBitmapImageRep can also be created from bitmap data
that’s read from a specified rectangle of a focused NSView.

Although the NSBitmapImageRep class inherits NSImageRep methods that
set image attributes, these methods shouldn’t be used. Instead, you should
either allow the object to find out about the image from the TIFF fields or use
methods defined in this class to supply this information when the object is
initialized.

TIFF Compression

TIFF data can be read and rendered after it has been compressed using any one
of the four schemes briefly described below:

An NSBitmapImageRep can also produce compressed TIFF data for its image
using any of these schemes.

Table 1-1 TIFF Compression Schemes

Scheme What It Does

LZW Compresses and decompresses without information loss,
achieving compression ratios up to 5:1. It may be somewhat
slower to compress and decompress than the PackBits scheme.

PackBits Compresses and decompresses without information loss, but
may not achieve the same compression ratios as LZW.

JPEG Compresses and decompresses with some information loss, but
can achieve compression ratios anywhere from 10:1 to 100:1.
The ratio is determined by a user-settable factor ranging from
1.0 to 255.0, with higher factors yielding greater compression.
More information is lost with greater compression, but 15:1
compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for
images that specify at least 4 bits per sample.

CCITTFAX Compresses and decompresses 1 bit grayscale images using
international fax compression standards CCITT3 and CCITT4.

1-40 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

getTIFFCompressionTypes:count:

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list
count:(int *)numTypes

Activity Class Method

Allocating and initializing a
new NSBitmapImageRep
object

+ imageRepWithData:
+ imageRepsWithData:
– initWithData:
– initWithFocusedViewRect:
– initWithBitmapDataPlanes:pixelsWide:
pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:
 bitsPerPixel:

Getting information about the
image

– bitmapData
– getBitmapDataPlanes:

Producing a TIFF
representation of the image

+ TIFFRepresentationOfImageRepsInArray:
+ TIFFRepresentationOfImageRepsInArray:
usingCompression:factor:
– TIFFRepresentation
– TIFFRepresentationUsingCompression: factor:

Setting and checking
compression types

+ getTIFFCompressionTypes:count:
+ localizedNameForTIFFCompressionType:
– canBeCompressedUsing:
– getCompression:factor:
– setCompression:factor:

NSBitmapImageRep 1-41

1

Returns in list , by reference, an array of enumeration constants representing
all available compression types that can be used when writing a TIFF image.
The number of elements in list is represented by numTypes . list belongs to
the NSBitmapImageRep class; it shouldn’t be freed or altered. The following
compression types are supported:

Note that not all compression types can be used for all images:
NSTIFFCompressionNEXT can be used only to retrieve image data. Because
future releases of OpenStep may include other compression types, always use
this method to get the available compression types—for example, when you
implement a user interface for selecting compression types. See also
localizedNameForTIFFCompressionType: , canBeCompressedUsing: .

imageRepWithData:

+ (id)imageRepWithData:(NSData *)tiffData

Creates and returns an initialized NSBitmapImageRep corresponding to the
first image in tiffData .

imageRepsWithData:

+ (NSArray *)imageRepsWithData:(NSData *)tiffData

Creates and returns initialized NSBitmapImageRep objects for all the images
in tiffData .

Table 1-2 TIFF Data Compression Schemes

Constant Value Usage

NSTIFFCompressionNone 1

NSTIFFCompressionCCITTFAX3 3 1 bps images

NSTIFFCompressionCCITTFAX4 4 1 bps images

NSTIFFCompressionLZW 5

NSTIFFCompressionJPEG 6

NSTIFFCompressionNEXT 32766 Input only

NSTIFFCompressionPackBits 32773

NSTIFFCompressionOldJPEG 32865 Input only

1-42 OpenStep Programming Reference—September 1996

1

localizedNameForTIFFCompressionType:

+ (NSString *)localizedNameForTIFFCompressionType:
(NSTIFFCompression)compression

Returns a string containing the localized name for the compression type
represented by compression or, returns NULL if compression is
unrecognized. The possible compression types are listed in the
getTIFFCompressionTypes:count: class method description. When
implementing a user interface for selecting TIFF compression types, use the
getTIFFCompressionTypes:count: method to get the list of supported
compression types; then use this method to get the localized names for each
compression type. The returned string belongs to the NSBitmapImageRep
class; don’t attempt to alter or free it. See also
getTIFFCompressionTypes:count: .

TIFFRepresentationOfImageRepsInArray:

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)anArray

Returns a TIFF representation of the images in the specified NSArray , using
the compression that’s returned by getCompression:factor: (if
applicable).

TIFFRepresentationOfImageRepsInArray:
usingCompression:factor:

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)anArray
usingCompression:(NSTIFFCompression)compressionType
factor:(float)factor

Returns a TIFF representation of the images in the specified NSArray , which
are compressed using compressionType and factor . If the specified
compression isn’t applicable, no compression is used.

Instance Methods

bitmapData

– (unsigned char *)bitmapData

NSBitmapImageRep 1-43

1

Returns a pointer to the bitmap data. If the data is planar, returns a pointer to
the first plane.

bitsPerPixel

– (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This
is normally equal to the number of bits per sample or, if the data is in meshed
configuration, the number of bits per sample times the number of samples per
pixel. It can be explicitly set to another value (in the
initWithBitmapDataPlanes:... method) in case extra memory is
allocated for each pixel. This may be the case, for example, if pixel data is
aligned on byte boundaries.

bytesPerPlane

– (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This will be
figured from the number of bytes per row and the height of the image. See also
bytesPerRow .

bytesPerRow

– (int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single
row of pixels spanning the width of the image) in each data plane. If not
explicitly set to another value (in the initWithBitmapDataPlanes:...
method), this will be figured from the width of the image, the number of bits
per sample, and, if the data is in a meshed configuration, the number of
samples per pixel. It can be set to another value to indicate that each row of
data is aligned on word or other boundaries.

canBeCompressedUsing:

– (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression

This method tests whether the receiver can be compressed by compression
type. For a list of the possible compression types, see Table 1-2 on page 41. This
method returns YES if the receiver’s data matches compression ; for example,

1-44 OpenStep Programming Reference—September 1996

1

if compression is NSTIFFCompressionCCITTFAX3 , then the data must be
one bit-per-sample and one sample-per-pixel. This method returns NO if the
data doesn’t match compression or if compression is unsupported. See also
getTIFFCompressionTypes:count: .

getBitmapDataPlanes:

– (void)getBitmapDataPlanes:(unsigned char **)data

Provides pointers to each plane of bitmap data. data should be an array of five
character pointers. If the bitmap data is in planar configuration, each pointer
will be initialized to point to one of the data planes. If there are less than five
planes, the remaining pointers will be set to NULL. If the bitmap data is in
meshed configuration, only the first pointer will be initialized; the others will
be NULL. Color components in planar configuration are arranged in the
expected order—for example, red before green before blue for RGB color. All
color planes precede the coverage plane. See also isPlanar .

getCompression:factor:

– (void)getCompression:(NSTIFFCompression *)compression
factor:(float *)factor

Returns by reference the receiver’s compression type and compression factor.
Use this method to get information on the compression type for the source
image data. compression represents the compression type used on the data,
and corresponds to one of the values returned by the class method
getTIFFCompressionTypes:count: . factor is usually a value between 0.0
and 255.0, with 0.0 representing no compression. See also
getTIFFCompressionTypes:count: , setCompression:factor: .

initWithBitmapDataPlanes:pixelsWide:
pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:
bitsPerPixel:

– (id)initWithBitmapDataPlanes:(unsigned char **)planes
pixelsWide:(int)width pixelsHigh:(int)height
bitsPerSample:(int)bps samplesPerPixel:(int)spp

NSBitmapImageRep 1-45

1

hasAlpha:(BOOL)alpha isPlanar:(BOOL)config
colorSpaceName:(NSString *)colorSpaceName
bytesPerRow:(int)rowBytes bitsPerPixel:(int)pixelBits

Initializes the receiver, a newly allocated NSBitmapImageRep object, so that it
can render the image specified in planes and described by the other
arguments. If the object can’t be initialized, this method frees it and returns
nil . Otherwise, it returns the object (self).

planes is an array of character pointers, each of which points to a buffer
containing raw image data. If the data is in planar configuration, each buffer
holds one component—one plane—of the data. Color planes are arranged in
the standard order—for example, red before green before blue for RGB color.
All color planes precede the coverage plane. If the data is in meshed
configuration (config is NO), only the first buffer is read.

If planes is NULL or if it’s an array of NULL pointers, this method allocates
enough memory to hold the image described by the other arguments. You can
then obtain pointers to this memory (with the getBitmapDataPlanes:
method) and fill in the image data. In this case, the allocated memory will
belong to the object and will be freed when it’s freed.

If planes is not NULL and the array contains at least one data pointer, the
object will only reference the image data; it won’t copy it. The buffers won’t be
freed when the object is freed.

Each of the other arguments (besides planes) informs the
NSBitmapImageRep object about the image. They’re explained below:

• width and height specify the size of the image in pixels. The size in each
direction must be greater than 0.

• bps (bits per sample) is the number of bits used to specify one pixel in a
single component of the data. All components are assumed to have the same
bits per sample.

• spp (samples per pixel) is the number of data components. It includes both
color components and the coverage component (alpha), if present.
Meaningful values range from 1 through 5. An image with cyan, magenta,
yellow, and black (CMYK) color components plus a coverage component
would have an spp of 5; a gray-scale image that lacks a coverage component
would have an spp of 1.

1-46 OpenStep Programming Reference—September 1996

1

• alpha should be YES if one of the components counted in the number of
samples per pixel (spp) is a coverage component, and NO if there is no
coverage component.

• config should be YES if the data components are laid out in a series of
separate “planes” or channels (“planar configuration”), and NO if
component values are interwoven in a single channel (“meshed
configuration”). For example, in meshed configuration, the red, green, blue,
and coverage values for the first pixel of an image would precede the red,
green, blue, and coverage values for the second pixel, and so on. In planar
configuration, red values for all the pixels in the image would precede all
green values, which would precede all blue values, which would precede all
coverage values.

• space indicates how data values are to be interpreted. It should be one of
the following NSString s:

• rowBytes is the number of bytes that are allocated for each scan line in
each plane of data. A scan line is a single row of pixels spanning the width
of the image. Normally, rowBytes can be figured from the width of the
image, the number of bits per pixel in each sample (bps), and, if the data is
in a meshed configuration, the number of samples per pixel (spp). However,
if the data for each row is aligned on word or other boundaries, it may have
been necessary to allocate more memory for each row than there is data to

Table 1-3 Color Space Names

NSString

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSCustomColorSpace

NSBitmapImageRep 1-47

1

fill it. rowBytes lets the object know whether that’s the case. If rowBytes is
0, the NSBitmapImageRep assumes that there’s no empty space at the end
of a row.

• pixelBits informs the NSBitmapImageRep how many bits are actually
allocated per pixel in each plane of data. If the data is in planar
configuration, this normally equals bps (bits per sample). If the data is in
meshed configuration, it normally equals bps times spp (samples per pixel).
However, it’s possible for a pixel specification to be followed by some
meaningless bits (empty space), as may happen, for example, if pixel data is
aligned on byte boundaries. Currently, an NSBitmapImageRep cannot
render an image if this is the case. If pixelBits is 0, the object will
interpret the number of bits per pixel to be the expected value, without any
meaningless bits.

This method is the designated initializer for NSBitmapImageRep s that handle
raw image data.

initWithData:

– (id)initWithData:(NSData *)tiffData

Initializes a newly allocated NSBitmapImageRep from the first TIFF header
and image data found in tiffData .

initWithFocusedViewRect:

– (id)initWithFocusedViewRect:(NSRect)rect

Initializes the new object using data read from the image contained in the
rectangle rect .

isPlanar

– (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color
and coverage component (planar configuration), and NO if the data is
integrated into a single plane (meshed configuration). See also
samplesPerPixel .

1-48 OpenStep Programming Reference—September 1996

1

numberOfPlanes

– (int)numberOfPlanes

Returns the number of separate planes that image data is organized into. This
will be the number of samples per pixel if the data has a separate plane for
each component (isPlanar returns YES) and 1 if the data is meshed
(isPlanar returns NO). See also isPlanar , samplesPerPixel , hasAlpha
(NSImageRep).

samplesPerPixel

– (int)samplesPerPixel

Returns the number of components in the data. It includes both color
components and the coverage component, if present. See also hasAlpha
(NSImageRep).

setCompression:factor:

– (void)setCompression:(NSTIFFCompression)compression
factor:(float)factor

Sets the receiver’s compression type and compression factor. compression is
one of the supported compression types listed in the
getTiffCompressionTypes:count: class method description. factor is a
compression factor, usually between 0.0 (no compression) and 255.0 (maximum
compression). When an NSBitmapImageRep is created, the instance stores the
compression type and factor for the source data. If you subsequently request a
TIFF representation of the image using TIFFRepresentation , this method
tries to use the stored compression type and factor. Use
setCompression:factor: to change the compression type and factor. See
also getTIFFCompressionTypes:count: , getCompression:factor: ,
TIFFRepresentation .

TIFFRepresentation

– (NSData *)TIFFRepresentation

Returns a TIFF representation of the image, using the compression type and
factor returned by getCompression:factor: (if applicable).

NSBox 1-49

1

TIFFRepresentationUsingCompression: factor:

– (NSData *)TIFFRepresentationUsingCompression:
(NSTIFFCompression)compressionType factor:(float)factor

Returns a compressed TIFF representation of the image, having the specified
compression type and compression factor. If the specified compression isn’t
applicable, no compression is used. Raises NSTIFFException if an attempt is
made to create a TIFF representation using OpenStep custom color space
bitmaps.

NSBox

Class Description

An NSBox object is a simple NSView that can do two things: It can draw a
border around itself and it can title itself. You can use an NSBox to group,
visually, some number of other NSViews. These other NSViews are added to
the NSBox through the typical subview-adding methods, such as
addSubview: and replaceSubview:with: .

An NSBox contains a content area, a rectangle set within the NSBox’s frame in
which the NSBox’s subviews are displayed. The size and location of the content
area depends on the NSBox’s border type, title location, the size of the font
used to draw the title, and an additional measure that you can set through the
setContentViewMargins: method. When you create an NSBox, an instance
of NSView is created and added (as a subview of the NSBox object) to fill the
NSBox’s content area. If you replace this content view with an NSView of your
own, your NSView will be resized to fit the content area. Similarly, as you
resize an NSBox its content view is automatically resized to fill the content
area.

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder),
NSObject (NSObject)

Declared IN: AppKit/NSBox.h

1-50 OpenStep Programming Reference—September 1996

1

The NSViews that you add as subviews to an NSBox are actually added to the
NSBox’s content view—NSView’s subview-adding methods are redefined by
NSBox to ensure that a subview is correctly placed in the view hierarchy.
However, you should note that the subviews method isn’t redefined: it
returns an NSArray containing a single object, the NSBox’s content view.

Method Types

Instance Methods

borderRect

– (NSRect)borderRect

Returns the rectangle in which the border is drawn.

borderType

– (NSBorderType)borderType

Activity Class Mehthod

Getting and modifying the border and title – borderRect
– borderType
– setBorderType:
– setTitle:
– setTitleFont:
– setTitlePosition:
– title
– titleCell
– titleFont
– titlePosition
– titleRect

Setting and placing the content view – contentView
– contentViewMargins
– setContentView:
– setContentViewMargins::

Resizing the box – setFrameFromContentFrame::
– sizeToFit

NSBox 1-51

1

Returns the box’s border type, one of NSNoBorder , NSLineBorder ,
NSBezelBorder , or NSGrooveBorder . By default, a box’s border type is
NSGrooveBorder . See also setBorderType: .

contentView

– (id)contentView

Returns the box’s content view. The content view is created automatically
when the box is created, and resized as the box is resized (you should never
send frame-altering messages directly to a box’s content view). You can replace
it with an NSView of your own through the setContentView: method. See
also setContentView: .

contentViewMargins

– (NSSize)contentViewMargins

Returns the distances between the border and the content view. See also
setContentViewMargins: .

setBorderType:

– (void)setBorderType:(NSBorderType)aType

Sets the box’s border type to aType , which must be NSNoBorder ,
NSLineBorder , NSBezelBorder , or NSGrooveBorder . By default, a box’s
border type is NSGrooveBorder . If the size of the new border is different from
that of the old border, the content view is resized to absorb the difference. The
box isn’t redisplayed. See also borderType .

setContentView:

– (void)setContentView:(NSView *)aView

Replaces the box’s content view with aView , resizing the view to fit within the
box’s current content area. See also contentView .

setContentViewMargins:

– (void)setContentViewMargins:(NSSize)offsetSize

1-52 OpenStep Programming Reference—September 1996

1

Sets the horizontal and vertical distance between the border of the box and its
content view. Both distances are recorded in offsetSize . The horizontal
value is applied (reckoned in the box’s coordinate system) fully and equally to
the left and right sides of the box. The vertical value is similarly applied to the
top and bottom. Unlike changing a box’s other attributes, such as its title
position or border type, changing the offsets doesn’t automatically resize the
content view. In general, you should send a sizeToFit message to the box
after changing the size of its offsets. This causes the content view to remain
unchanged while the box is wrapped around it.

setFrameFromContentFrame:

– (void)setFrameFromContentFrame:(NSRect)contentFrame

Resizes the box to accommodate contentFrame . See also
setContentViewMargins: .

setTitle:

– (void)setTitle:(NSString *)aString

Sets the box’s title to aString . By default, a box’s title is “Title”. After
invoking this method you should send a sizeToFit message to the box to
ensure that it’s wide enough to accommodate the length of the title. See also
title , titleFont .

setTitleFont:

– (void)setTitleFont:(NSFont *)fontObj

Sets the font of the title to fontObj .

setTitlePosition:

– (void)setTitlePosition:(NSTitlePosition)aPosition

NSBox 1-53

1

Sets the title position to aPosition , which can be one of the values listed in
the following table. The default position is NSAtTop .

If the new title position changes the size of the box’s border area, the content
view is resized to absorb the difference. The box isn’t redisplayed. See also
titlePosition .

sizeToFit

– (void)sizeToFit

Resizes and moves the box’s content view so that it just encloses its subviews.
The box itself is then moved and resized to wrap around the content view. The
box’s width is constrained so that its title will be fully displayed.

You should invoke this method after:

• Adding a subview (to the content view)
• Altering the size or location of such a subview
• Setting the box’s offsets
• Setting the box’s title

The mechanism by which the content view is moved and resized depends on
whether the object responds to its own sizeToFit message. If it does
respond, then that message is sent, and the content view is expected to be so
modified. If the content view doesn’t respond, the box moves and resizes the
content view itself.

Table 1-4 Title Positions for an NSBox

Constant Meaning

NSNoTitle The box has no title.

NSAboveTop Title positioned above the box’s top border.

NSAtTop Title positioned within the box’s top border.

NSBelowTop Title positioned below the box’s top border.

NSAboveBottom Title positioned above the box’s bottom border.

NSAtBottom Title positioned within the box’s bottom border.

NSBelowBottom Title positioned below the box’s bottom border.

1-54 OpenStep Programming Reference—September 1996

1

title

– (NSString *)title

Returns the box’s title. By default, a box’s title is “Title”. See also setTitle: .

titleCell

– (id)titleCell

Returns the NSCell used to draw the title. See also NSCell .

titleFont

– (NSFont *)titleFont

Returns the NSFont used to draw the title. See also NSFont .

titlePosition

– (NSTitlePosition)titlePosition

Returns a constant representing the title position. See the description of
setTitlePosition: for a list of the title position constants.

titleRect

– (NSRect)titleRect

Returns the rectangle in which the title is drawn. See also NSRect .

NSBrowser 1-55

1

NSBrowser

Class Description

NSBrowser provides a user interface for displaying and selecting items from a
list, or from hierarchically organized lists such as directory paths. Hierarchical
list levels are displayed in columns, which are numbered from left to right,
beginning with 0. Each column consists of an NSScrollView containing an
NSMatrix filled with NSBrowserCell s. NSBrowser relies on a delegate to
provide the data in its NSBrowserCell s. See the NSBrowserCell class
description for more on its implementation.

Browser Selection

An entry in an NSBrowser ’s column can be either a branch node (such as a
directory) or a leaf node (such as a file). When the user selects a single branch
node entry in a column, the NSBrowser sends itself the addColumn message,
which messages its delegate to load the next column. The user’s selection can
be represented as a character string; if the selection is hierarchical (for example,
a filename within a directory), each component of the path to the selected node
is separated by “/”. To use some other character as the delimiter, invoke
setPathSeparator: .

An NSBrowser can be set to allow selection of multiple entries in a column, or
to limit selection to a single entry. When set for multiple selection, it can also
be set to limit multiple selection to leaf nodes only, or to allow selection of both
types of nodes together.

As a subclass of NSControl , NSBrowser has a target object and action
message. Each time the user selects one or more entries in a column, the action
message is sent to the target. NSBrowser also adds an action to be sent when
the user double-clicks on an entry, which allows the user to select items
without any action being taken, and then double-click to invoke some useful
action such as opening a file.

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder),
NSObject (NSObject)

Declared In: AppKit/NSBrowser.h

1-56 OpenStep Programming Reference—September 1996

1

User Interface Features

The user interface features of an NSBrowser can be changed in a number of
ways. The NSBrowser may or may not have a horizontal scroller. (The
NSBrowser ’s columns, by contrast, always have vertical scrollers—although a
scroller’s buttons and knob might be invisible if the column doesn’t contain
many entries.) You generally shouldn’t create an NSBrowser without a
horizontal scroller; if you do, you must make sure the bounds rectangle of the
NSBrowser is wide enough that all the columns can be displayed. An
NSBrowser ’s columns may be bordered and titled, bordered and untitled, or
unbordered and untitled. A column’s title may be taken from the selected entry
in the column to its left, or may be provided explicitly by the NSBrowser or its
delegate.

NSBrowser’s Delegate

NSBrowser requires a delegate to provide it with data to display. The delegate
is responsible for providing the data and for setting each item as a branch or
leaf node, enabled or disabled. It can also receive notification of events like
scrolling and requests for validation of columns that may have changed. Note
that NSBrowser does not raise an exception if the delegate does not implement
the data source methods.

You can implement one of two delegate types: active or passive. An active
delegate creates a column’s rows (that is, the NSBrowserCell s) itself, while a
passive one leaves that job to the NSBrowser . Normally, passive delegates are
preferable, because they’re easier to implement. An active delegate must
implement browser:createRowsForColumn:inMatrix: to create the rows
of the specified column. A passive delegate, on the other hand, must
implement browser:numberOfRowsInColumn: to let the NSBrowser know
how many rows to create. These two methods are mutually exclusive; you can
implement one or the other, but not both. The NSBrowser ascertains what type
of delegate it has by which method the delegate responds to.

Both types of delegate implement
browser:willDisplayCell:atRow:column: to set up state (such as the
cell’s string value and whether the cell is a leaf or a branch) before an
individual cell is displayed. This delegate method doesn’t need to invoke
NSBrowserCell ’s setLoaded: method, because the NSBrowser can
determine that state by itself. An active delegate can instead set the state of all

NSBrowser 1-57

1

the cells at the time the cells are created, in which case it doesn’t need to
implement browser:willDisplayCell:atRow:column: . However, a
passive delegate must always implement this method.

1-58 OpenStep Programming Reference—September 1996

1

Methods Types

Activity Class Method

Setting the delegate – delegate
– setDelegate:

Target and action – doubleAction
– sendAction
– setDoubleAction

Setting component classes + cellClass
– cellPrototype
– matrixClass
– setCellClass:
– setCellPrototype:
– setMatrixClass:

Setting NSBrowser behavior – reusesColumns
– setReusesColumns:
– setTakesTitleFromPreviousColumn:
– takesTitleFromPreviousColumn

Allowing different types of selection – allowsBranchSelection
– allowsEmptySelection
– allowsMultipleSelection
– setAllowsBranchSelection:
– setAllowsEmptySelection:
– setAllowsMultipleSelection:

Setting arrow key behavior – acceptsArrowKeys
– sendsActionOnArrowKeys
– setAcceptsArrowKeys:
– setSendsActionOnArrowKeys:

Showing a horizontal scroller – hasHorizontalScroller
– setHasHorizontalScroller:

Setting the NSBrowser’s appearance – maxVisibleColumns
– minColumnWidth
– separatesColumns
– setMaxVisibleColumns:
– setMinColumnWidth:
– setSeparatesColumns:

NSBrowser 1-59

1

Manipulating columns – addColumn
– columnOfMatrix:
– displayAllColumns
– displayColumn:
– firstVisibleColumn
– isLoaded
– lastColumn
– lastVisibleColumn
– loadColumnZero
– numberOfVisibleColumns
– reloadColumn:
– selectAll:
– selectedColumn
– selectedRowInColumn:
– selectRow:inColumn:
– setLastColumn:
– validateVisibleColumns

Manipulating column titles – drawTitleOfColumn:inRect:
– isTitled
– setTitled:
– setTitle:ofColumn:
– titleFrameOfColumn:
– titleHeight
– titleOfColumn:

Scrolling an NSBrowser – scrollColumnsLeftBy:
– scrollColumnsRightBy:
– scrollColumnToVisible:
– scrollViaScroller:
– updateScroller

Event handling – doClick:
– doDoubleClick:

Getting matrices and cells – loadedCellAtRow:column:
– matrixInColumn:
– selectedCell
– selectedCellInColumn:
– selectedCells

Getting frame columns – frameOfColumn:
– frameOfInsideOfColumn:

Activity Class Method

1-60 OpenStep Programming Reference—September 1996

1

Class Methods

cellClass

+ (Class)cellClass

Returns the NSBrowserCell class regardless of whether a setCellClass:
message has been sent to a particular instance.

Instance Methods

acceptsArrowKeys

– (BOOL)acceptsArrowKeys

Returns YES if the arrow keys are enabled. If these keys are enabled, then the
keyboard arrow keys move the selection whenever the NSBrowser or one of
its subviews is the first responder. A return value of NO indicates that the arrow
keys are disabled.

addColumn

– (void)addColumn

Manipulating paths – path
– pathSeparator
– pathToColumn:
– setPath:
– setPathSeparator:

Arranging an NSBrowser’s
components

– tile

Methods Implemented by the
Delegate

– browser:createRowsForColumn:inMatrix:
– browser:isColumnValid:
– browser:numberOfRowsInColumn:
– browser:selectCellWithString:inColumn:
– browser:selectRow:inColumn:
– browser:titleOfColumn:
– browser:willDisplayCell:atRow:column:
– browserDidScroll:

Activity Class Method

NSBrowser 1-61

1

Adds a column to the right of the last column in the NSBrowser and, if
necessary, scrolls the NSBrowser so that the new column is visible. Your code
should never invoke this method; it’s invoked as needed by doClick: and
keyDown: (NSResponder) when the user selects a single branch node entry in
the NSBrowser , and by setPath: when it matches a path substring with a
branch node entry. Override this method if you need the NSBrowser to do any
additional updating when a column is added, but be sure to send this message
to super . See also loadColumnZero , reloadColumn: , setPath: .

allowsBranchSelection

– (BOOL)allowsBranchSelection

Returns YES if the user can select branch items when multiple selection is
enabled; otherwise returns NO.

allowsEmptySelection

– (BOOL)allowsEmptySelection

Returns YES if nothing can be selected.

allowsMultipleSelection

– (BOOL)allowsMultipleSelection

Returns YES if the user can select multiple items.

cellPrototype

– (id)cellPrototype

Returns the browser’s prototype NSCell . This cell is copied to create new cells
in the columns of the browser. See also setCellPrototype: .

columnOfMatrix:

– (int)columnOfMatrix:(NSMatrix *)matrix

Returns the index of the column containing matrix ; the leftmost (root) column
is 0. Returns –1 if no column contains matrix . See also matrixInColumn: .

1-62 OpenStep Programming Reference—September 1996

1

delegate

– (id)delegate

Returns the browser’s delegate. The browser delegate provides the browser
data, and responds to certain notification messages. See also setDelegate: .

displayAllColumns

– (void)displayAllColumns

Redisplays all currently visible browser columns. This method is useful for
redisplaying the browser after manipulating it with display disabled in the
window, for instance if NSCell s in some of the columns are deleted.

displayColumn:

– (void)displayColumn:(int)column

Validates and displays column number column . column must already be
loaded. This method is useful for updating the browser after manipulating
column with display disabled in the window. See also displayAllColumns .

doClick:

– (void)doClick:(id)sender

Your code should never invoke this method. This is the action message sent to
the browser by a column’s NSMatrix when a mouse-down event occurs in a
column. It sets the browser’s last column to that of the NSMatrix where the
click occurred, and removes any columns to the right that were previously
loaded in the browser. If a single branch node entry is selected by the event,
this method sends addColumn to self to display the corresponding data in
the column to the right. It also sends the browser’s action message to its target.
Override this method to add specific behavior for mouse clicks. See also
action (NSControl), target (NSControl), doDoubleClick: .

doDoubleClick:

– (void)doDoubleClick:(id)sender

NSBrowser 1-63

1

Your code should never invoke this method. This is the action message sent to
the browser by a column’s NSMatrix when a double-click occurs in a column.
This method simply sends the double-click action message to the target; if no
double-click action message is set, it sends the regular (single-click) action. You
may want to override this method to add specific behavior for double-click
events. See also doubleAction , target (NSControl), doClick: .

doubleAction

– (SEL)doubleAction

Returns the action sent by the browser to its target when the user double-clicks
an entry. If no double-click action message has been set, this method returns
the regular (single-click) action. See also setDoubleAction , action
(NSControl), target (NSControl), doDoubleClick: .

drawTitleOfColumn:inRect:

– (void)drawTitle:(NSString *)title inRect:(NSRect)aRect
ofColumn:(int)column

Your code should never invoke this method. It’s invoked whenever the
browser needs to draw a column title. You may override it if you want your
own column titles drawn.

drawTitleOfColumn:inRect:

firstVisibleColumn

– (int)firstVisibleColumn

Returns the index of the first visible column.

frameOfColumn:

– (NSRect)frameOfColumn:(int)column

Returns the rectangle containing the column at index column .

frameOfInsideOfColumn:

– (NSRect)frameOfInsideOfColumn:(int)column

1-64 OpenStep Programming Reference—September 1996

1

Returns the rectangle containing the column at index column , not including
borders.

hasHorizontalScroller

– (BOOL)hasHorizontalScroller

Returns YES if the browser has horizontal NSScroller .

isLoaded

– (BOOL)isLoaded

Returns YES if any of the browser’s columns are loaded. See also
loadColumnZero , setPath: .

isTitled

– (BOOL)isTitled

Returns YESif the browser’s columns are displayed with titles above them and
NO otherwise. See also setTitled: .

lastColumn

– (int)lastColumn

Returns the index of the last loaded column in the browser. See also
lastVisibleColumn .

lastVisibleColumn

– (int)lastVisibleColumn

Returns the index of the rightmost visible column. This may be less than the
value returned by lastColumn if the browser has been scrolled left. See also
firstVisibleColumn , lastColumn .

loadColumnZero

– (void)loadColumnZero

NSBrowser 1-65

1

Loads and displays data in column 0 of the browser, unloading any columns to
the right that were previously loaded. Invoke this method to force the browser
to be loaded, for example, after initializing the browser, when changing
delegates, or when changing the data set managed by the delegate. You may
want to override this method if you subclass NSBrowser . See also setPath: ,
reloadColumn: .

loadedCellAtRow:column:

– (id)loadedCellAtRow:(int)row column:(int)column

Returns the cell at row in column , if that column is currently in the browser.
This method creates and loads the cell if necessary. This method is the safest
way to get a particular cell in a column, since lazy delegates don’t load every
cell in a matrix and very lazy delegates don’t even create all cells until they’re
displayed. This method is preferred to the matrix method
cellAtRow:column: . If the specified column isn’t in the browser, or if row
doesn’t exist in column , this method returns nil .

matrixClass

– (Class)matrixClass

Returns the NSMatrix class used in the browser’s columns.

matrixInColumn:

– (NSMatrix *)matrixInColumn:(int)column

Returns the NSMatrix found in column number column . Returns nil if
column number column isn’t loaded in the browser.

maxVisibleColumns

– (int)maxVisibleColumns

Returns the maximum number of visible columns allowed. No matter how
many loaded columns the browser contains, or how large the browser is made
(for example, by resizing its window), it will never display more than this
number of columns. If the number of loaded columns can exceed the value

1-66 OpenStep Programming Reference—September 1996

1

returned by this method, the browser must display left and right scroll buttons.
See also setMaxVisibleColumns: , numberOfVisibleColumns ,
setHorizontalScroller: (NSScrollView).

minColumnWidth

– (float)minColumnWidth

Returns the minimum width of a column in PostScript points. No column will
be smaller than the returned value unless the browser itself is smaller than
that. The default setting is 100 points. See also setMinColumnWidth: .

numberOfVisibleColumns

– (int)numberOfVisibleColumns

Returns the number of browser columns that can be visible at the same time
(that is, the current width, in columns, of the browser). This may be less than
the value returned by maxVisibleColumns if the window containing the
browser has been resized. See also setMaxVisibleColumns: ,
maxVisibleColumns .

path

– (NSString *)path

Returns the browser’s current path.

pathSeparator

– (NSString *)pathSeparator

Returns the path separator. The default is “/”.

pathToColumn:

– (NSString *)pathToColumn:(int)column

Returns a string representing the path from the first column to the column at
index column .

NSBrowser 1-67

1

reloadColumn:

– (void)reloadColumn:(int)column

Reloads column if it is loaded and sets it as the last column. column is
reloaded by sending a message to the delegate to update the NSCell s in
column ’s NSMatrix , then reselecting the previously selected NSCell if it’s
still in the matrix. You should never send this message for a column that hasn’t
been loaded (you can check for this with the lastColumn method).

reusesColumns

– (BOOL)reusesColumns

Returns YES if the NSMatrix objects aren’t freed when their columns are
unloaded. See also setReusesColumns: .

scrollColumnsLeftBy:

– (void)scrollColumnsLeftBy:(int)shiftAmount

Scrolls the columns in the browser left by shiftAmount columns, making
higher numbered columns visible. If shiftAmount exceeds the number of
loaded columns to the right of the first visible column, then the columns scroll
left to make the last loaded column visible. See also
scrollColumnsRightBy: .

scrollColumnsRightBy:

– (void)scrollColumnsRightBy:(int)shiftAmount

Scrolls the columns in the browser right by shiftAmount columns, making
lower numbered columns visible. If shiftAmount exceeds the number of
columns to the left of the first visible column, then the columns scroll right
until column 0 is visible. See also scrollColumnsLeftBy: .

scrollColumnToVisible:

– (void)scrollColumnToVisible:(int)column

1-68 OpenStep Programming Reference—September 1996

1

Scrolls the browser to make the column numbered column visible. If there is
no column numbered column in the browser, this method scrolls to the right as
far as possible.

scrollViaScroller:

– (void)scrollViaScroller:(NSScroller *)sender

Scrolls the browser’s columns left or right based on the position of the
NSScroller sending the message. This message is sent automatically, so your
code shouldn’t send this message. You may want to override it to provide
different behavior.

selectAll:

– (void)selectAll:(id)sender

Selects all NSCell s in the last column of the browser. See also
setAllowsMultipleSelection: .

selectedCell

– (id)selectedCell

Returns the last (rightmost and lowest) selected NSCell .

selectedCellInColumn:

– (id)selectedCellInColumn:(int)column

Returns the last (lowest) NSCell that’s selected in column .

selectedCells

– (NSArray *)selectedCells

Returns all the rightmost selected NSCell s.

selectedColumn

– (int)selectedColumn

NSBrowser 1-69

1

Returns the column number of the rightmost column containing a selected
NSCell . This won’t be the last column if the selected cell isn’t a leaf. Returns –
1 if no column in the browser contains a selected cell. See also lastColumn .

selectedRowInColumn:

- (int)selectedRowInColumn:(int)column

Returns the selected row number within the given column. Returns -1 if no row
is selected. See also selectRow:inColumn: , selectedCellInColumn: .

selectRow:inColumn:

- (void)selectRow:(int)row inColumn:(int)column

Selects row number row in column number column . See also
selectedRowInColumn: , selectedColumn .

sendAction

– (BOOL)sendAction

Sends the action message to the target. Returns YES upon success and NO if no
responder for the message could be found. See also sendAction:to:
(NSControl).

sendsActionOnArrowKeys

– (BOOL)sendsActionOnArrowKeys

Returns NO if pressing an arrow key only scrolls the browser and YES if it also
sends the action message specified by setAction: (NSControl).

separatesColumns

– (BOOL)separatesColumns

Returns YES if the browser’s columns are separated by bezeled borders, and
returns NO otherwise. When titles are set to display (by setTitled:), columns
are automatically separated by such borders. See also setTitled: .

1-70 OpenStep Programming Reference—September 1996

1

setAcceptsArrowKeys:

– (void)setAcceptsArrowKeys:(BOOL)flag

Enables or disables the arrow keys. See also acceptsArrowKeys .

setAllowsBranchSelection:

– (void)setAllowsBranchSelection:(BOOL)flag

Determiness whether the user can select multiple branch and leaf node entries.
If flag is YES and multiple selection is enabled by
setAllowsMultipleSelection: , then multiple branch and leaf node
entries can be selected. By default, a user can choose only multiple leaf node
entries when multiple entry selection is enabled. See also
allowsBranchSelection , setAllowsMultipleSelection: .

setAllowsEmptySelection:

– (void)setAllowsEmptySelection:(BOOL)flag

If flag is YES, the browser can display without any NSCell s selected; if flag
is NO, then there must always be at least one cell selected. By default, the
setting is NO, and the browser selects the first item in the first column. See also
allowsEmptySelection , setAllowsMultipleSelection: .

setAllowsMultipleSelection:

– (void)setAllowsMultipleSelection:(BOOL)flag

Sets whether the user can select multiple items in a column. If flag is YES, the
user can choose any number of leaf entries in a column (or leaf and branch
entries in a column if enabled by setAllowsBranchSelection:). By default,
the user can choose just one entry in a column at a time. See also
allowsMultipleSelection , setAllowsBranchSelection: .

setCellClass:

– (void)setCellClass:(Class)classId

NSBrowser 1-71

1

Sets the NSCell class used when adding cells to an NSMatrix in a column of
the browser. classId must be the value returned when sending the class
message to NSBrowserCell (or subclass). Since a browser always has its
matrices copy prototype cells, this method simply makes a prototype, sends it
an init message, and records that prototype. You shouldn’t use NSControl ’s
class method setCellClass: with an NSBrowser . See also
setCellPrototype: .

setCellPrototype:

– (void)setCellPrototype:(NSCell *)aCell

Sets aCell as the NSCell prototype copied when adding cells to the matrices
in the columns of the browser. aCell must be an instance of NSBrowserCell
or its subclass. Each NSMatrix gets its own copy of aCell to use as a
prototype, and will free that copy when the matrix is freed. Don’t use
NSControl ’s class method setCellClass: with an NSBrowser . See also
cellPrototype , setCellClass: .

setDelegate:

– (void)setDelegate:(id)anObject

Sets the browser’s delegate to anObject . See also delegate .

setDoubleAction

– (void)setDoubleAction:(SEL)aSelector

Sets the double-click action of the browser. aSelector is the selector for the
action message sent to the target when a double-click occurs in one of the
columns of the browser. See also doubleAction , setAction: (NSControl),
setTarget: (NSControl), doDoubleClick: .

setHasHorizontalScroller:

– (void)setHasHorizontalScroller:(BOOL)flag

1-72 OpenStep Programming Reference—September 1996

1

If flag is YES, this method makes the browser use a horizontal NSScroller .
Generally, you should allow your browser to scroll horizontally unless your
data is nonhierarchical, and thus limited to a single column, or restricted so
that the browser will always display enough columns for all data. See also
hasHorizontalScroller .

setLastColumn:

– (void)setLastColumn:(int)column

Makes column number column the last column loaded and displayed by the
browser. Removes any columns to the right of column from the browser, and
scrolls columns in the browser to make the new last column visible if it wasn’t
previously. If column number column isn’t already loaded, this method does
nothing. See also lastColumn .

setMatrixClass:

– (void)setMatrixClass:(Class)classId

Sets the NSMatrix class used when adding new columns to the browser.
classId must be the value returned by sending the class message to
NSMatrix (or subclass); otherwise this method retains the previous setting for
the browser’s NSMatrix class. NSBrowser initializes the matrix of a new
column with the
initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
(NSMatrix) method.

setMaxVisibleColumns:

– (void)setMaxVisibleColumns:(int)columnCount

Sets the maximum number of columns that may be displayed by the browser.
To set the number of columns displayed in a new browser, first send it a
setMinColumnWidth: message with a small argument (1, for example) to
ensure that the desired number of columns will fit in the browser’s frame.
Then invoke this method to set the number of columns you want your browser
to display. The minimum column width may then be reestablished to its
desired value. See also maxVisibleColumns , setMinColumnWidth: .

NSBrowser 1-73

1

setMinColumnWidth:

– (void)setMinColumnWidth:(float)columnWidth

Sets the minimum width for each column to columnWidth . If the new
minimum width is different from the previous one, this method also redisplays
the browser with columns set to the new width. columnWidth is measured in
PostScript points. The default setting is 100. See also minColumnWidth .

setPath:

– (BOOL)setPath:(NSString *)path

Parses aPath —a string consisting of one or more substrings separated by the
path separator—and selects column entries in the browser that match the
substrings. If the first character in aPath is the path separator, this method
begins searching for matches in column 0; otherwise, it begins searching in the
last column loaded. If no column is loaded, this method loads column 0 and
begins the search there. While parsing the current substring, it tries to locate a
matching entry in the search column. If it finds an exact match, this method
selects that entry and moves to the next column (loading the column if
necessary) to search for the next substring.

If this method finds a valid path (one in which each substring is matched by an
entry in the corresponding column), it returns YES. If it doesn’t find an exact
match on a substring, it stops parsing aPath and returns NO; however, column
entries that it has already selected remain selected. Your code should never try
to set a path or select items by sending NSCell selection messages to the
NSMatrix es in the browser’s columns. This procedure bypasses every
mechanism that allows the browser to update its display and load columns
and cells properly. See also pathToColumn: , pathSeparator ,
setPathSeparator: , browser:selectCellWithString:inColumn: .

setPathSeparator:

– (void)setPathSeparator:(NSString *)aString

Sets the character used as the path separator; the default is the slash character
(“/”). See also pathToColumn: , setPath: .

1-74 OpenStep Programming Reference—September 1996

1

setReusesColumns:

– (void)setReusesColumns:(BOOL)flag

Sets whether the browser saves a column’s NSMatrix and NSClipView or
NSScrollView when the column is unloaded, and whether it then reuses
these subviews when the column is reloaded. If flag is YES, the browser
reuses columns for somewhat faster display of columns as they are reloaded. If
flag is NO, the browser frees columns as they’re unloaded, reducing average
memory use. See also reusesColumns .

setSendsActionOnArrowKeys:

– (void)setSendsActionOnArrowKeys:(BOOL)flag

Determines whether pressing an arrow key will cause the action message to be
sent (in addition to causing scrolling). If flag is YES, then when an arrow key
is pressed, the browser’s action message is sent as though the user had clicked
on the new selection; if flag is NO, then arrow keys only move the selection (if
they are enabled). See also setAcceptsArrowKeys: .

setSeparatesColumns:

– (void)setSeparatesColumns:(BOOL)flag

If flag is YES, sets the browser so that columns have bezeled borders
separating them; if flag is NO, the borders are removed. When titles are set to
display by setTitled: , columns are automatically separated. Redraws the
browser. See also separatesColumns .

setTakesTitleFromPreviousColumn:

– (void)setTakesTitleFromPreviousColumn:(BOOL)flag

Sets whether the title of a column is set to the string value of the selected
NSCell in the previous column. If flag is YES, then each browser column
takes its title from the string value in the selected NSCell in the column to its
left, leaving column 0 untitled; use setTitle:ofColumn: to give column 0 a
title. This method affects the receiver only when it is titled, that is, when
isTitled returns YES. By default, the browser is set to get column titles from
the previous column. Send this message with NO as the argument if your

NSBrowser 1-75

1

delegate implements the browser:titleOfColumn: method, or if you use
the setTitle:ofColumn: method to set all column titles. See also isTitled ,
setTitled: , setTitle:ofColumn: , browser:titleOfColumn: .

setTitle:ofColumn:

– (void)setTitle:(NSString *)aString ofColumn:(int)column

Sets the title column in the browser to aString . If column isn’t loaded, this
method does nothing. See also setTakesTitleFromPreviousColumn: ,
setTitled: , browser:titleOfColumn: .

setTitled:

– (void)setTitled:(BOOL)flag

If flag is YES, columns display titles and are separated by bezeled borders.
Otherwise no titles are displayed. See also
setTakesTitleFromPreviousColumn: , setTitle:ofColumn: ,
browser:titleOfColumn: .

takesTitleFromPreviousColumn

– (BOOL)takesTitleFromPreviousColumn

Returns YES if the title of a column is set to the string value of the selected
NSCell in the previous column.

tile

– (void)tile

Arranges the various subviews of NSBrowser —scrollers, columns, titles, and
so on—without redrawing. Your code shouldn’t send this message. It is
invoked any time the appearance of the browser changes, for example, when
scroll buttons or scroll bars are set, a column is added, and so on. Override this
method if your code changes the appearance of the browser (for example, if
you draw your own titles above columns).

titleFrameOfColumn:

– (NSRect)titleFrameOfColumn:(int)column

1-76 OpenStep Programming Reference—September 1996

1

Returns the bounds of the title frame for the column at index column .

titleHeight

– (float)titleHeight

Returns the height of titles drawn above the columns of the browser. Override
this method if you display your own titles above the browser’s columns.

titleOfColumn:

– (NSString *)titleOfColumn:(int)column

Returns the title displayed for the column at index column .

updateScroller

– (void)updateScroller

Updates the horizontal scroller to reflect the position of the visible columns of
the browser.

validateVisibleColumns

– (void)validateVisibleColumns

Validates the columns visible in the browser by invoking the delegate method
browser:isColumnValid: for all visible columns. Use this method to
confirm that the entries displayed in each visible column are valid before
redrawing. See also browser:isColumnValid: .

Methods Implemented by the Delegate

browser:createRowsForColumn:inMatrix:

– (void)browser:(NSBrowser *)sender createRowsForColumn:(int)column
inMatrix:(NSMatrix *)matrix

Creates a row in matrix for each row of data to be displayed in column of the
browser. Either this method or browser:numberOfRowsInColumn: must be
implemented, but not both.

NSBrowser 1-77

1

browser:isColumnValid:

– (BOOL)browser:(NSBrowser *)sender isColumnValid:(int)column

This method is invoked by NSBrowser ’s validateVisibleColumns method
to determine whether the contents currently loaded in column number column
need to be updated. This is useful for data sets that may change over time,
such as files in a file system, or lists from a shared set of data that others can
change. This method returns YES if the contents are valid and returns NO
otherwise. See also browser:selectCellWithString:inColumn: .

browser:numberOfRowsInColumn:

– (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column

Implemented by very lazy delegates, this method is invoked by the browser to
ask the delegate for the number of rows in column number column . This
method allows the browser to resize its scroll bar for a column without loading
all the cells in that column. Returns the number of rows in column . If you
implement this method, don’t implement the delegate method
browser:createRowsForColumn:inMatrix: .

browser:selectCellWithString:inColumn:

– (BOOL)browser:(NSBrowser *)sender
selectCellWithString:(NSString *)title
inColumn:(int)column

Asks NSBrowser ’s delegate to validate and select an entry in column number
column . This method should load the NSCell with the title title if
necessary, send it setLoaded: (NSBrowserCell) and setLeaf:
(NSBrowserCell) messages as needed to indicate its state, and send the
column’s NSMatrix a selectCellAtRow:Column: message to select that
cell. If there is no cell with the title title , the selection should be cleared by
sending selectCellAtRow:Column: to the NSMatrix with –1 and –1 as the
arguments. This method returns YES if the method successfully selects the
NSCell with the title title in column and NO otherwise.

If the delegate doesn’t implement this method, the browser searches for entries
by scanning through the entire list of cells in the column. This will always
work properly for browsers that browse static data. However, if the data can
change while the browser is in use, for example if a new file is created or

1-78 OpenStep Programming Reference—September 1996

1

deleted, this method lets the delegate find that new data and add it to the
column; if the delegate finds that the data no longer exists, or that its status has
changed, it should mark it as disabled or remove the cell with matrix’s
removeRow: method. Do not forget to free the cell. See also
browser:isColumnValid: , matrixInColumn: ,
selectCellAtRow:column: (NSMatrix), removeRow: (NSMatrix).

browser:selectRow:inColumn:

- (BOOL)browser:(NSBrowser *)sender
selectRow:(int)row inColumn:(int)column

Asks NSBrowser ’s delegate to select row within column . This method returns
YES if row is selected, and returns NO otherwise. See also
browser:isColumnValid: , matrixInColumn: ,
selectCellAtRow:Column: (NSMatrix), removeRowAt: (NSMatrix).

browser:titleOfColumn:

– (NSString *)browser:(NSBrowser *)sender titleOfColumn:(int)column

Invoked by NSBrowser to get the title for column from the delegate. This
method is invoked if the delegate implements it, but only when the browser is
titled and has received a setTakesTitleFromPreviousColumn: message
with NO as the argument. By default, the browser makes each column title the
string value of the selected cell in the previous column. Returns the NSString
representing the title belonging above column number column . See also
setTakesTitleFromPreviousColumn: , setTitle:ofColumn: ,
setTitled: .

browser:willDisplayCell:atRow:column:

– (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell
atRow:(int)row column:(int)column

Notifies the delegate when the browser will display the specified cell. The
delegate should set any state necessary for correct display of the cell.
Implemented by lazy and very lazy delegates, this method loads the entry in
the provided NSBrowserCell cell for the specified row and column in the
browser. The browser will resize the cell to fit in the matrix—you can’t control
the size of an NSBrowserCell . A lazy delegate should send a setLoaded:
message to cell at load time; it can send setLeaf: , setStringValue: , and

NSBrowserCell 1-79

1

setEnabled: messages at load time or later. A very lazy delegate should send
setLoaded: , setLeaf: , and setStringValue: messages to cell at load
time, and setEnabled: when needed. See also
browser:numberOfRowsInColumn: , setEnabled: (NSCell), setLeaf:
(NSBrowserCell), setLoaded: (NSBrowserCell), setStringValue:
(NSCell).

browserDidScroll:

– (void)browserDidScroll:(NSBrowser *)sender

Notifies the delegate when the browser has finished scrolling horizontally. This
can be useful for aligning other user interface items with the columns of the
browser (for example, an icon path or a series of pop-up lists). See also
browserWillScroll: .

browserWillScroll:

– (void)browserWillScroll:(NSBrowser *)sender

This method notifies the delegate when the browser is about to scroll
horizontally. This notification can be useful for hiding other user interface
items to prepare for aligning them with the columns of the browser (for
example, an icon path or a series of pop-up lists). See also
browserDidScroll: .

NSBrowserCell

Class Description

NSBrowserCell is the subclass of NSCell used by default to display data in
the columns of an NSBrowser . (Each column contains an NSMatrix filled with
NSBrowserCell s.) Many of NSBrowserCell ’s methods are designed to
interact with NSBrowser and NSBrowser ’s delegate. The delegate implements

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell),
NSObject (NSObject)

Declared In: AppKit/NSBrowserCell.h

1-80 OpenStep Programming Reference—September 1996

1

methods for loading the NSCell s in NSBrowser by setting their values and
status. If your code needs access to a specific NSBrowserCell , you can use the
NSBrowser method loadedCellAtRow:column: .

You may find it useful to create a subclass of NSBrowserCell to alter its
behavior and to enable it to work with and display the type of data you wish
to represent. Use NSBrowser ’s setCellClass: or setCellPrototype:
methods to have it use your subclass. See NSBrowser for more details. In
particular, the class description and the “Methods Implemented by the
Delegate” section describes how the NSBrowser ’s delegate interacts with both
NSBrowser and NSBrowserCell s.

Method Types

Class Methods

branchImage

+ (NSImage *)branchImage

Returns the NSImage object named NSmenuArrow. This is the icon displayed
to indicate a branch node in an NSBrowserCell . Override this method if you
want your subclass to display a different branch icon. See also isLeaf .

highlightedBranchImage

+ (NSImage *)highlightedBranchImage

Activity Class Method

Accessing graphic attributes + branchImage
+ highlightedBranchImage
– alternateImage
– setAlternateImage:

Placing in the browser hierarchy – isLeaf
– setLeaf:

Determining loaded status – isLoaded
– setLoaded:

Setting state – reset
– set

NSBrowserCell 1-81

1

Returns the default NSImage for branch NSBrowserCell s that are
highlighted. This is the NSImage object named “NSmenuArrowH” and is the
highlighted icon displayed to indicate a selected branch node in an
NSBrowserCell . Override this method if you want your subclass to display a
different branch icon. See also isLeaf .

Instance Methods

alternateImage

– (NSImage *)alternateImage

Returns the NSImage that appears on the browser cell when it’s in its alternate
(or highlighted) state, or returns nil if there’s no such image. See also
setAlternateImage: , setImage: (NSCell), image (NSCell).

isLeaf

– (BOOL)isLeaf

Determines whether the entry in the receiver represents a leaf node (such as a
file) or branch node (such as a directory). This method is invoked by
NSBrowser to check whether to display the branch icon in the cell and, when
a browser cell is selected, whether to load a column to the right of the column
containing the receiving cell. Returns YESif the cell represents a leaf, and NO if
the cell represents a branch. See also setLeaf: .

isLoaded

– (BOOL)isLoaded

Returns YES if the browser cell is loaded and NO if it isn’t. This method is used
by NSBrowser to determine if a particular cell is loaded in a column. When a
browser cell is created, this value is YES; however, if the browser cell is created
by the NSBrowser , the browser sets the value to NO so that the delegate can
properly set the loaded status. NSBrowser and its delegate change the value
returned by this method using the setLoaded: method to reflect the current
status of the cell. See also setLoaded: .

1-82 OpenStep Programming Reference—September 1996

1

reset

– (void)reset

Unhighlights the browser cell and sets its state to 0. See also set .

set

– (void)set

Highlights the browser cell and sets its state to 1. See also reset .

setAlternateImage:

– (void)setAlternateImage:(NSImage *)anImage

Sets the browser cell’s alternate image to anImage . If an alternate image has
been set, it is displayed when an browser cell is highlighted. This method frees
the previous alternate image—if any—before the new image is set.
Consequently, if you will be resetting the alternate image and you don’t want a
particular image freed, use a copy:

[theCell setAlternateImage:[[theImage imageNamed:sharedImage]
 copy]];

See also alternateImage , setImage: (NSCell), image (NSCell).

setLeaf:

– (void)setLeaf:(BOOL)flag

Invoked by NSBrowser ’s delegate when it loads a browser cell, this method
sets whether the browser cell is a leaf or a branch. If flag is YES, the browser
cell is set to represent a leaf node; it will display without the branch icon.
When flag is NO, the browser cell is set to represent a branch node; it will
display with the branch icon. This method does not display the browser cell,
even if autodisplay is on. See also isLeaf , branchImage ,
highlightedBranchImage .

setLoaded:

– (void)setLoaded:(BOOL)flag

NSBundle Additions 1-83

1

Indicates whether all the browser cell’s state has been set and the cell is ready
to display. This method is invoked by NSBrowser or its delegate to set the
status of the browser cell. The delegate should send the setLoaded: message
with YES as the argument when it loads the cell. See also isLoaded ,
NSBrowser delegate methods.

NSBundle Additions

Class Description

The Application Kit adds these methods to the Foundation Kit’s NSBundle
class. These methods become part of the class for all applications that use the
Application Kit, but not for applications that don’t.

Method Types

Class Methods

loadNibFile:externalNameTable:withZone:

+ (BOOL)loadNibFile:(NSString *)fileName
externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Inherits From: NSObject

Declared In: AppKit/NSImage.h
AppKit/NSNibLoading.h

Activity Class Method

Getting the location of
images in the file system

– pathForImageResource:

Loading an Interface
Builder file

+ loadNibFile:externalNameTable:withZone:
– loadNibFile:externalNameTable:withZone:
+ loadNibNamed:owner:

1-84 OpenStep Programming Reference—September 1996

1

Unarchives the contents of the nib file whose absolute path is fileName .
Objects from the nib file are allocated in the specified zone of memory. The
context argument is a name table—a dictionary whose keys are names like
“NSOwner” and whose values are existing objects that can be referenced by the
newly unarchived objects. Returns YES upon success.

loadNibNamed:owner:

+ (BOOL)loadNibNamed:(NSString *)aNibName owner:(id)owner

Similar to loadNibFile:externalNameTable:withZone: , but the name
table’s only element is the specified owner (stored with the key “NSOwner”).
Objects from the nib file are allocated in owner ’s zone. If there’s a bundle for
owner ’s class, this method looks in that bundle for the nib file named
aNibName (this argument need not include the “.nib ” extension); otherwise,
it looks in the main bundle.

Instance Methods

loadNibFile:externalNameTable:withZone:

- (BOOL)loadNibFile:(NSString *)fileName
externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Unarchives the contents of the nib file whose absolute path is fileName .
Objects from the nib file are allocated in the specified zone of memory. The
context argument is a name table—a dictionary whose keys are names like
“NSOwner” and whose values are existing objects that can be referenced by the
newly unarchived objects. Returns YES upon success.

pathForImageResource:

– (NSString *)pathForImageResource:(NSString *)name

Returns the absolute pathname of the file containing the specified image
resource. (The name of the resource is simply the filename without the path of
its bundle directory; the filename extension need not be included.)

NSButton 1-85

1

NSButton

Class Description

NSButton is an NSControl subclass that intercepts mouse-down events and
sends an action message to a target object when it’s clicked or pressed. By
virtue of its NSButtonCell , NSButton is a two-state NSControl —it’s either
“off” or “on”—and it displays its state depending on the configuration of the
NSButtonCell . NSButton acquires other attributes of NSButtonCell . The
state is used as the value, so NSControl methods such as setIntValue:
actually set the state. The methods setState: and state are provided as a
more conceptually accurate way of setting and getting the state. The NSButton
can send its action continuously and display highlighting in several different
ways. An NSButton can also have a key equivalent that’s eligible for
triggering whenever the NSButton ’s NSPanel or NSWindow is the key
window.

NSButton and NSMatrix both provide a control view, which is needed to
display an NSButtonCell object. However, while NSMatrix requires you to
access the NSButtonCell s directly, most of NSButton ’s methods are “covers”
for identically declared methods in NSButtonCell . In other words, the
implementation of the NSButton method invokes the corresponding
NSButtonCell method for you, allowing you to be unconcerned with the
NSButtonCell ’s existence. The only NSButtonCell methods that don’t have
covers relate to the font used to display the key equivalent, and to specific
methods for highlighting or showing the NSButton ’s state. These last are
usually set together with NSButton ’s setButtonType: method.

Creating a Subclass of NSButton

Override the designated initializer (NSView’s initWithFrame: method) if
you create a subclass of NSButton that performs its own initialization. If you
want to use a custom NSButtonCell subclass with your NSButton subclass,

inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder),
NSObject (NSObject)

Declared In: AppKit/NSButton.h

1-86 OpenStep Programming Reference—September 1996

1

you have to override the setCellClass: method, as described in “Creating
New NSControl s” in the NSControl class specification. See the
NSButtonCell class specification for more on NSButton ’s behavior.

Method Types

Activity Class Method

Initializing the NSButton factory + cellClass
+ setCellClass:

Setting the button type – setButtonType:

Setting the state – setState:
– state

Setting the repeat interval – getPeriodicDelay:interval:
– setPeriodicDelay:interval:

Setting the titles – alternateTitle
– setAlternateTitle:
– setTitle:
– title

Setting the images – alternateImage
– image
– imagePosition
– setImage:
– setImagePosition:

Modifying graphic attributes – isBordered
– isTransparent
– setBordered:
– setTransparent:

Displaying – highlight:

Setting the key equivalent – keyEquivalent
– keyEquivalentModifierMask
– setKeyEquivalent:
– setKeyEquivalentModifierMask:

Handling events and action messages – performClick:
– performKeyEquivalent:

NSButton 1-87

1

Class Methods

cellClass

+ (Class)cellClass

Returns the NSButtonCell subclass used by NSButton .

setCellClass:

+ (void)setCellClass:(Class)classId

Configures the NSButton class to use instances of classId for its cells.
classId should be the id of an NSButtonCell subclass, obtained by sending
the class message to either the cell subclass object or to an instance of that
subclass. The default cell class is NSButtonCell . If this method isn’t
overridden by an NSButton subclass, then when it’s sent to that subclass,
NSButton and any other NSButton subclasses that don’t override the
methods mentioned below will use the new cell subclass as well. To safely set
a cell class for your NSButton subclass, override this method to store the cell
class in a static id . Also, override the designated initializer to replace the
NSButton subclass instance’s cell with an instance of the cell subclass stored in
that static id . See “Creating New NSControls” on page 180 in the NSControl
class specification’s class description for more information.

Instance Methods

alternateImage

– (NSImage *)alternateImage

Returns the NSImage that appears on the button when it’s in its alternate state,
or nil if there is no alternate NSImage. NSButton only displays its alternate
NSImage if it highlights or shows its alternate state by displaying its alternate
contents. See also setAlternateImage: , setImagePosition: , image ,
setButtonType: .

alternateTitle

– (NSString *)alternateTitle

1-88 OpenStep Programming Reference—September 1996

1

Returns an NSString containing the title that appears on the button when it’s
in its alternate state, or NULL if there isn’t one. The alternate title is only
displayed if the button highlights or shows its alternate state by displaying its
alternate contents. See also setAlternateTitle: , title , setButtonType: .

getPeriodicDelay:interval:

– (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Returns by reference the delay and interval periods for a continuous
button. delay is the amount of time (in seconds) that a continuous button will
pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages. See
also setContinuous: (NSControl), setPeriodicDelay:interval: .

highlight:

– (void)highlight:(BOOL)flag

If the highlight state of the cell is not equal to flag , the button is highlighted
and the highlight state of the cell is set to flag . Highlighting may involve the
button appearing “pushed in” to the screen, displaying its alternate title or
icon, or lighting. This method issues a flushWindow message after
highlighting the button. See also setButtonType:

image

– (NSImage *)image

Returns the NSImage that appears on the button when it’s in its normal state,
or nil if there is no such NSImage. This NSImage is always displayed on a
button that doesn’t change its contents when highlighting or showing its
alternate state. See also setImage: , setImagePosition: ,
alternateImage , setButtonType: .

imagePosition

– (NSCellImagePosition)imagePosition

Returns the position of the button’s image relative to the button’s title. The
return value can be any of the following enumeration constants:

NSButton 1-89

1

• NSNoImage
• NSImageOnly
• NSImageLeft
• NSImageRight
• NSImageBelow
• NSImageAbove
• NSImageOverlaps

See also setImagePosition: .

isBordered

– (BOOL)isBordered

Returns YES if the button has a border and returns NO otherwise. A button’s
border isn’t the single line of most other NSControl s’ borders; instead, it’s a
raised bezel. In other objects bezel usually refers to a depressed bezel, as seen
on NSFormCell s, for example.

Note – You shouldn’t use the setBezeled: method with a button.

See also setBordered: .

isTransparent

– (BOOL)isTransparent

Returns YES if the button is transparent and NO otherwise. A transparent
button never draws itself, but it receives mouse-down events and tracks the
mouse properly. See also setTransparent: .

keyEquivalent

– (NSString *)keyEquivalent

Returns the button’s key equivalent character, or 0 if one hasn’t been defined.
See also setKeyEquivalent: , performKeyEquivalent: ,
keyEquivalentModifierMask .

1-90 OpenStep Programming Reference—September 1996

1

keyEquivalentModifierMask

– (unsigned int)keyEquivalentModifierMask

Returns a mask indicating the possible modifier keys for the button’s key
equivalent. See setKeyEquivalentModifierMask: (NSButtonCell) for a
list of these masks.

performClick:

– (void)performClick:(id)sender

Highlights the button, sends its action message to the target object, and then
unhighlights the button. Invoke this method when you want the button to
behave exactly as if the user had clicked it with the mouse. See also
performKeyEquivalent: .

performKeyEquivalent:

– (BOOL)performKeyEquivalent:(NSEvent *)anEvent

If the character in theEvent matches the button’s key equivalent, this method
simulates the user clicking the button by sending performClick: to self ,
and returns YES. Otherwise this method does nothing and returns NO. The
button won’t perform the key equivalent if there’s a modal panel present that
the button is not located on. See also keyEquivalent , performClick: .

setAlternateImage:

– (void)setAlternateImage:(NSImage *)anImage

Makes anImage the button’s alternate image. A button displays its alternate
image only if it highlights or displays its alternate state by using its alternate
contents. See also alternateImage , setImagePosition: , setImage: ,
setButtonType: .

setAlternateTitle:

– (void)setAlternateTitle:(NSString *)aString

NSButton 1-91

1

Sets the title that the button displays in its alternate state to the title stored in
aString . The alternate title is shown only if the button changes its contents
when highlighting or displaying its alternate state. See also alternateTitle ,
setTitle: , setButtonType: .

setBordered:

– (void)setBordered:(BOOL)flag

If flag is YES, the button displays a border; if NO, the button doesn’t display a
border. A button’s border is not the single line like most other NSControl s’
borders; instead, it’s a raised bezel. In other objects bezel usually refers to a
depressed bezel, as seen on NSFormCell s, for example. This method redraws
the button if the bordered state changes. See also isBordered .

setImage:

– (void)setImage:(NSImage *)anImage

Makes anImage the button’s icon and redraws the button. A button’s icon is
displayed when the button is in its normal state, or at all times if the button
doesn’t highlight or show state by changing its contents. See also image ,
setImagePosition: , setImage: , setAlternateImage: , imageNamed:
(NSImage), setButtonType: .

setImagePosition:

– (void)setImagePosition:(NSCellImagePosition)aPosition

Sets the position of the button’s image when a button simultaneously displays
both text and an icon and redraws the button. aPosition can be one of the
following constants:

• NSNoImage
• NSImageOnly
• NSImageLeft
• NSImageRight
• NSImageBelow
• NSImageAbove
• NSImageOverlaps

1-92 OpenStep Programming Reference—September 1996

1

If the image is positioned above or below the title, the alignment of the text
will be changed to NSCenterAlignment . This behavior can be overridden
with a subsequent setAlignment: method. See also imagePosition ,
setAlignment: (NSControl).

setKeyEquivalent:

– (void)setKeyEquivalent:(NSString *)aKeyEquivalent

Makes aKeyEquivalent the button’s key equivalent and redraws the button’s
inside if there is no image or alternate image set for the button. The key
equivalent isn’t displayed if the image position is set to NSNoImage,
NSImageOnly , or NSImageOverlaps (see setImagePosition:); that is, the
button must display both its title and its “image” (the key equivalent, in this
case), and they must not overlap. To display a key equivalent on a button, set
the image and alternate image to nil , set the key equivalent, and then set the
image position. See also keyEquivalent , setImagePosition: ,
performKeyEquivalent: , setImage: , setAlternateImage: .

setKeyEquivalentModifierMask:

– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask that determines the possible modifier keys for button’s key
equivalent. See setKeyEquivalentModifierMask: (NSButtonCell) for a
list of these masks.

setPeriodicDelay:interval:

– (void)setPeriodicDelay:(float)delay interval:(float)interval

Sets the message delay and interval for the button. These two values are
used if the button is configured (by a setContinuous: message) to
continuously send the action message to the target object while tracking the
mouse. delay is the amount of time (in seconds) that a continuous button will
pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.
The maximum value allowed for both the delay and the interval is 60.0
seconds. See also getPeriodicDelay:interval: , setContinuous:
(NSControl).

NSButton 1-93

1

setState:

– (void)setState:(int)value

Sets the button’s state to value (0 or 1) and redraws the button. 0 is the normal
or “off” state, and 1 is the alternate or “on” state. See also state .

setTitle:

– (void)setTitle:(NSString *)aString

Sets the title displayed by the button, when in its normal state, to the title
stored in aString . This title is always shown on buttons that don’t use their
alternate contents when highighting or displaying their alternate state.
Redraws the button’s inside. See also title , setButtonType: .

setTransparent:

– (void)setTransparent:(BOOL)flag

Sets whether the button is transparent, and redraws the button if flag is NO. A
transparent button tracks the mouse and sends its action, but doesn’t draw. A
transparent button is useful for sensitizing an area on the screen so that an
action gets sent to a target when the area receives a mouse click. See also
isTransparent .

setButtonType:

– (void)setButtonType:(int)aType

1-94 OpenStep Programming Reference—September 1996

1

Sets how the button highlights and shows its state, and redraws the button.
The types available are for the most common button types, which are also
accessible in Interface Builder; you can configure different behavior with
NSButtonCell ’s setHighlightsBy: and setShowsStateBy: methods.
aType can be one of constants shown in Table 1-5.

Table 1-5 NSButton Types

Constant Corresponding Button Type

NSMomentaryPushButton The default type. While the button is held down
it’s displayed as lit, and also “pushed in” to the
screen if the button is bordered. This type of
button is best for simply triggering actions, as it
doesn’t show its state; it always displays its
normal image or title. This option is called
“Momentary Push” in Interface Builder’s Button
Inspector.

NSPushOnPushOffButton Holding the button down causes it to be shown
as lit, and also “pushed in” to the screen if the
button is bordered. The button displays itself as
lit while in its alternate state. This option is
called “Push On/Push Off” in Interface Builder’s
Button Inspector.

NSToggleButton Highlighting is performed by changing to the
alternate title or image “pushing in.” The
alternate state is shown by displaying the
alternate title or image. This option is called
“Toggle” in Interface Builder’s Button Inspector.

NSSwitchButton A variant of NSToggleButton that has no border,
and that has a default image called “switch” and
an alternate image called “switchH.” These are
identical to the “NSswitch” and “NSswitchH”
system bitmaps. This type of button is available
as a separate palette item in Interface Builder.

NSRadioButton Like NSSwitchButton, but the default image is
“radio” and the alternate icon is “radioH”
(identical to the “NSradio” and “NSradioH”
system bit maps). This type of button is available
as a separate palette item in Interface Builder.

NSButton 1-95

1

See also setButtonType: (NSButtonCell), setHighlightsBy:
(NSButtonCell), setShowsStateBy: (NSButtonCell).

state

– (int)state

Returns the button’s current state, either 0 for normal or “off,” or 1 for
alternate or “on.” See also setState: .

title

– (NSString *)title

Returns the title displayed on the button when it’s in its normal state, or
always if the button doesn’t use its alternate contents for highlighting or
displaying the alternate state. Returns NULL if there is no title. See also
setTitle: , alternateImage , setButtonType: .

NSMomemtaryChangeButton While the button is pressed, the alternate image
or alternate title is displayed. This type always
displays its normal title or icon, that is, it doesn’t
display its state. The miniaturize button in a
window’s title bar is a good example of this type
of button. This option is called “Momentary
Change” in Interface Builder’s Button Inspector.

NSOnOffButton Highlights while pressed by lighting, and stays
lit in its alternate state. This option is called
“On/Off” in Interface Builder’s Button Inspector.

NSMomentaryLight Provides momentary light behavior. This is the
equivalent of:
 [aButtonCell
 setButtonType:NSMomentaryPushButton];
 [aButtonCell
 setCellAttribute:NSPushInCell to:No];

Table 1-5 NSButton Types

Constant Corresponding Button Type

1-96 OpenStep Programming Reference—September 1996

1

NSButtonCell

Class Description

NSButtonCell , an NSActionCell subclass, implements the user interfaces of
push buttons, switches, and radio buttons. It can also be used for any other
region of a view that’s designed to send a message to a target when clicked.
NSButton (an NSControl subclass) uses a single NSButtonCell . To create
groups of switches or radio buttons, use an NSMatrix holding a set of
NSButtonCell s.

An NSButtonCell is a two-state cell: it’s either “off” or “on,” and can be
configured to display the two states differently, with a separate title and/or
image for either state. The two states are more often referred to as “normal”
and “alternate.” A button cell’s state is also used as its value, so NSCell
methods that set the value (setIntValue: and so on) actually set the button
cell’s state to “on” if the value provided is nonzero (or non-NULL for strings),
and to “off” if the value is zero or NULL. Similarly, methods that retrieve the
value return 1 for the “on” or alternate state (an empty string in the case of
stringValue), or 0 or NULL for the “off” or normal state. You can also use
NSCell ’s setState: and state methods to set or retrieve the state directly.
After changing the state, send a display message to show the button cell’s
new appearance. (NSButton does this automatically.)

An NSButtonCell sends its action message to its target once if its view is
clicked and it gets the mouse-down event, but can also send the action
message continuously as long as the mouse is held down with the cursor
inside the button cell. The button cell can show that it’s being pressed by
highlighting in several ways—for example, a bordered button cell can appear
pushed into the screen, or the image or title can change to an alternate form
while the button cell is pressed.

An NSButtonCell can also have a key equivalent (like a menu item). If the
button cell is displayed in the key window, the button cell gets the first chance
to receive events related to key equivalents. This feature is used quite often in

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell),
NSObject (NSObject)

Declared In: AppKit/NSButtonCell.h

NSButtonCell 1-97

1

modal panels that have an “OK” button containing the image that represents
the Return key. Usually an NSButtonCell displays a key equivalent as its
image; if you ever set an image for the NSButtonCell , the key equivalent
remains, but doesn’t get displayed. For more information on NSButtonCell ’s
behavior, see NSButton and NSMatrix .

Exceptions

In its implementation of the compare: method (declared in NSCell),
NSButtonCell raises NSBadComparisonException if the otherCell
argument is not of the NSButtonCell class.

1-98 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

alternateImage

– (NSImage *)alternateImage

Activity Class Method

Setting the titles – alternateTitle
– setAlternateTitle:
– setFont:
– setTitle:
– title

Setting the images – alternateImage
– imagePosition
– setAlternateImage:
– setImagePosition:

Setting the repeat interval – getPeriodicDelay:interval:
– setPeriodicDelay:interval:

Setting the key equivalent – keyEquivalent
– keyEquivalentFont
– keyEquivalentModifierMask
– setKeyEquivalent:
– setKeyEquivalentFont:
– setKeyEquivalentFont:size:
– setKeyEquivalentModifierMask:

Modifying graphic attributes – isOpaque
– isTransparent
– setTransparent:

Modifying display behavior
– highlightsBy
– setHighlightsBy:
– showsStateBy
– setShowsStateBy:
– buttonType
– setButtonType:

Simulating a click – performClick:

NSButtonCell 1-99

1

Returns the NSImage that appears on the NSButtonCell when it’s in its
alternate state, or nil if there is no alternate NSImage. This NSButtonCell
only displays its alternate NSImage if it highlights or shows its alternate state
by displaying its alternate contents. See also setAlternateImage: ,
setImagePosition: , setButtonType: .

alternateTitle

– (NSString *)alternateTitle

Returns an NSString containing the title that appears on the NSButtonCell
when it’s in its alternate state, or NULL if there isn’t one. The alternate title is
only displayed if the NSButtonCell highlights or shows its alternate state by
displaying its alternate contents. See also setAlternateTitle: , title ,
setButtonType: .

buttonType

- (NSButtonType)buttonType

Returns the button cell’s button type. See also setButtonType: .

getPeriodicDelay:interval:

– (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Returns by reference the delay and interval periods for a continuous button
cell. delay is the amount of time (in seconds) that a continuous button cell will
pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages. See
also setContinuous: (NSCell), setPeriodicDelay:interval: .

highlightsBy

– (int)highlightsBy

Returns the logical OR of flags that indicate the way the button cell highlights
when it gets a mouse-down event. See setHighlightsBy: for the list of flags.
See also setHighlightsBy: , showsStateBy , setShowsStateBy: .

1-100 OpenStep Programming Reference—September 1996

1

imagePosition

– (NSCellImagePosition)imagePosition

Returns the position of the button cell’s image (if any) relative to the cell’s title.
The possible return values are:

• NSNoImage
• NSImageOnly
• NSImageLeft
• NSImageRight
• NSImageBelow
• NSImageAbove
• NSImageOverlaps

See also setImagePosition: .

isOpaque

– (BOOL)isOpaque

Returns YES if the button cell draws over every pixel in its frame and NO if it
doesn’t. The button cell is opaque only if it is not transparent and if it has a
border. See also isTransparent , setTransparent: .

isTransparent

– (BOOL)isTransparent

Returns YES if the NSButtonCell is transparent and NO if it isn’t. A
transparent NSButtonCell never draws anything, but it does receive
mouse-down events and track the mouse properly. See also
setTransparent: , isOpaque .

keyEquivalent

– (NSString *)keyEquivalent

Returns an NSString containing the key-equivalent character of the
NSButtonCell . The default key equivalent is the empty string (@””). See also
setKeyEquivalent: , setKeyEquivalentFont: ,
setKeyEquivalentFont:size: , keyEquivalentModifierMask .

NSButtonCell 1-101

1

keyEquivalentFont

– (NSFont *)keyEquivalentFont

Returns the NSFont used to draw the key equivalent. See also
setKeyEquivalentFont: , keyEquivalent .

keyEquivalentModifierMask

– (unsigned int)keyEquivalentModifierMask

Returns the mask indicating the possible modifier keys for button cell’s key
equivalent. See also setKeyEquivalentModifierMask: .

performClick:

– (void)performClick:(id)sender

If this button cell is contained in an NSControl , then invoking this method
causes the button cell to act as if the user has clicked it.

setAlternateImage:

– (void)setAlternateImage:(NSImage *)anImage

Makes anImage the button cell’s alternate image and redraws the cell if
possible. A button cell displays its alternate NSImage only if it highlights or
displays its alternate state by using its alternate contents. See also
alternateImage , setImagePosition: , setButtonType: .

setAlternateTitle:

– (void)setAlternateTitle:(NSString *)aString

Makes a copy of aString and uses it as the button cell’s alternate title. Doesn’t
display the button cell even if autodisplay is on in the button cell’s NSView.
The alternate title is shown only if the button cell changes its contents when
highlighting or displaying its alternate state. See also alternateTitle ,
setTitle: , setButtonType: .

1-102 OpenStep Programming Reference—September 1996

1

setFont:

– (void)setFont:(NSFont *)fontObject

Sets the NSFont used in displaying the title and alternate title. Does nothing if
the cell has no title or alternate title. If the button cell has a key equivalent, its
font is not changed, but the key equivalent’s font size is changed to match the
new title NSFont . See also setKeyEquivalentFont: ,
setKeyEquivalentFont:size: .

setHighlightsBy:

– (void)setHighlightsBy:(int)aType

Sets how the button cell highlights when pressed. aType can be the logical OR
of one or more of the constants shown in Table 1-6:

If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are
specified, both are recorded, but which behavior is used depends on the button
cell’s image. If there is no image, or the image has no alpha (tranparency) data,
NSChangeGrayCellMask is used. If the image does have alpha data,
NSChangeBackgroundCellMask is used; this behavior allows the gray/white
swap of the background to show through the images’s transparent pixels. See
also highlightsBy , setShowsStateBy: , showsStateBy .

Table 1-6 Showing an NSButtonCell ’s On State

Constant Action

NSNoCellMask The NSButtonCell doesn’t change. This flag
is ignored if any others are set in aType.

NSContentsCellMask The NSButtonCell displays its alternate
image and/or title.

NSPushInCellMask The default case. The NSButtonCell “pushes
in” when pressed if it has a border.

NSChangeGrayCellMask The NSButtonCell swaps the light gray and
white pixels on its background and image.

NSChangeBackgroundCellMask Similar to NSChangeGrayCellMask except
that only the background pixels are changed.

NSButtonCell 1-103

1

setImagePosition:

– (void)setImagePosition:(NSCellImagePosition)aPosition

Sets the position of the NSButtonCell ’s image in relation to its title in cases
where the cell displays both at the same time. aPosition can be one of the
constants shown in Table 1-7:

If the position is above or below the title, the alignment of the title will be
changed to NSCenterTextAlignment . This behavior can be overridden with
a subsequent setAlignment: method. See also imagePosition ,
setAlignment: (NSActionCell).

setKeyEquivalent:

– (void)setKeyEquivalent:(NSString *)aKeyEquivalent

Sets the key equivalent character of the button cell; the default is the empty
string (@””). Has the button cell redrawn if needed. The key equivalent isn’t
displayed if the icon position is set to NSNoImage, NSImageOnly , or
NSImageOverlaps (see setImagePosition:). The key equivalent isn’t
displayed on a button cell that has an image. To make sure it gets displayed,
set the image and alternate image to nil before using this method. See also
keyEquivalent , setKeyEquivalentFont: ,
setKeyEquivalentFont:size: , performKeyEquivalent: (NSButton ,
NSMatrix)

Table 1-7 Image Positions for an NSButtonCell

Constant Meaning

NSNoImage Title only. No image on the button.

NSImageOnly Image only. No title on the button.

NSImageLeft Image is to the left of the title.

NSImageRight Image is to the right of the title.

NSImageBelow Image is below the title.

NSImageAbove Image is above the title.

NSImageOverlaps Title is drawn on top of image.

1-104 OpenStep Programming Reference—September 1996

1

setKeyEquivalentModifierMask:

– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask that determines the possible modifier keys for NSButtonCell ’s
key equivalent. Use the following enumeration constants in constructing mask:

• NSAlphaShiftKeyMask
• NSShiftKeyMask
• NSControlKeyMask
• NSAlternateKeyMask
• NSCommandKeyMask
• NSNumericPadKeyMask
• NSHelpKeyMask
• NSFunctionKeyMask

setKeyEquivalentFont:

– (void)setKeyEquivalentFont:(NSFont *)fontObj

Sets the NSFont used to draw the key equivalent, and has the button cell
redrawn if possible. This method does nothing if there is already an image
associated with this button cell. The default NSFont is the same as that used to
draw the title. See also keyEquivalentFont ,
setKeyEquivalentFont:size: .

setKeyEquivalentFont:size:

– (void)setKeyEquivalentFont:(NSString *)fontName
size:(float)fontSize

Sets by name and size the NSFont used to draw the key equivalent, and has
the button cell redrawn if possible. Does nothing if there is already an image
associated with this button cell. The default NSFont is the same as that used to
draw the title. See also setKeyEquivalentFont: .

setKeyEquivalentModifierMask:

– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask that determines the possible modifier keys for NSButtonCell ’s
key equivalent. Use the following enumeration constants in constructing mask:

NSButtonCell 1-105

1

• NSAlphaShiftKeyMask
• NSShiftKeyMask
• NSControlKeyMask
• NSAlternateKeyMask
• NSCommandKeyMask
• NSNumericPadKeyMask
• NSHelpKeyMask
• NSFunctionKeyMask

setPeriodicDelay:interval:

– (void)setPeriodicDelay:(float)delay interval:(float)interval

Sets the message delay and interval for the button cell. These two values are
used if the button cell has been set—by a setContinuous: message—to
continuously send its action message to its target object while tracking the
mouse. delay is the amount of time (in seconds) that a continuous button cell
will pause before starting to periodically send action messages to the target
object. interval is the amount of time (also in seconds) between those
messages. The maximum value allowed for both delay and the interval is
60.0 seconds. See also getPeriodicDelay:interval: , setContinuous:
(NSCell).

setShowsStateBy:

– (void)setShowsStateBy:(int)aType

Sets the way the button cell indicates its alternate (pressed) state. aType
should be the logical OR of one or more of the constants shown in Table 1-6 on
page 102. If both NSChangeGrayCellMask and
NSChangeBackgroundCellMask are specified, both are recorded, but the
actual behavior depends on the button cell’s image. If there is no image, or if
the image has no alpha (tranparency) data, NSChangeGrayCellMask is used.
If the image exists and has alpha data, NSChangeBackgroundCellMask is
used; this allows the gray/white swap of the background to show through the
image’s transparent pixels. See also showsStateBy , setHighlightsBy: ,
highlightsBy .

setTitle:

– (void)setTitle:(NSString *)aString

1-106 OpenStep Programming Reference—September 1996

1

Makes a copy of aString and uses it as the button cell’s title when the cell is
in its normal state. This title is always shown on button cells that don’t use
their alternate contents when highighting or displaying their alternate state.
See also title , setAlternateTitle: .

setTransparent:

– (void)setTransparent:(BOOL)flag

Sets whether the button cell is transparent. A transparent button cell never
draws, but does track the mouse and send its action normally. A transparent
button cell is useful for sensitizing an area on the screen so that an action gets
sent to a target when the area receives a mouse click. See also
isTransparent , isOpaque .

setButtonType:

– (void)setButtonType:(NSButtonType)aType

Sets the way the button cell highlights while pressed, and how it shows its
state. Redraws the button cell if possible. aType can be one of the following
constants (as described in the NSButton ’s setButtonType: method
description):

• NSMomentaryPushButton
• NSPushOnPushOffButton
• NSToggleButton
• NSSwitchButton
• NSRadioButton
• NSMomentaryChangeButton
• NSOnOffButton
• NSMomentaryLight

See also setButtonType: (NSButton), setHighlightsBy: ,
setShowsStateBy: .

showsStateBy

– (int)showsStateBy

NSCachedImageRep 1-107

1

Returns the logical OR of flags that indicate the way the button cell shows its
alternate (pressed) state. See Table 1-6 on page 102 for a list of possible flags.
See also setShowsStateBy: , highlightsBy , setHighlightsBy: .

title

– (NSString *)title

Returns the title displayed on the button cell when it’s in its normal state, or
always if the button cell doesn’t use its alternate contents for highlighting or
displaying the alternate state. Returns NULL if there is no title. See also
setTitle: .

NSCachedImageRep

Class Description

NSCachedImageRep , a subclass of NSImageRep, defines an object that stores
its source data as a rendered image in a window, typically a window that stays
off screen. The only data that’s available for reproducing the image is the
image itself. An NSCachedImageRep differs from the other kinds of
NSImageReps defined in the Application Kit, all of which can reproduce an
image from the information originally used to draw it. Instances of this class
are generally used indirectly, through an NSImage object.

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying
(NSImageRep) NSObject (NSObject)

Declared In: AppKit/NSCachedImageRep.h

1-108 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

initWithSize:depth:separate:alpha:

– (id)initWithSize:(NSSize)aSize depth:(NSWindowDepth)aDepth
separate:(BOOL)separate alpha:(BOOL)alpha

Initializes a new NSCachedImageRep for an image of the specified size and
depth. The separate argument specifies whether the image will get its own
unique cache, instead of possibly sharing one with other images. For best
performance (although it’s not essential), the alpha argument should be set
according to whether the image will have a channel for transparency
information. See also initWithWindow:rect: .

initWithWindow:rect:

– (id)initWithWindow:(NSWindow *)aWindow rect:(NSRect)aRect

Initializes the new NSCachedImageRep for an image to be drawn in the
rectangle aRect of the specified window. This method retains aWindow. The
rectangle is specified in aWindow ’s base coordinate system, and the size of the
image is set from the size of the rectangle. You must draw the image in the
rectangle yourself; there are no NSCachedImageRep methods for this purpose.
See also initWithSize:depth:separate:alpha: .

rect

– (NSRect)rect

Returns the rectangle where the image is cached. See also window .

Activity Class Method

Initializing an NSCachedImageRep – initWithSize:depth:separate:alpha:
– initWithWindow:rect:

Getting the representation – rect
– window

NSCell 1-109

1

window

– (NSWindow *)window

Returns the NSWindow where the image is cached. See also rect .

NSCell

Class Description

The NSCell class provides a mechanism for displaying text or images in an
NSView without the overhead of a full NSView subclass. In particular, it
provides much of the functionality of the NSText class by providing access to
a shared NSText object used by all instances of NSCell in an application.
NSCell s are also extremely useful for placing titles or images at various
locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their
internal workings. For example, NSSlider uses an NSSliderCell ,
NSTextField uses an NSTextFieldCell , and NSBrowser uses an
NSBrowserCell . Sending a message to the NSControl is often simpler than
dealing directly with the corresponding NSCell . For instance, NSControl
objects typically invoke updateCell: (causing the cell to be displayed) after
changing a cell attribute; whereas if you directly call the corresponding method
of the NSCell , the NSCell might not automatically display itself again.

Some subclasses of NSControl (notably NSMatrix) allow multiple NSCell s
to be grouped and to act together in some cooperative manner. With an
NSMatrix , a group of radio buttons can be implemented without needing an
NSView for each button and without needing an NSText object for the text on
each button.

The NSCell class provides primitives for displaying text or an image, editing
text, formatting floating-point numbers, maintaining state, highlighting, and
tracking the mouse. NSCell ’s method

Inherits From: NSObject

Conforms To: NSCoding, NSCopying,
NSObject (NSObject)

Declared In: AppKit/NSCell.h

1-110 OpenStep Programming Reference—September 1996

1

trackMouse:inRect:ofView:untilMouseUp: supports the target object
and action method used to implement controls. However, NSCell implements
target/action features abstractly, deferring the details of implementation to
subclasses of NSActionCell .

The initImageCell: method is the designated initializer for NSCell s that
display images. The initTextCell: method is the designated initializer for
NSCell s that display text. Override one or both of these methods if you
implement a subclass of NSCell that performs its own initialization. If you
need to use target and action behavior, you may prefer to subclass
NSActionCell , which provides the default implementation of this behavior.
For more information on how NSCell is used, see the NSControl class
specification.

Method Types

Activity Class Method

Initializing an NSCell – initImageCell:
– initTextCell:

Determining component sizes – calcDrawInfo:
– cellSize
– cellSizeForBounds:
– drawingRectForBounds:
– imageRectForBounds:
– titleRectForBounds:

Setting the NSCell’s type – setType:
– type

Setting the NSCell’s state – setState:
– state

Enabling and disabling the
NSCell

– isEnabled
– setEnabled:

Setting the image – image
– setImage:

NSCell 1-111

1

Setting the NSCell’s value – doubleValue
– floatValue
– intValue
– objectValue
– stringValue
– setDoubleValue:
– setFloatValue:
– setIntValue:
– setObjectValue:
– setStringValue:

Interacting with other NSCells – takeDoubleValueFrom:
– takeFloatValueFrom:
– takeIntValueFrom:
– takeObjectValueFrom:
– takeStringValueFrom:

Modifying text attributes – alignment
– isEditable
– isSelectable
– isScrollable
– setAlignment:
– setEditable:
– setFont:
– setSelectable:
– setScrollable:
– setUpFieldEditorAttributes:
– setWraps:
– wraps

Editing text – editWithFrame:inView:editor:delegate:event:
– endEditing:
– selectWithFrame:inView:editor:delegate:
start:length:

Validating input – entryType
– hasValidObjectValue
– isEntryAcceptable:
– setEntryType:

Formatting data – formatter
– setFloatingPointFormat:left:right:
– setFormatter:

Activity Class Method

1-112 OpenStep Programming Reference—September 1996

1

Modifying graphic attributes – isBezeled
– isBordered
– isOpaque
– setBezeled:
– setBordered:

Setting parameters – cellAttribute:
– setCellAttribute:to:

Displaying – controlView
– drawInteriorWithFrame:inView:
– drawWithFrame:inView:
– highlight:withFrame:inView:
– isHighlighted

Target and action – action
– isContinuous
– sendActionOn:
– setAction:
– setContinuous:
– setTarget:
– target

Assigning a tag – setTag:
– tag

Handling keyboard alternatives – keyEquivalent

Tracking the mouse + prefersTrackingUntilMouseUp
– continueTracking:at:inView:
– mouseDownFlags
– getPeriodicDelay:interval:
– startTrackingAt:inView:
– stopTracking:at:inView:mouseIsUp:
– trackMouse:inRect:ofView:untilMouseUp:

Managing the cursor – resetCursorRect:inView:

Comparing to another NSCell – compare:

Using the NSCell to represent
an object

– representedObject
– setRepresentedObject:

Activity Class Method

NSCell 1-113

1

Class Methods

prefersTrackingUntilMouseUp

+ (BOOL)prefersTrackingUntilMouseUp

Normally, returns NO so that tracking stops when the mouse leaves the
NSCell . Subclasses may override this method to return YES if the cell’s
NSView should allow it, after a mouse-down event, to track mouse-dragged
and mouse-up events even if they occur outside the NSCell ’s frame. For
example, this method is overridden by NSSliderCell to ensure that an
NSSliderCell in a NSMatrix doesn’t stop responding to user input (and its
neighbor start responding) just because its knob isn’t dragged in a perfectly
straight line. See also trackMouse:inRect:ofView:untilMouseUp: .

Instance Methods

action

– (SEL)action

Returns a null selector. This method is overridden by NSActionCell and
subclasses that actually implement a target object and action method. See also
setAction: , target .

alignment

– (NSTextAlignment)alignment

Returns the alignment of text in the cell. The return value can be one of the
following constants:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See also setAlignment: .

1-114 OpenStep Programming Reference—September 1996

1

calcDrawInfo:

– (void)calcDrawInfo:(NSRect)aRect

This method is implemented by subclasses of NSCell to recalculate drawing
sizes. Objects using NSCell s generally maintain a flag that informs them if any
of their NSCell s have been modified in such a way that the location or size of
the cell requires recomputing. If so, calcSize is automatically invoked before
displaying the cell; that method invokes NSCell ’s calcDrawInfo: for each
cell. See also calcSize (NSControl).

cellAttribute:

– (int)cellAttribute:(NSCellAttribute)aParameter

Returns the value of one of the frequently accessed flags for a cell. See
setCellAttribute:to: for a list of the parameters and corresponding
methods. Since the parameters are also accessible through methods such as
isEnabled and isHighlighted , you shouldn’t need to use this method
often. See the Application Kit’s Types and Constants chapter for a description
of cell attributes. See also setCellAttribute:to: .

cellSize

– (NSSize)cellSize

Returns the minimum width and height required for displaying the cell. This
method invokes cellSizeForBounds: with the rectangle argument set to a
rectangle with very large width and height. Override this method if that isn’t
the proper way to calculate the minimum width and height required for
displaying the cell. See also cellSizeForBounds: .

cellSizeForBounds:

– (NSSize)cellSizeForBounds:(NSRect)aRect

Returns the minimum width and height required for displaying the cell in the
given rectangle. If it’s not possible to fit the cell, the width and/or height could
be bigger than the ones of the provided rectangle. The computation is done by
trying to size the cell so that it fits in the rectangle argument (for example, by
wrapping the text). If a choice must be made between extending the width or
height of aRect to fit text, the height will be extended. See also cellSize .

NSCell 1-115

1

compare:

– (NSComparisonResult)compare:(id)otherCell

Compares the string values of this cell and otherCell (which must be a kind
of NSCell). Raises NSBadComparisonException if otherCell is not of the
NSCell class.

Note – The reason this method takes an id argument instead of an NSCell * is
so that within the compare: method one can invoke methods such as title
that are valid for subclasses of NSCell but not for NSCell (without generating
a compiler warning).

continueTracking:at:inView:

– (BOOL)continueTracking:(NSPoint)lastPoint
at:(NSPoint)currentPoint inView:(NSView *)controlView

Determines whether or not the cell should keep tracking the mouse based on
the positions provided. Returns YES if it can keep tracking and NO if should
not. This method is invoked by
trackMouse:inRect:ofView:untilMouseUp: as the mouse is dragged
around inside the cell. lastPoint and currentPoint should be in
controlView ’s coordinate system. By default, this method returns YES when
the cell is continuous, that is, when it should continually send action messages
while the mouse is pressed or dragged. This method is often overridden to
provide more sophisticated tracking behavior. See also
trackMouse:inRect:ofView:untilMouseUp: ,
startTrackingAt:inView: , stopTracking:at:inView:mouseIsUp: .

controlView

– (NSView *)controlView

Returns nil . This method is implemented abstractly, since NSCell doesn’t
record the NSView in which it’s drawn. This method is overridden by
NSActionCell and its subclasses to return the NSView last drawn in
(normally an NSControl). An action cell uses the control NSView as the only
argument in an action message when it’s sent to the target. See also
controlView (NSActionCell), drawWithFrame:inView: ,
drawInteriorWithFrame:inView: .

1-116 OpenStep Programming Reference—September 1996

1

doubleValue

– (double)doubleValue

Returns the receiving text NSCell ’s value as a double-precision floating-point
number, by converting its string contents to a double using the standard C
function atof() . Returns 0.0 if the cell isn’t a text NSCell . See also
setDoubleValue: , floatValue , intValue , stringValue , type .

drawInteriorWithFrame:inView:

– (void)drawInteriorWithFrame:(NSRect)cellFrame
inView:(NSView *)controlView

Draws the area within the cell’s border in controlView . For the base NSCell
class, it’s the same as drawWithFrame:inView: except that it doesn’t draw
the bezel or border if there is one. cellFrame should be the frame of the cell,
that is, the same as the cellFrame passed to drawWithFrame:inView: , not
the rectangle returned by drawingRectForBounds: . The PostScript focus
must be locked on controlView when this method is invoked. If the cell’s
highlight flag is YES, then the cell is highlighted.

drawInteriorWithFrame:inView: is usually invoked from the NSControl
class’s drawCellInside: method and is used to cause minimal drawing to be
done in order to update the value displayed by the cell when the contents are
changed. This becomes more important in more complex cells such as
NSButtonCell and NSSliderCell . All NSCell subclasses that override
drawWithFrame:inView: must override
drawInteriorWithFrame:inView: . drawInteriorWithFrame:inView:
should never invoke drawWithFrame:inView: , but
drawWithFrame:inView: can—and often does—invoke
drawInteriorWithFrame:inView: . See also drawWithFrame:inView: ,
lockFocus (NSView), highlight:withFrame:inView: , isHighlighted ,
compositerect (Display PostScript operator).

drawWithFrame:inView:

– (void)drawWithFrame:(NSRect)cellFrame
inView:(NSView *)controlView

NSCell 1-117

1

Displays the contents of a cell in a given rectangle of a given view. Your code
must lock the focus on controlView before invoking this method. It draws
the border or bezel (if any), then invokes
drawInteriorWithFrame:inView: . A text cell displays its text in the
rectangle by using a global NSText object. An image NSCell displays its
image centered in the rectangle if it fits in the rectangle, or by setting the image
origin on the rectangle origin if it doesn’t fit. Nothing is displayed for an
NSCell of type NSNullCellType . Override this method if you want a display
that is specific to your own NSCell subclass. See also
drawInteriorWithFrame:inView: , lockFocus (NSView).

drawingRectForBounds:

– (NSRect)drawingRectForBounds:(NSRect)theRect

Given the bounds of a cell in theRect , this method returns the rectangle into
which the cell draws its interior. The interior is everything but a bezel or
border. In other words, this method calculates the rectangle which is touched
by drawInteriorWithFrame:inView: . However, your code should not use
the rectangle returned by this method as the argument to
drawInteriorWithFrame:inView: . See also imageRectForBounds: ,
titleRectForBounds: , drawInteriorWithFrame:inView: .

editWithFrame:inView:editor:delegate:event:

– (void)editWithFrame:(NSRect)aRect inView:(NSView *)controlView
editor:(NSText *)textObject delegate:(id)anObject
event:(NSEvent *)theEvent

Begins editing a cell’s text by using the NSText object textObject in
response to an NSLeftMouseDown or NSRightMouseDown event. aRect must
be the one you have used when displaying the cell. theEvent is the
mouse-down event. anObject is made the delegate of the NSText object
textObject used for the editing: it will receive NSText delegate messages
(such as textDidEndEditing: , textWillEnd , textDidResize ,
textWillResize), and others sent by the NSText object while editing. If the
receiver isn’t a text NSCell , no editing is performed; otherwise the NSText
object is sized to aRect and its superview is set to controlView , so that it
exactly covers the cell. Then it’s activated and editing begins. It’s the
responsibility of the delegate to end the editing, remove any data from
textObject , and invoke endEditing: on the cell in the textDidEditing:

1-118 OpenStep Programming Reference—September 1996

1

method. See also endEditing: ,
selectWithFrame:inView:editor:delegate: start:length: , NSText
(Methods Implemented by the Delegate)

endEditing:

– (void)endEditing:(NSText *)textObject

Ends editing begun with
editWithFrame:inView:editor:delegate:event: or
selectWithFrame:inView:editor:delegate:start:length: . Usually
this method is invoked by the textDidEndEditing: method of the object
you are using as the delegate for the NSText object (most often an NSMatrix
or NSTextField). This method should remove the NSText object from the
view hierarchy and set its delegate to nil . See also
editWithFrame:inView:editor:delegate:event: ,
selectWithFrame:inView:editor:delegate: start:length: ,
textDidEndEditing: (NSText class delegate method).

entryType

– (int)entryType

Returns the type of data the user can type into the cell. The possible return
values are the following values:

• NSAnyType
• NSIntType
• NSPositiveIntType
• NSFloatType
• NSPositiveFloatType
• NSDoubleType
• NSPositiveDoubleType

See also setEntryType: .

floatValue

– (float)floatValue

NSCell 1-119

1

Returns the receiving text cell’s value as a single-precision floating point
number, by converting its string contents to a double using the C function
atof() and then casting the result to a float . Returns 0.0 if the receiver isn’t
a text cell. See also setFloatValue: , doubleValue , intValue ,
stringValue , type .

font

– (NSFont *)font

Returns the font used to display cell text . Returns nil if the receiver isn’t a
text cell. See also setFont: , type , NSFont .

formatter

– (id)formatter

Returns the cell’s formatter, or returns nil if the cell has no associated
formatter. This method is not part of the OpenStep specification. See also
setFormatter: .

getPeriodicDelay:interval:

– (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Returns by reference two values: the amount of time (in seconds) that a
continuous button will pause before starting to periodically send action
messages to the target object, and the interval (also in seconds) at which those
messages are sent. Periodic messaging behavior is controlled by NSCell ’s
sendActionOn: and setContinuous: methods. (By default, a cell sends the
action message only on mouse-up events.) Override this method to return your
own values. See also setContinuous: , sendActionOn: .

hasValidObjectValue

– (BOOL)hasValidObjectValue

Returns YES if the cell has a valid content object, and returns NO otherwise.
This method is not part of the OpenStep specification. See also objectValue .

1-120 OpenStep Programming Reference—September 1996

1

highlight:withFrame:inView:

– (void)highlight:(BOOL)lit withFrame:(NSRect)cellFrame
inView:(NSView *)controlView

If the cell’s highlight status is different from lit , then the cell’s highlight
status is set to lit and, if lit is YES, the rectangle cellFrame in
controlView is highlighted. Your code must lock focus on controlView
before invoking this method. This method composites with
NSCompositeHighlight inside the bounds of cellFrame . Override this
method if you want more sophisticated highlighting behavior in an NSCell
subclass.

Note – NSCell class highlighting does not appear when printed (although
subclasses like NSTextFieldCell and NSButtonCell can print themselves
highlighted). This is true because the base NSCell class is transparent, and
there is no concept of transparency in printed output.

See also isHighlighted , drawWithFrame:inView: ,
drawInteriorWithFrame:inView: .

image

– (NSImage *)image

Returns the cell’s image, if any, or NULL if the receiver isn’t an image cell. See
also setImage: .

imageRectForBounds:

– (NSRect)imageRectForBounds:(NSRect)theRect

Given the bounds of the cell in theRect , this method returns the rectangle
into which the cell draws its icon. Your code should not use the rectangle
returned by this method as the argument to
drawInteriorWithFrame:inView: . See also drawingRectForBounds: ,
titleRectForBounds: , drawInteriorWithFrame:inView: .

initImageCell:

– (id)initImageCell:(NSImage *)anImage

NSCell 1-121

1

Initializes and returns the receiver, a new image cell instance,that is, its type is
NSImageCellType . The image is set to an NSImage with the name anImage .
If anImage is NULL or an image for anImage is not found, the cell will be
initialized with a default icon, “NSsquare16 ”. This method is the designated
initializer for NSCell s that display an image. If the cell later has text assigned,
its type will automatically change. See also image , setImage: ,
initTextCell: , imageNamed: (NSImage), name (NSImage).

initTextCell:

– (id)initTextCell:(NSString *)aString

Initializes and returns the receiver, a new text cell instance, that is, its type is
NSTextCellType . The cell’s title is set to aString , or “Cell” if aString is
NULL. This method is the designated initializer for text NSCell s. See also
initImageCell: , setImage: .

intValue

– (int)intValue

Returns the receiving text cell’s value as an integer by converting its string
contents to an int using the C function atoi() . Returns 0 if the receiver isn’t
a text NSCell . See also setIntValue: , doubleValue , floatValue ,
stringValue , type .

isBezeled

– (BOOL)isBezeled

Returns YES if the cell draws itself with a bezeled border and NO otherwise.
The default is NO. See also setBezeled: , isBordered .

isBordered

– (BOOL)isBordered

Returns YES if the cell draws itself surrounded by a one-pixel-wide black
frame and NO otherwise. The default is NO. See also setBordered: ,
isBezeled .

1-122 OpenStep Programming Reference—September 1996

1

isContinuous

– (BOOL)isContinuous

Returns YES if the cell continuously sends its action message to the target
object when tracking. This usually has meaning only for NSCell subclasses
that implement instance variables and methods for target/action functionality,
such as NSActionCell ; certain NSControl subclasses, specifically NSMatrix ,
send a default action to a default target even if the NSCell doesn’t have a
target and action. See also setContinuous: , target , action .

isEditable

– (BOOL)isEditable

Returns YES if text in the cell is editable (and therefore also selectable) and NO
otherwise. The default is NO. See also setEditable: , isSelectable .

isEnabled

– (BOOL)isEnabled

Returns YES if the cell is enabled and NO otherwise. The default is YES. A cell’s
enabled status is used primarily in event handling and display: it affects the
behavior of methods for mouse tracking and text editing, by allowing or
disallowing changes to the cell within those methods, and only allows the cell
to highlight or set a cursor rectangle if it’s enabled. You can still affect many
cell attributes programmatically (setState: , for example, will still work). See
also setEnabled: , trackMouse:inRect:ofView:untilMouseUp: .

isEntryAcceptable:

– (BOOL)isEntryAcceptable:(NSString *)aString

Tests whether aString matches the cell’s entry type, as set by the
setEntryType: method. Returns YES if aString is acceptable for the entry
type and NO otherwise. For example, a text NSCell of type NSIntType accepts
strings that represent integers, but not floating point numbers or words. If
aString is NULL or empty, this method returns YES . This method is
invoked by NSForm, NSMatrix , and other NSControl s to see if a new text

NSCell 1-123

1

string is acceptable for an NSCell . This method doesn’t check for overflow. It
can be overridden to enforce specific restrictions on what the user can type into
the NSCell . See also setEntryType: .

isHighlighted

– (BOOL)isHighlighted

Returns YES if the cell is highlighted and NO otherwise. See also
highlight:withFrame:inView: .

isOpaque

– (BOOL)isOpaque

Returns YES if the cell is opaque, that is, if it draws over every pixel in its
frame, and NO otherwise. The base NSCell class is opaque if, and only if, it
draws a bezel. Subclasses that draw differently should override this method
based on how they perform their drawing. See also setBezeled: .

isScrollable

– (BOOL)isScrollable

Returns YES if typing past an end of the cell text will cause the cell to scroll to
follow the typing. The default return value is NO. See also setScrollable: .

isSelectable

– (BOOL)isSelectable

Returns YES if the cell text is selectable and NO otherwise. The default is NO.
See also setSelectable: , isEditable .

keyEquivalent

– (NSString *)keyEquivalent

Returns 0 because NSCell provides no support for key equivalents. Subclasses
can implement key equivalents, and can override this method to return the key
equivalent for the receiver. See also setKeyEquivalent: (NSButtonCell),
keyEquivalent (NSButtonCell).

1-124 OpenStep Programming Reference—September 1996

1

mouseDownFlags

– (int)mouseDownFlags

Returns the event flags (for example, NSShiftKeyMask) that were set when
the mouse went down to start the current tracking session. This method is only
valid during tracking. It doesn’t work if the NSCell target initiates another
NSCell tracking loop as part of its action method. See also sendActionOn: .

objectValue

(id <NSCopying>)objectValue

Returns the cell’s content object. This method is not part of the OpenStep
specification. See also setObjectValue: .

representedObject

– (id)representedObject

Returns the object that the receiver represents, if any. See also
setRepresentedObject: .

resetCursorRect:inView:

– (void)resetCursorRect:(NSRect)cellFrame
inView:(NSView *)controlView

If the receiver is a text cell, then a cursor rectangle is added to controlView
(with NSView’s addCursorRect:cursor:). This allows the cursor to change
to an I-beam when it passes over the cell. Override this method to change the
cursor for an image cell, or to provide a different cursor for a text cell.

selectWithFrame:inView:editor:delegate:
start:length:

– (void)selectWithFrame:(NSRect)aRect inView:(NSView *)controlView
editor:(NSText *)textObject delegate:(id)anObject
start:(int)selStart length:(int)selLength

NSCell 1-125

1

Uses textObject to select text in the cell identified by selStart and
selLength , which will be highlighted and selected as though the user had
dragged the cursor over it. This method is similar to
editWithFrame:inView:editor:delegate:event: , except that it can be
invoked in any situation, not only on a mouse-down event.

sendActionOn:

– (int)sendActionOn:(int)mask

Sets flags to determine when an action is sent to the target while tracking.
These can be any logical combination of:

• NSLeftMouseDownMask
• NSLeftMouseUpMask
• NSRightMouseDownMask
• NSRightMouseUpMask
• NSMouseMovedMask
• NSLeftMouseDraggedMask
• NSRightMouseDraggedMask
• NSMouseEnteredMask
• NSMouseExitedMask
• NSKeyDownMask
• NSKeyUpMask
• NSFlagsChangedMask
• NSPeriodicMask
• NSCursorUpdateMask
• NSAnyEventMask

This method returns an event mask built from the old flags. See also
setContinuous: .

setAction:

– (void)setAction:(SEL)aSelector

Does nothing. This method is overridden by NSActionCell and its
subclasses, which actually implement the target object and action method. It is
also overriden by NSBrowserCell to provide access to its NSBrowser ’s
action method. See also action , setTarget: .

1-126 OpenStep Programming Reference—September 1996

1

setAlignment:

– (void)setAlignment:(NSTextAlignment)mode

Sets the cell text alignment to mode. mode should be one of these constants:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See also alignment , setWraps: .

setBezeled:

– (void)setBezeled:(BOOL)flag

If flag is YES, the cell draws itself surrounded by a bezel; if NO, it doesn’t.
setBordered: and setBezeled: are mutually exclusive. See also
isBezeled , setBordered: .

setBordered:

– (void)setBordered:(BOOL)flag

If flag is YES, the cell draws itself surrounded by a one-pixel-wide black
frame; if NO, it doesn’t. setBordered: and setBezeled: are mutually
exclusive. See also isBordered , setBezeled: .

setCellAttribute:to:

– (void)setCellAttribute:(NSCellAttribute)aParameter to:(int)value

Sets the value of one of the cell’s parameters to value . You don’t normally use
this method, since these parameters can be set using specific methods such as
setEditable: . In this method, the parameters is identified by aParameter , a

NSCell 1-127

1

symbolic constant defined in the header file NSCell.h . The following table
lists these constants with the corresponding methods for setting and getting
the value of the related parameters:

Use of this method is discouraged as it could produce unpredictable results in
subclasses. It’s much safer to invoke the appropriate parameters-specific
method. See also cellAttribute: .

setContinuous:

– (void)setContinuous:(BOOL)flag

Determines whether a cell continuously sends its action message to the target
object when tracking. Normally, this method will set the continuous flag or a
mouse-dragged flag, depending on which setting is appropriate to the subclass
implementing it. In the base NSCell class, this method sets the continuous
flag. These settings usually have meaning only for NSActionCell and its
subclasses that implement the instance variables and methods that provide
target-action functionality. Some NSControl subclasses, specifically
NSMatrix , send a default action to a default target when an NSCell doesn’t
provide a target or action. See also isContinuous , sendActionOn: .

setDoubleValue:

– (void)setDoubleValue:(double)aDouble

Sets the cell contents to the string value representing the double-precision
floating-point number aDouble , ignoring the cell entry type. Does nothing if
the receiver isn’t a text cell. See also doubleValue , setFloatValue: ,
setIntValue: , setStringValue: , entryType , type .

Table 1-8 NSCell Attribute Constants

Parameter Constant Equivalent Methods

NSCellDisabled setEnabled:, isEnabled

NSCellHighlighted highlight:withFrame:inView:,
isHighlighted

NSCellState setState:, state

NSCellEditable setEditable:, isEditable

1-128 OpenStep Programming Reference—September 1996

1

setEditable:

– (void)setEditable:(BOOL)flag

If flag is YES, then the cell’s text is made both editable and selectable. If flag
is NO, and the text was not selectable before editing was last enabled, that is,
before this message was last sent with an argument of YES, then the text is
returned to not being selectable. See also isEditable , setSelectable: ,
editWithFrame:inView:editor:delegate:event: .

setEnabled:

– (void)setEnabled:(BOOL)flag

Sets the cell’s enabled status. A cell’s enabled status is used primarily in event
handling and display. It affects the behavior of methods for mouse tracking
and text editing, by allowing or disallowing changes to the cell within those
methods, and only allows the cell to highlight or set a cursor rectangle if it’s
enabled. Many cell attributes can still be altered programmatically
(setState: , for example, will still work). See also isEnabled .

setEntryType:

– (void)setEntryType:(int)aType

Sets the type of data the user can type into the cell. aType can be any of the
eight constants shown in the following table:

Table 1-9 Numeric Data Types for an NSCell

Constant Allowable Numeric String Value

NSAnyType No restrictions

NSIntType Integer values

NSPositiveIntType Positive integer values

NSFloatType Single-precision floating point values

NSPositiveFloatType Positive single-precision floating point values

NSDoubleType Double-precision floating point values

NSPositiveDoubleType Positive double-precision floating point values

NSCell 1-129

1

If the receiver isn’t a text cell, it’s converted to type NSTextCellType , in
which case its font is set to the user’s system font at 12.0 point, and its string
value is set to “Cell” (even for text cells that display numbers). The entry type
is checked by the isEntryAcceptable: method. That method is used by
NSControl s that contain editable text (such as NSMatrix and NSTextField)
to validate that what the user has typed is correct. If you want to have a
custom NSCell accept some specific type of data (other than those listed
above), override the isEntryAcceptable: method to check for the validity
of the data the user has entered. See also entryType , isEntryAcceptable: ,
setFloatingPointFormat:left:right: .

setFloatingPointFormat:left:right:

– (void)setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits right:(unsigned int)rightDigits

Sets whether floating-point numbers are autoranged, and sets the sizes of the
fields to the left and right of the decimal point. leftDigits specifies the
maximum number of digits to the left of the decimal point, and rightDigits
specifies the number of digits to the right (the fractional digit places will be
padded with zeros to fill this width). However, if a number is too large to fit its
integer part in leftDigits digits, as many places as are needed on the left are
effectively removed from rightDigits when the number is displayed.

If autoRange is YES, leftDigits and rightDigits are simply added to
form a maximum total field width for the cell (plus 1 for the decimal point).
The fractional part will be padded with zeros on the right to fill this width, or
truncated as much as possible (up to removing the decimal point and
displaying the number as an integer). The integer portion of a number is never
truncated—that is, it is displayed in full no matter what the field width limit is.
leftDigits must be between 0 and 10. rightDigits must be between 0 and
14. If leftDigits is 0, then the default printf() formatting applies. If
rightDigits is 0, then the decimal and the fractional part of the floating-
point number are truncated, that is, the floating-point number is printed as if it
were an integer. If the cell entry type isn’t already NSFloatType ,
NSPositiveFloatType , NSDoubleType , or NSPositiveDoubleType , it’s
set to NSFloatType . See also setEntryType: .

setFloatValue:

– (void)setFloatValue:(float)aFloat

1-130 OpenStep Programming Reference—September 1996

1

Sets the cell’s contents to the string value representing the single-precision
floating point number aFloat , ignoring the cell entry type. Does nothing if the
receiver isn’t a text cell. See also floatValue , setDoubleValue: ,
setIntValue: , setStringValue: , entryType , type .

setFont:

– (void)setFont:(NSFont *)fontObject

Sets the cont used to display text in the cell to fontObject . Does nothing if
the receiver isn’t a text cell. See also font .

setFormatter:

(void)setFormatter:(NSFormatter *)newFormatter

Sets the cells NSFormatter -derived object to newFormatter , replacing the
old formatter if one existed. This method is not part of the OpenStep
specification. See also formatter .

setImage:

– (void)setImage:(NSImage *)anImage

Sets the cell’s icon to anImage (an NSImage object with that name). anImage
is stored as the NSCell ’s contents, and the NSImage is stored as its support. If
the cell isn’t an image cell, it’s converted; if the cell was a text cell, the text
string is freed if necessary. If anImage is NULL or an empty string, or if an
image can’t be found for anImage , the cell has its image set to the standard
system bitmap “NSsquare16 ”. If you specify a name for which an image can’t
be found, no change is made. Your code can verify that the image was properly
changed by comparing the values returned by the type or image methods
before and after invoking setImage: . See also image , imageNamed:
(NSImage), initImageCell: .

setIntValue:

– (void)setIntValue:(int)anInt

NSCell 1-131

1

Sets the cell contents to the string value representing the integer anInt . Does
nothing if the receiver isn’t a text cell. This method ignores the entry type of
the cell. See also intValue , setDoubleValue: , setStringValue: , type ,
entryType .

setObjectValue:

(void)setObjectValue:(id <NSCopying>)obj

Sets the cell’s content object. This method is not part of the OpenStep
specification. See also objectValue .

setRepresentedObject:

– (void)setRepresentedObject:(id)anObject

Creates an association between the receiver and anObject. anObject will
be retained, released, archived, and unarchived whenever the receiver is. If
another cell is already associated with anObject , that association is broken,
and the receiver is associated with the object.

setScrollable:

– (void)setScrollable:(BOOL)flag

Sets whether the cell scrolls to follow typing while being edited. See also
isScrollable , editWithFrame:inView:editor:delegate:event: .

setSelectable:

– (void)setSelectable:(BOOL)flag

If flag is YES, then the cell’s text is made selectable but not editable. If
NO, then the text is static (neither editable nor selectable). To make text in a cell
both selectable and editable, send it a setEditable: message. See also
isSelectable , isEditable ,
editWithFrame:inView:editor:delegate:event: .

setStringValue:

– (void)setStringValue:(NSString *)aString

1-132 OpenStep Programming Reference—September 1996

1

Sets the cell’s value to a copy of aString . If the receiver isn’t a text cell, this
method converts it to that type, setting its font to the user’s system font at 12.0
points. If the receiver was an image cell, the NSImage for that image is not
freed; your code should retrieve it beforehand and free it after sending this
message. If floating point formatting has been set (with
setFloatingPointParameters:left:right:) and the cell entry type is a
floating point number type, then the string is tested to determine whether it
represents a floating point number; if so, the string is displayed according to
that floating point format. See also stringValue , setDoubleValue: ,
setIntValue: , setFloatingPointFormat:left:right: .

setState:

– (void)setState:(int)value

Sets the cell state to 0, if value is 0, and sets it to 1 otherwise. See also state .

setTag:

– (void)setTag:(int)anInt

Does nothing. This method is overridden by NSActionCell and its subclasses
to support NSControl s with multiple NSCell s (NSMatrix and NSForm).
Override this method to provide a way to identify NSCell s. See also tag ,
cellWithTag: (NSMatrix , NSMenu).

setTarget:

– (void)setTarget:(id)anObject

Does nothing. This method is one of several overridden by NSActionCell
and its subclasses to implement target/action functionality. The method
enables these subclasses to set their target objects. See also setAction: ,
target , action .

setType:

– (void)setType:(NSCellType)aType

Sets the cell’s type to aType . aType should be one of the following values:

• NSNullCellType

NSCell 1-133

1

• NSTextCellType
• NSImageCellType

If aType is NSTextCellType and the receiver isn’t currently a text cell, then
the font is set to the user’s system font in 12.0 point; its string value is set to
“Cell”. If aType is NSImageCellType and the receiver isn’t an image cell,
then the image is set to the default, “NSsquare16 ”. See also type ,
initImageCell: , initTextCell: , setImage: .

setUpFieldEditorAttributes:

– (NSText *)setUpFieldEditorAttributes:(NSText *)textObject

This method is invoked just before any drawing or editing occurs in the cell.
This method is intended to be overridden. If you do override it, you must
include this line first:

[super setUpFieldEditorAttributes:textObject];

If you don’t, you risk inheriting drawing attributes from the last cell that drew
any text. You should invoke only the setBackgroundColor: and
setTextColor: NSText instance methods. Don’t set any other parameters in
the NSText object. This method normally returns textObject . If you want to
substitute some other NSText object to draw with (but not edit, since editing
always uses the window’s field editor), you can return that object instead of
textObject , and it will be used for the draw that caused
setUpFieldEditorAttributes: to be invoked.

NSTextFieldCell , a subclass of NSActionCell , allows you to set the colors
without creating your own NSCell subclass. You only need to subclass
NSCell to control the color values if you don’t want all the functionality (and
instance variable usage) of an NSActionCell .

Note that most other text object attributes can be set with NSCell methods
(setFont: , setAlignment: , setWraps:), so you need only override this
method if you need to set the color values.

setWraps:

– (void)setWraps:(BOOL)flag

1-134 OpenStep Programming Reference—September 1996

1

Sets whether the cell’s text is word-wrapped. If flag is YES, text will be
wrapped to word breaks. If flag is NO, the text will be truncated. The default
is YES. This setting has effect only when displaying text, not when editing, and
only applies to cells whose alignment is NSLeftTextAlignment (centered
and right-aligned text always wraps to word breaks). See also
setAlignment: .

startTrackingAt:inView:

– (BOOL)startTrackingAt:(NSPoint)startPoint
inView:(NSView *)controlView

This method is invoked from
trackMouse:inRect:ofView:untilMouseUp: the first time the mouse
appears in the cell needing to be tracked. Override to provide implementation-
specific tracking behavior. This method should return YES if it’s okay to track
based on this starting point, and only if the cell is continuous; otherwise, it
should return NO. See also trackMouse:inRect:ofView:untilMouseUp: ,
continueTracking:at:inView: ,
stopTracking:at:inView:mouseIsUp: , mouseDownFlags .

state

– (int)state

Returns the cell state (0 or 1). The default is 0. See also setState: .

stopTracking:at:inView:mouseIsUp:

– (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint
mouseIsUp:(BOOL)flag

Allows the cell to update itself to end tracking, based on lastPoint and
stopPoint . Invoked from trackMouse:inRect:ofView:untilMouseUp:
when the mouse has left the cell bound, or the mouse button has gone up.
flag is YES if the mouse button went up to cause this method to be invoked.
The default behavior is to do nothing. This method is often overridden to
provide more sophisticated tracking behavior. See also
trackMouse:inRect:ofView:untilMouseUp: ,
continueTracking:at:inView: .

NSCell 1-135

1

stringValue

– (NSString *)stringValue

Returns the cell’s value as a string. See also setStringValue: ,
doubleValue , floatValue , intValue .

tag

– (int)tag

Returns –1. This method is overridden by NSActionCell and its subclasses to
support multiple-cell controls (NSMatrix and NSForm). Override this method
if you want to use tags to identifiy cells. See also setTag: , cellWithTag:
(NSMatrix , NSMenu).

takeDoubleValueFrom:

– (void)takeDoubleValueFrom:(id)sender

Sets the cell’s double-precision floating point value to the value returned by
sender ’s doubleValue method. sender must be of a class that implements
the doubleValue method. This method can be used in action messages
between cells. It permits one cell (the sender) to affect the value of another cell
(the receiver). For example, an NSTextFieldCell can be made the target of
an NSSliderCell , which will send it a takeDoubleValueFrom: action
message. The NSTextFieldCell will get the return value of the
NSSliderCell ’s doubleValue method, turn it into a text string, and display
it. See also takeDoubleValueFrom: (NSControl), setDoubleValue: .

takeFloatValueFrom:

– (void)takeFloatValueFrom:(id)sender

Sets the cell’s single-precision floating-point value to the value returned by
sender ’s floatValue method. sender must be of a class that implements
the floatValue method. This method is similar to takeDoubleValueFrom:
except that it works with floats rather than doubles. See also
takeFloatValueFrom: (NSControl).

1-136 OpenStep Programming Reference—September 1996

1

takeIntValueFrom:

– (void)takeIntValueFrom:(id)sender

Sets the cell’s integer value to the value returned by sender ’s intValue
method. sender must be of a class that implements the intValue method.
This method is similar to takeDoubleValueFrom: except that it works with
ints rather than doubles. See also takeIntValueFrom: (NSControl),
setIntValue: .

takeObjectValueFrom:

(void)takeObjectValueFrom:(id)sender

Sets the cell’s content object to the content object of sender . This method is not
part of the OpenStep specification.

takeStringValueFrom:

– (void)takeStringValueFrom:(id)sender

Sets the cell’s string value to the value returned by sender ’s stringValue
method. sender must be of a class that implements the stringValue
method. This method is similar to takeDoubleValueFrom: except that it
works with strings rather than doubles. See also takeStringValueFrom:
(NSControl), setStringValue: .

target

– (id)target

Returns nil . This method is one of those overridden by NSActionCell and
its subclasses to implement target-action functionality, in this case to return the
target object. See also setTarget: , action , NSActionCell .

titleRectForBounds:

– (NSRect)titleRectForBounds:(NSRect)theRect

Returns the rectangle where the cell’s title is drawn.

NSCell 1-137

1

trackMouse:inRect:ofView:untilMouseUp:

– (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame
ofView:(NSView *)controlView untilMouseUp:(BOOL)flag

Tracks the mouse, returning YES if the mouse goes up while in cellFrame .
This method is usually invoked by an NSControl ’s mouseDown: method,
which passes the mouse-down event in theEvent . If flag is YES, the method
keeps tracking until the mouse goes up; otherwise it tracks until the mouse
leaves cellFrame . This method is generally not overridden since the default
implementation invokes other cell methods that can be overridden to handle
specific events in a dragging session.

This method first invokes startTrackingAt:inView: . If that method
returns YES, then as mouse-dragged events are intercepted,
continueTracking:at:inView: is invoked, and, finally, when the mouse
leaves the bounds or if the mouse button goes up,
stopTracking:at:inView:mouseIsUp: is invoked. If cellFrame is NULL,
then the bounds are considered infinitely large. You usually override one or
more of these methods to respond to specific mouse events.

If the other tracking methods are insufficient for your requirements, override
this method directly. This method’s responsibility is to invoke controlView ’s
sendAction:to: method when appropriate (before, during, or after tracking)
and to return YES if and only if the mouse goes up within the cell during
tracking. If the cell’s action is sent on a mouse-down event, then
startTrackingAt:inView: is invoked before the action is sent, and the
mouse is tracked until it goes up or out of bounds. If the cell sends its action
periodically, then the action is sent periodically to the target even if the mouse
isn’t moving (although continueTracking:at:inView: is only invoked
when the mouse changes position). If the cell’s action is sent on a
mouse-dragged event, then continueTracking:at:inView: is invoked
before the action is sent. See also continueTracking:at:inView: ,
stopTracking:at:inView:mouseIsUp: .

type

– (NSCellType)type

Returns the cell’s type which can be one of the following:

• NSNullCellType
• NSTextCellType

1-138 OpenStep Programming Reference—September 1996

1

• NSImageCellType

See also setType: .

wraps

– (BOOL)wraps

Returns YES if the cell’s text is word-wrapped, and returns NO otherwise.

NSClipView

Class Description

An NSClipView object lets you scroll a document that may be larger than the
NSClipView ’s frame rectangle, clipping the visible portion of the document to
the frame. You don’t normally use the NSClipView class directly; it’s provided
primarily as the scrolling machinery for the NSScrollView class. However,
you might use the NSClipView class to implement a class similar to
NSScrollView . The document, which must be an NSView, is called the
NSClipView ’s document view. An NSClipView ’s document view, which is set
through the setDocumentView: method, is the NSClipView ’s only subview.
You can set the cursor that’s displayed when the mouse enters an
NSClipView ’s frame (in other words, when it’s poised over the document
view) through the setDocumentCursor: method.

When the NSClipView is instructed to scroll its document view, it normally
copies that portion of the document view that’s visible both before and after
the scrolling, so that this part won’t need to be redrawn from scratch.
However, you can turn off this behavior and force the entire visible area to be
redrawn by sending the NSClipView a setCopiesOnScroll:NO message.

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder),
NSObject (NSObject)

Declared In: AppKit/NSClipView.h

NSClipView 1-139

1

After scrolling, the NSClipView sends itself a setNeedsDisplayInRect:
message to indicate that some part of the document view should be displayed
again. The argument to this message is the freshly exposed area of the
document view unless the NSClipView received a setCopiesOnScroll:NO
message, in which case the argument is the entire visible area.

The NSClipView sends its superview (usually an NSScrollView) a
reflectScrolledClipView: message whenever the relationship between
the NSClipView and the document view has changed. This allows the
superview to update itself to reflect the change—for example, the
NSScrollView class uses this method to change the position of its scrollers
when the user causes the document to autoscroll.

Note – Do not send the addSubview: ,
addSubview:positioned:relativeTo: , and replaceSubview:with:
methods, inherited from NSView, to an NSClipView object. Use
NSClipView ’s setDocumentView: method instead.

1-140 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

autoscroll:

– (BOOL)autoscroll:(NSEvent *)theEvent

Performs automatic scrolling of the document. Returns YES if the scrolling
occurs and NO otherwise. You never invoke this method directly; instead, the
NSClipView ’s document view should send autoscroll: to itself while
inside a modal event loop initiated by a mouse-down event when the mouse is
dragged outside the NSClipView ’s frame. The NSView class implements
autoscroll: to forward the message to the NSView’s superview; the
message forwarded to the NSClipView . See also autoscroll: (NSView).

backgroundColor

– (NSColor *)backgroundColor

Returns the clip view’s background color. If no background color has been set,
the background color of the clip view’s window is returned. See also
setBackgroundColor: , backgroundColor (NSWindow), NSColor .

Activity Class Method

Managing the document view – documentRect
– documentView
– documentVisibleRect
– setDocumentView:

Setting the cursor – documentCursor
– setDocumentCursor:

Setting the background color – backgroundColor
– setBackgroundColor:

Scrolling – autoscroll:
– constrainScrollPoint:
– copiesOnScroll
– scrollToPoint:
– setCopiesOnScroll:

Responding to a changed frame – viewFrameChanged:

NSClipView 1-141

1

constrainScrollPoint:

– (NSPoint)constrainScrollPoint:(NSPoint)newOrigin

Ensures that the document view is not scrolled to an undesirable position. This
method is invoked by the private method that all scrolling messages go
through before it invokes scrollToPoint: . The default implementation
keeps as much of the document view visible as possible. You may want to
override this method to provide alternate constraining behavior. newOrigin is
the desired new origin of the clip view’s bounds rectangle, given in
NSClipView ’s coordinate system. See also scrollToPoint: .

copiesOnScroll

– (BOOL)copiesOnScroll

Indicates whether the visible portions of the document view are copied when
scrolling occurs. If not, the document view is responsible for redrawing the
entire visible portion. The default is YES.

documentCursor

–(NSCursor *)documentCursor

Returns the cursor for the document view.

documentRect

– (NSRect)documentRect

Returns the smallest rectangle that encloses both the document view’s frame
and the clip view’s frame. The origin of the rectangle is always set to that of
the document view’s frame. The document rectangle is used in conjunction
with the clip view’s bounds rectangle to determine values for any indicators of
relative position and size between the clip view and the document view. The
NSScrollView uses these rectangles to set the size and position of the
NSScroller s’ knobs. See also reflectScrolledClipView:
(NSScrollView).

documentView

– (id)documentView

1-142 OpenStep Programming Reference—September 1996

1

Returns the clip view’s document view. See also setDocumentView: .

documentVisibleRect

– (NSRect)documentVisibleRect

Returns the document view portion that’s visible within the clip view. The
visible rectangle is given in the document view’s coordinate system. Note that
this rectangle doesn’t reflect the effects of any clipping that might occur above
the clip view itself. To get the portion of the document view that’s guaranteed
to be visible, send it a visibleRect message. See also visibleRect
(NSView).

scrollToPoint:

– (void)scrollToPoint:(NSPoint)newOrigin

Performs scrolling of the document view. This method sets the clip view’s
bounds rectangle origin to newOrigin . Then it copies as much of the
previously visible document as possible, unless it received a
setCopiesOnScroll:NO message. It then sends its document view a message
to either display or invalidate the newly exposed region(s) of the clip view. The
scrollToPoint: method doesn’t send a reflectScrolledClipView:
(NSScrollView) message to its superview; that message is sent by the method
that invokes scrollToPoint: . Note also that while the clip view provides
clipping to its frame, it doesn’t clip to the update rectangles.

This method is used by a private method through which all scrolling passes,
and is invoked if the clip view’s superview does not implement the
scrollClipView:toPoint: (NSView) method. If the clip view’s superview
does implement scrollClipView:toPoint: , that method should invoke
scrollToPoint: . This mechanism is provided so that the clip view’s
superview can coordinate scrolling of multiple tiled clip views. (Note that
NSScrollView doesn’t implement the scrollClipView:toPoint: method.)

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)color

Sets the clip view’s background color. This color is used to fill the area inside
the clip view that’s not covered by opaque portions of the document view. See
also backgroundColor .

NSClipView 1-143

1

setCopiesOnScroll:

– (void)setCopiesOnScroll:(BOOL)flag

Determines whether visible portions of the document view will be copied
when scrolling occurs. If flag is YES, scrolling will copy as much of the
document as possible to scroll the NSView, allowing the document view to
update only the newly exposed portions of itself. If flag is NO, the document
view is responsible for redrawing its entire visible portion. This should rarely
be changed from the default value (YES).

setDocumentCursor:

– (void)setDocumentCursor:(NSCursor *)anObject

Sets the cursor for the document view. See also documentCursor .

setDocumentView:

– (void)setDocumentView:(NSView *)aView

Makes aView the clip view’s document view. An clip view can have only one
document view; invoking this method removes the previous document view, if
any. The origin of the document view’s frame is initially set to be coincident
with the origin of the clip view’s bounds. If the clip view is contained within
an NSScrollView , you should send the NSScrollView the
setDocumentView: message and have the NSScrollView pass this message
on to the clip view. See also setDocumentView: (NSScrollView).

viewFrameChanged:

– (void)viewFrameChanged:(NSNotification *)notification

Sends notification that the document view’s frame has changed. See also
NSNotification .

1-144 OpenStep Programming Reference—September 1996

1

NSCoder Additions

Class Description

The Application Kit adds this method to the Foundation Kit’s NSCoder class.
This method becomes part of the class for all applications that use the
Application Kit, but not for applications that don’t use the Application Kit.

Instance Methods

decodeNXColor

– (NSColor *)decodeNXColor

Returns an autoreleased NSColor object equivalent to the archived NXColor
structure.

Note – This method is needed to read colors from archives that were created by
pre-OpenStep versions of NeXTSTEP.

NSColor

An NSColor object represents a color. The color can be a grayscale value and
can include alpha (transparency) information. By sending a set message to an
NSColor object, you set the color for the current PostScript drawing context.
This causes subsequently drawn graphics to have the color represented by the
NSColor instance.

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSColor.h

Inherits From: NSObject

Conforms To: NSCoding, NSCopying,
NSObject (NSObject)

Declared In: AppKit/NSColor.h

NSColor 1-145

1

A color is defined in some particular color space. A color space consists of a set
of dimensions—such as red, green, and blue in the case of RGB space. Each
point in the space represents a unique color, and the point’s location along each
dimension is called a component. An individual color is usually specified by the
numeric values of its components, which range from 0.0 to 1.0. For instance, a
pure red is specified in RGB space by the component values 1.0, 0.0, and 0.0.

Some color spaces include an alpha component, which defines the color’s
transparency. This component tells Display PostScript how to blend colors. An
alpha value of 1.0 means completely opaque, and 0.0 means completely
transparent. The alpha component is ignored when the color is used on a
device that doesn’t support alpha, such as a printer.

There are three kinds of color space in OpenStep:

• Device-dependent. This means that a given color might not look the same on
different displays and printers.

• Device-independent, also known as calibrated. With this sort of color space, a
given color should look the same on all devices.

• Named. The “named color space” has components that aren’t numeric
values, but simply names in various catalogs of colors. Named colors come
with lookup tables that provide the ability to generate the correct color on a
given device.

OpenStep includes six different color spaces, referred to by these enumeration
constants:

Table 1-10 OpenStep Color Spaces

Enumeration Constant Color Components

NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha
components

NSDeviceWhiteColorSpace White and alpha components

NSDeviceRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha
components

1-146 OpenStep Programming Reference—September 1996

1

Color spaces whose names start with “NSDevice ” are device-dependent; those
with “NSCalibrated ” are device-independent.

Note – It's illegal to ask a color for components that are not defined for its
colorspace (for example, you cannot ask a CMYK color for its RGB values).

There’s usually no need to retrieve the individual components of a color,
however when needed, you can either retrieve a set of components using such
methods as getRed:green:blue:alpha: , or an individual component
(using such methods as redComponent). Remember, however, it’s illegal to
ask an NSColor for components that aren’t defined for its color space. You can
identify the color space by sending a colorSpaceName method to the
NSColor . If you need to ask an NSColor for components that aren’t in its color
space (for instance, you need to know the RGB components of a color you’ve
gotten from the color panel), first convert the color to the appropriate color
space using the colorUsingColorSpaceName: method. For example:

NSColor *rgbColor =
[someColor colorUsingColorSpaceName:NSCalibratedRGBColorSpace];

Then you can retrieve the needed components:

brightness = [rgbColor brightnessComponent];
hue = [rgbColor hueComponent];
saturation = [rgbColor saturationComponent];
alpha = [rgbColor alphaComponent];

If the color is already in the specified color space, you get the same color back;
otherwise, you get a conversion that’s usually lossy or that’s correct only for
the current device. You might also get back nil if the specified conversion
can’t be done.

NSCalibratedWhiteColorSpace White and alpha components

NSCalibratedRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha
components

NSNamedColorSpace Catalog name and color name components

Table 1-10 OpenStep Color Spaces

Enumeration Constant Color Components

NSColor 1-147

1

NSColor subclasses need to implement the colorSpaceName and set
methods, as well as the methods that return the components for that color
space and the methods in the NSCoding protocol. Some other methods—such
as colorWithAlphaComponent: , isEqual: , and
colorUsingColorSpaceName:device: —may also be implemented if they
make sense for the color space. Mutable subclasses (if any) should additionally
implement copyWithZone: to provide a true copy.

1-148 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Creating anNSColor
from component values

+ colorWithCalibratedHue:saturation:brightness: alpha:
+ colorWithCalibratedRed:green:blue:alpha:
+ colorWithCalibratedWhite:alpha:
+ colorWithCatalogName:colorName:
+ colorWithDeviceCyan:magenta:yellow: black:alpha:
+ colorWithDeviceHue:saturation:brightness: alpha:
+ colorWithDeviceRed:green:blue:alpha:
+ colorWithDeviceWhite:alpha:

Creating an NSColor
with preset components

+ blackColor
+ blueColor
+ brownColor
+ clearColor
+ cyanColor
+ darkGrayColor
+ grayColor
+ greenColor
+ lightGrayColor
+ magentaColor
+ orangeColor
+ purpleColor
+ redColor
+ whiteColor
+ yellowColor

Ignoring alpha
components

+ ignoresAlpha
+ setIgnoresAlpha:

Retrieving a set of
components

– getCyan:magenta:yellow:black:alpha:
– getHue:saturation:brightness:alpha:
– getRed:green:blue:alpha:
– getWhite:alpha:

NSColor 1-149

1

Class Methods

blackColor

+ (NSColor *)blackColor

Returns a color in NSCalibratedWhiteColorSpace whose grayscale value is
0.0 and whose alpha value is 1.0.

blueColor

+ (NSColor *)blueColor

Retrieving individual
components

– alphaComponent
– blackComponent
– blueComponent
– brightnessComponent
– catalogNameComponent
– colorNameComponent
– cyanComponent
– greenComponent
– hueComponent
– localizedCatalogNameComponent
– localizedColorNameComponent
– magentaComponent
– redComponent
– saturationComponent
– whiteComponent
– yellowComponent

Converting to another
color space

– colorSpaceName
– colorUsingColorSpaceName:
– colorUsingColorSpaceName:device:

Changing the color – blendedColorWithFraction:ofColor:
– colorWithAlphaComponent:

Copying and pasting + colorFromPasteboard:
– writeToPasteboard:

Drawing – drawSwatchInRect:
– set

Activity Class Method

1-150 OpenStep Programming Reference—September 1996

1

Returns a color in NSCalibratedRGBColorSpace whose RGB value is 0.0,
0.0, 1.0 and whose alpha value is 1.0.

brownColor

+ (NSColor *)brownColor

Returns a color in NSCalibratedRGBColorSpace whose RGB value is 0.6,
0.4, 0.2 and whose alpha value is 1.0.

clearColor

+ (NSColor *)clearColor

Returns a color in NSCalibratedWhiteColorSpace whose grayscale and
alpha values are both 0.0.

colorFromPasteboard:

+ (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard

Returns the color currently on the pasteboard, or nil if the pasteboard doesn’t
contain color data. The returned color’s alpha component is set to 1.0 if
ignoresAlpha returns YES.

colorWithCalibratedHue:saturation:brightness:
alpha:

+ (NSColor *)colorWithCalibratedHue:(float)hue
saturation:(float)saturation brightness:(float)brightness
alpha:(float)alpha

Creates and returns a new color whose color space is
NSCalibratedRGBColorSpace , whose opacity value is alpha , and whose
components in HSB space would be hue , saturation , and brightness . All
values are legal, but values less than 0.0 are set to 0.0, and values greater than
1.0 are set to 1.0.

colorWithCalibratedRed:green:blue:alpha:

+ (NSColor *)colorWithCalibratedRed:(float)red green:(float)green
blue:(float)blue alpha:(float)alpha

NSColor 1-151

1

Creates and returns a new color whose color space is
NSCalibratedRGBColorSpace , whose opacity value is alpha , and whose
RGB components are red , green , and blue . All values are legal, but values
less than 0.0 are set to 0.0, and values greater than 1.0 are set to 1.0.

colorWithCalibratedWhite:alpha:

+ (NSColor *)colorWithCalibratedWhite:(float)white
alpha:(float)alpha

Creates and returns a new color whose color space is
NSCalibratedWhiteColorSpace , whose opacity value is alpha , and whose
grayscale value is white . All values are legal, but values less than 0.0 are set to
0.0, and values greater than 1.0 are set to 1.0.

colorWithCatalogName:colorName:

+ (NSColor *)colorWithCatalogName:(NSString *)listName
colorName:(NSString *)colorName

Creates and returns a new NSColor whose color space is
NSNamedColorSpace , by finding the color named colorName in the catalog
named listName (for example Pantone).

colorWithDeviceCyan:magenta:yellow:
black:alpha:

+ (NSColor *)colorWithDeviceCyan:(float)cyan magenta:(float)magenta
yellow:(float)yellow black:(float)black alpha:(float)alpha

Creates and returns a new NSColor whose color space is
NSDeviceCMYKColorSpace , whose opacity value is alpha , and whose
CMYK components are cyan , magenta , yellow , and black . All values are
legal, but values less than 0.0 are set to 0.0, and values greater than 1.0 are set
to 1.0. This color space corresponds to the setcmykcolor PostScript operator.

1-152 OpenStep Programming Reference—September 1996

1

colorWithDeviceHue:saturation:brightness:
alpha:

+ (NSColor *)colorWithDeviceHue:(float)hue
saturation:(float)saturation
brightness:(float)brightness alpha:(float)alpha

Creates and returns a new NSColor whose color space is
NSDeviceRGBColorSpace , whose opacity value is alpha , and whose
components in HSB space would be hue , saturation , and brightness . All
values are legal, but values less than 0.0 are set to 0.0, and values greater than
1.0 are set to 1.0. This color space corresponds to the sethsbcolor PostScript
operator.

colorWithDeviceRed:green:blue:alpha:

+ (NSColor *)colorWithDeviceRed:(float)red green:(float)green
blue:(float)blue alpha:(float)alpha

Creates and returns a new NSColor whose color space is
NSDeviceRGBColorSpace , whose opacity value is alpha , and whose RGB
components are red , green , and blue . All values are legal, but values less
than 0.0 are set to 0.0, and values greater than 1.0 are set to 1.0. This color space
corresponds to the setrgbcolor PostScript operator.

colorWithDeviceWhite:alpha:

+ (NSColor *)colorWithDeviceWhite:(float)white alpha:(float)alpha

Creates and returns a new NSColor whose color space is
NSDeviceWhiteColorSpace , whose opacity value is alpha , and whose
grayscale value is white . All values are legal, but values less than 0.0 are set to
0.0, and values greater than 1.0 are set to 1.0. This color space corresponds to
the setgray PostScript operator.

cyanColor

+ (NSColor *)cyanColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
0.0, 1.0, 1.0 and whose alpha value is 1.0.

NSColor 1-153

1

darkGrayColor

+ (NSColor *)darkGrayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale
value is 1/3 and whose alpha value is 1.0. See also grayColor ,
lightGrayColor .

grayColor

+ (NSColor *)grayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale
value is 0.5 and whose alpha value is 1.0. See also lightGrayColor ,
darkGrayColor .

greenColor

+ (NSColor *)greenColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
0.0, 1.0, 0.0 and whose alpha value is 1.0.

ignoresAlpha

+ (BOOL)ignoresAlpha

Returns YES (the default) if the application hides the color panel’s opacity
slider and sets imported colors’ alpha values to 1.0. See also
setIgnoresAlpha: .

lightGrayColor

+ (NSColor *)lightGrayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale
value is 2/3 and whose alpha value is 1.0. See also darkGrayColor .

magentaColor

+ (NSColor *)magentaColor

1-154 OpenStep Programming Reference—September 1996

1

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
1.0, 0.0, 1.0 and whose alpha value is 1.0.

orangeColor

+ (NSColor *)orangeColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
1.0, 0.5, 0.0 and whose alpha value is 1.0.

purpleColor

+ (NSColor *)purpleColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
0.5, 0.0, 0.5 and whose alpha value is 1.0.

redColor

+ (NSColor *)redColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
1.0, 0.0, 0.0 and whose alpha value is 1.0.

setIgnoresAlpha:

+ (void)setIgnoresAlpha:(BOOL)flag

If flag is YES, no opacity slider is displayed in the color panel, and colors
dragged in or pasted have their alpha values set to 1.0. See also
ignoresAlpha .

whiteColor

+ (NSColor *)whiteColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale
and alpha values are both 1.0.

yellowColor

+ (NSColor *)yellowColor

NSColor 1-155

1

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is
1.0, 1.0, 0.0 and whose alpha value is 1.0.

Instance Methods

alphaComponent

– (float)alphaComponent

Returns the alpha (opacity) component (1.0 by default).

blackComponent

– (float)blackComponent

Returns the black component. It’s an error if the receiver isn’t a CMYK color.

blendedColorWithFraction:ofColor:

– (NSColor *)blendedColorWithFraction:(float)fraction
ofColor:(NSColor *)aColor

Returns a newly created NSColor in NSCalibratedRGBColorSpace whose
component values are a weighted sum of the receiver’s and aColor ’s. The
method converts aColor and a copy of the receiver to RGB, and then sets each
component of the returned color to fraction of aColor ’s value plus 1 –
fraction of the receiver’s. If the colors can’t be converted to
NSCalibratedRGBColorSpace , nil is returned.

blueComponent

– (float)blueComponent

Returns the blue component. It’s an error if the receiver isn’t an RGB color.

brightnessComponent

– (float)brightnessComponent

Returns the brightness component of the HSB color equivalent to the receiver.
It’s an error if the receiver isn’t an RGB color.

1-156 OpenStep Programming Reference—September 1996

1

catalogNameComponent

– (NSString *)catalogNameComponent

Returns the name of the catalog containing this color, or nil if the receiver’s
color space isn’t NSNamedColorSpace .

colorNameComponent

– (NSString *)colorNameComponent

Returns the name of this color, or nil if the receiver’s color space isn’t
NSNamedColorSpace .

colorSpaceName

– (NSString *)colorSpaceName

Returns the name of the NSColor ’s color space.

colorUsingColorSpaceName:

– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace

Returns a newly created NSColor whose color is the same as the receiver’s,
except that the new NSColor is in the color space named colorSpace . This
method calls colorUsingColorSpaceName:device: with the current
device, indicating that the color is appropriate for the current device (the
current window if drawing, or the current printer if printing). See the Class
Description for an example of using this method.

colorUsingColorSpaceName:device:

– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace
device:(NSDictionary *)deviceDescription

Returns a newly created NSColor whose color is the same as the receiver’s,
except that the new NSColor is in the color space named colorSpace and is
specific to the device described by deviceDescription . If
deviceDescription is nil , then current device is used (as obtained from the
currently focused view’s window, or if printing, the current printer). If
colorSpace is nil , then the most appropriate color space is used.

NSColor 1-157

1

colorWithAlphaComponent:

– (NSColor *)colorWithAlphaComponent:(float)alpha

Returns a newly created NSColor that has the same color space and
component values as the receiver, except that its alpha component is alpha . If
the receiver’s color space doesn’t include an alpha component, the receiver is
returned.

cyanComponent

– (float)cyanComponent

Returns the cyan component. It’s an error if the receiver isn’t a CMYK color.

drawSwatchInRect:

– (void)drawSwatchInRect:(NSRect)rect

Draws the current color in the rectangle rect . Subclasses adorn the rectangle
in some manner to indicate the type of color. This method is invoked by color
wells, swatches, and other user-interface objects that need to display colors.

getCyan:magenta:yellow:black:alpha:

– (void)getCyan:(float *)cyan magenta:(float *)magenta
yellow:(float *)yellow black:(float *)black
alpha:(float *)alpha

Returns the CMYK and alpha values in the respective arguments. If NULL is
passed in as an argument, the method doesn’t set that value. It is an error to
send this message to a receiver that isn’t a CMYK color.

getHue:saturation:brightness:alpha:

– (void)getHue:(float *)hue saturation:(float *)saturation
brightness:(float *)brightness alpha:(float *)alpha

Returns the HSB and alpha values in the respective arguments. If NULL is
passed in as an argument, the method doesn’t set that value. It is an error to
send this message to a receiver that isn’t a CMYK color.

1-158 OpenStep Programming Reference—September 1996

1

getRed:green:blue:alpha:

– (void)getRed:(float *)red green:(float *)green blue:(float *)blue
alpha:(float *)alpha

Returns the RGB and alpha values in the respective arguments. If NULL is
passed in as an argument, the method doesn’t set that value. It is an error to
send this message to a receiver that isn’t an RGB color.

getWhite:alpha:

– (void)getWhite:(float *)white alpha:(float *)alpha

Returns the grayscale and alpha values in the respective arguments. If NULL is
passed in as an argument, the method doesn’t set that value. It is an error to
send this message to a receiver that isn’t in
NSCalibratedWhiteColorSpace .

greenComponent

– (float)greenComponent

Returns the green component. It is an error to send this message to a receiver
that isn’t an RGB color.

hueComponent

– (float)hueComponent

Returns the hue component of the HSB color equivalent to the receiver. It is an
error to send this message to a receiver that isn’t an RGB color.

localizedCatalogNameComponent

– (NSString *)localizedCatalogNameComponent

Similar to catalogNameComponent , but returns a localized string.

localizedColorNameComponent

– (NSString *)localizedColorNameComponent

Similar to colorNameComponent , but returns a localized string.

NSColor 1-159

1

magentaComponent

– (float)magentaComponent

Returns the magenta component. It is an error to send this message to a
receiver that isn’t a CYMK color.

redComponent

– (float)redComponent

Returns the red component. It is an error to send this message to a receiver that
isn’t an RGB color.

saturationComponent

– (float)saturationComponent

Returns the saturation component of the HSB color equivalent to the receiver.
It is an error to send this message to a receiver that isn’t an RGB color.

set

– (void)set

Sets the color of subsequent PostScript drawing to the color that the receiver
represents. If the application is drawing to the screen rather than printing, this
method also sets the current drawing context’s alpha value to the value
returned by alphaComponent . This method should be implemented by
subclasses.

whiteComponent

– (float)whiteComponent

Returns the white component. It is an error to send this message to a receiver
that isn’t a grayscale color.

writeToPasteboard:

– (void)writeToPasteboard:(NSPasteboard *)pasteBoard

1-160 OpenStep Programming Reference—September 1996

1

Writes the receiver’s data to the pasteboard unless the pasteboard doesn’t
support color data, in which case the method does nothing.

yellowComponent

– (float)yellowComponent

Returns the yellow component. It is an error to send this message to a receiver
that isn’t a CYMK color.

NSColorList

Class Description

Instances of NSColorList are used to manage named lists of NSColor s.
NSColorPanel ’s list-mode color picker uses instances of NSColorList to
represent any lists of colors that come with the system, as well as any lists
created by the user. An application can use NSColorList to manage
document-specific color lists, which may be added to an application’s
NSColorPanel using its attachColorList: method.

An NSColorList is similar to a dictionary object: An NSColor is added to,
looked up in, and removed from the list by specifying its key, which is an
NSString . In addition, colors can be inserted at specified positions in the list.
The list itself has a name, specified when you create the object using either
initWithName: or initWithName:fromFile: .

An NSColorList saves and retrieves its colors from files with the extension
.clr in directories defined by a standard search path. To access all the color
lists in the standard search path, use the availableColorLists method; this
returns an array of NSColorList s, from which you can retrieve the individual
color lists by name.

NSColorList reads color list files in several different formats; it saves color
lists using the archiver API.

Inherits From: NSObject

Conforms To: NSCoding, NSObject (NSObject)

Declared In: AppKit/NSColorList.h

NSColorList 1-161

1

Method Types

Class Methods

availableColorLists

+ (NSArray *)availableColorLists

Returns an array of all color lists found in the standard color list directories.
Color lists created at run time aren’t included in this list unless they’re saved
into one of the standard color list directories.

colorListNamed:

+ (NSColorList *)colorListNamed:(NSString *)name

Searches the array that’s returned by availableColorLists and returns the
color list name, or nil if no such color list exists. name must not include the
.clr suffix.

Activity Class Method

Initializing an NSColorList – initWithName:
– initWithName:fromFile:

Getting all color lists + availableColorLists

Getting a color list by name + colorListNamed:
– name

Managing colors by key – allKeys
– colorWithKey:
– insertColor:key:atIndex:
– removeColorWithKey:
– setColor:forKey:

Editing – isEditable

Writing and removing files – writeToFile:
– removeFile

1-162 OpenStep Programming Reference—September 1996

1

Instance Methods

allKeys

– (NSArray *)allKeys

Returns an array of NSString objects that contains all the keys by which the
NSColor s are stored in the color list. The length of this array equals the
number of colors, and its contents are arranged according to the ordering
specified when the colors were inserted.

colorWithKey:

– (NSColor *)colorWithKey:(NSString *)key

Returns the color associated with key , or nil if there is none.

initWithName:

– (id)initWithName:(NSString *)name

Initializes and returns the receiver, registering it under the specified name if the
name isn’t in use already.

initWithName:fromFile:

– (id)initWithName:(NSString *)name fromFile:(NSString *)path

Initializes and returns the receiver, registering it under the specified name if the
name isn’t in use already. path should be the full path to the file for the color
list; name should be the name of the file for the color list minus the .clr
extension.

insertColor:key:atIndex:

– (void)insertColor:(NSColor *)color key:(NSString *)key
atIndex:(unsigned)location

Inserts color at the specified location in the list, which is numbered starting
with 0. If the list already contains a color with the same key at a different
location, it’s removed from the old location. This method posts the
NSColorListDidChangeNotification notification to the default

NSColorList 1-163

1

notification center. Raises NSColorListNotEditableException if the color
list is not editable. This method posts the
NSColorListDidChangeNotification notification to the default
notification center.

isEditable

– (BOOL)isEditable

Returns YES if the color list can be modified. This depends on the source of the
list: If it came from a write-protected file, this method returns NO.

name

– (NSString *)name

Returns the color list name.

removeColorWithKey:

– (void)removeColorWithKey:(NSString *)key

Removes the color associated with key from the list. This method does nothing
if the list doesn’t contain the key. This method posts the
NSColorListDidChangeNotification notification to the default
notification center. Raises NSColorListNotEditableException if the color
list is not editable.

removeFile

– (void)removeFile

Deletes the file from which the list was created unless the user doesn’t own the
color list. The receiver is removed from the list of available colors, but isn’t
released.

setColor:forKey:

– (void)setColor:(NSColor *)aColor forKey:(NSString *)key

1-164 OpenStep Programming Reference—September 1996

1

Associates the specified color with the key key . If the list already contains key ,
this method sets the corresponding color to aColor ; otherwise, it inserts
aColor at the end of the list.

writeToFile:

– (BOOL)writeToFile:(NSString *)path

If path is a directory, saves the color list in a file named listname.clr
(where listname is the name with which the color list was initialized). If
path includes a file name, this method saves the file under that name. If path
is nil , this method saves the file as listname.clr in the standard location.
Returns YES upon success.

NSColorPanel

Class Description

NSColorPanel provides a standard user interface for selecting color in an
application. It provides a number of standard color selection modes, and, with
the NSColorPickingDefault and NSColorPickingCustom protocols,
allows an application to add its own color selection modes. It allows the user
to save swatches containing frequently used colors. Once set, these swatches
are displayed by NSColorPanel in any application where it is used, giving the
user color consistency between applications. NSColorPanel enables users to
capture a color anywhere on the screen for use in the active application, and
allows dragging colors from itself into views in an application.
NSColorPanel ’s action message is sent to the target object when the user
changes the current color.

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorPanel.h

NSColorPanel 1-165

1

An application has only one instance of NSColorPanel , the shared instance.
Invoking the sharedColorPanel: method returns the shared instance of
NSColorPanel , instantiating it if necessary. You can also initialize an
NSColorPanel for your application by invoking NSApplication ’s
orderFrontColorPanel method.

You can put NSColorPanel in any application created with Interface Builder
by adding the “Colors...” item from the Menu palette to the application’s
menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for
NSColorPanel . This mask is set before you initialize a new instance of
NSColorPanel . NSColorPanelAllModesMask represents the logical OR of
the other color mask constants: it causes the NSColorPanel to display all
standard color pickers. When initializing a new instance of NSColorPanel ,
you can logically OR any combination of color mask constants to restrict the
available color modes.

The NSColorPanel ’s color mode mask is set using the class method
setPickerMask: . The mask must be set before creating an application’s
instance of NSColorPanel .

Table 1-11 Color Mask Constants

Color Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

TIFF image NSColorPanelCustomPaletteModeMask

Custom color lists NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

1-166 OpenStep Programming Reference—September 1996

1

When an application’s instance of NSColorPanel is masked for more than one
color mode, your program can set its active mode by invoking the setMode:
method with a color mode constant as its argument; the user can set the mode
by clicking buttons on the panel. Here are the standard color modes and mode
constants:.

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-
saturation-brightness modes, the user adjusts colors by manipulating sliders.
In the custom palette mode, the user can load a TIFF file into the
NSColorPanel , then select colors from the TIFF image. In custom color list
mode, the user can create and load lists of named colors. The two custom
modes provide NSPopUpList s for loading and saving files. Finally, color
wheel mode provides a simplified control for selecting colors. If a color panel
has been used, it uses whatever mode it was in last as the default mode when
NSColorPanelAllModesMask is used to initialize the NSColorPanel .
Otherwise, it uses color wheel mode.

Associated Classes and Protocols

The NSColorList class provides an application programming interface (API)
for managing custom color lists. The NSColorPanel methods
attachColorList: and detachColorList: let your application add and
remove custom lists from the NSColorPanel ’s user interface.

The protocols NSColorPickingDefault and NSColorPickingCustom
provide an API for adding custom color selection to the user interface. The
NSColorPicker class implements the NSColorPickingDefault protocol;

Table 1-12 Color Mask Constants

Color Mode Color Mask Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

TIFF image NSCustomPaletteModeColorPanel

Color lists NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

NSColorPanel 1-167

1

you can subclass NSColorPicker and implement the
NSColorPickingCustom protocol in your subclass to create your own user
interface for color selection.

See also NSColorList , NSColorPickingDefault , NSColorPicker ,
NSColorPickingDefault protocol, NSColorPickingCustom protocol,
NSColorWell .

Method Types

Class Methods

dragColor:withEvent:fromView:

+(BOOL)dragColor:(NSColor **)aColor withEvent:(NSEvent *)anEvent
fromView:(NSView *)sourceView

Activity Class Method

Creating the NSColor Panel + sharedColorPanel
+ sharedColorPanelExists

Setting the NSColorPanel + setPickerMask:
+ setPickerMode:
– isContinuous
– mode
– setAccessoryView:
– setAction:
– setContinuous:
– setMode:
– setShowsAlpha:
– setTarget:
– showsAlpha

Attaching a color list – attachColorList:
– detachColorList:

Setting color + dragColor:withEvent:fromView:
– alpha
– color
– setColor:

1-168 OpenStep Programming Reference—September 1996

1

Drags aColor into a destination view from sourceView . This method is
usually invoked by the mouseDown: method of sourceView , for example
NSColorWell . The dragging mechanism handles all subsequent events.
Because it is a class method, this method can be invoked whether or not the
instance of NSColorPanel exists. See also alpha , color , setColor: .

setPickerMask:

+ (void)setPickerMask:(int)mask

Sets the mask that determines which color selection modes are available in the
color panel. Accepts as a parameter one or more logically OR’d color mode
masks described in the “Class Description”. This determines which color
selection modes will be available in an application’s NSColorPanel . This
method only has an effect before NSColorPanel is instantiated. If you create a
class that implements the color picking protocols (NSColorPickingDefault
and NXColorPickingCustom), you may want to give it a unique mask—one
different from those defined for the standard color pickers. To display your
color picker, your application will need to logically OR that unique mask with
the standard color mask constants when invoking this method. See also
setPickerMode: , NSColorPicker , NSColorPickingDefault (protocol),
NSColorPickingCustom (protocol).

setPickerMode:

+ (void)setPickerMode:(int)mode

Sets the color panel's initial picker mode (see the “Class Description”). The
mode determines which picker will initially be visible. This method may be
called at any time, whether or not an application’s NSColorPanel has been
instantiated. See also setPickerMask: , setMode: , setMode:
(NSColorPicker).

sharedColorPanel

+ (NSColorPanel *)sharedColorPanel

Creates the shared NSColorPanel instance, if an instance doesn’t already
exist, and returns the shared NSColorPanel . Each application shares one
instance of this object.

NSColorPanel 1-169

1

sharedColorPanelExists

+ (BOOL)sharedColorPanelExists

Returns YES if the NSColorPanel has been created already, and NO otherwise.

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the accessory view, or nil if there is none. See setAccessoryView: .

alpha

– (float)alpha

Returns the NSColorPanel ’s current alpha value, or 1.0 (opaque) if the panel
has no opacity slider. See also dragColor:withEvent:fromView: , color ,
setColor: .

attachColorList:

– (void)attachColorList:(NSColorList *)aColorList

Adds the specified list of NSColor s to all the color pickers (that conform to the
NSColorPickingDefault and NSColorPickingCustom protocols) in the
color panel that display color lists. See detachColorList: .

color

– (NSColor *)color

Returns the currently displayed color. See also attachColorList: ,
detachColorList: , dragColor:withEvent:fromView: , alpha , color ,
setColor: .

detachColorList:

– (void)detachColorList:(NSColorList *)aColorList

1-170 OpenStep Programming Reference—September 1996

1

Removes the specified list of NSColor s from all the color pickers in the color
panel that display color lists. See also attachColorList: .

isContinuous

– (BOOL)isContinuous

Returns YES if the NSColorPanel continuously sends the action message to
the target, that is, whether or not the NSColorPanel ’s color is being set
continuously as the user manipulates the color picker. See also
setContinuous: .

mode

– (int)mode

Returns the mode of the NSColorPanel . Returns the current color picker
mode for the NSColorPanel . The mode constants for the standard color
pickers are listed in the “Class Description”. See also setMode: .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Sets the accessory NSView displayed in the NSColorPanel to aView . The
accessory NSView can be any custom NSView that you want to display with
NSColorPanel , such as a view offering color blends in a drawing program.
The accessory NSView is displayed below the color picker and above the color
swatches in the NSColorPanel . The NSColorPanel automatically resizes to
accommodate the accessory NSView. See also accessoryView .

setAction:

– (void)setAction:(SEL)aSelector

Sets the action message sent to the target to aSelector . See also setTarget: .

setColor:

– (void)setColor:(NSColor *)aColor

NSColorPanel 1-171

1

Sets the color to be displayed and redraws the panel. This method posts the
NSColorPanelChangedNotification notification with the receiving object
to the default notification center. See also color .

setContinuous:

– (void)setContinuous:(BOOL)flag

Sets the NSColorPanel to continuously send the action message to the target
as the color of the NSColorPanel is set by the user. Send this message with
flag set to YES if, for example, you want to continuously update the color of
the target. See also isContinuous .

setMode:

– (void)setMode:(int)mode

Sets the mode of the NSColorPanel . See the Class Description for a list of
modes. See also mode.

setShowsAlpha:

– (void)setShowsAlpha:(BOOL)flag

If flag is YES, sets the NSColorPanel to show alpha. See also showsAlpha ,
alpha .

setTarget:

– (void)setTarget:(id)anObject

Sets the target of the NSColorPanel ’s action methods. See also setAction: .

showsAlpha

– (BOOL)showsAlpha

Returns YES if the NSColorPanel shows alpha values; retuns NO otherwise.
See also alpha , setShowsAlpha: .

1-172 OpenStep Programming Reference—September 1996

1

NSColorPicker

Class Description

NSColorPicker is an abstract superclass that implements the
NSColorPickingDefault protocol. The NSColorPickingDefault and
NSColorPickingCustom protocols define a way to add color pickers (custom
user interfaces for color selection) to the NSColorPanel . The simplest way to
implement a color picker is to create a subclass of NSColorPicker , instead of
implementing the NSColorPickingDefault protocol in another kind of
object. (To add functionality, implement the NSColorPickingCustom
methods in your subclass).

The NSColorPickingDefault protocol specification describes the details of
implementing a color picker and adding it to your application’s
NSColorPanel . Look there first for an overview of how NSColorPicker
works. This specification is provided to document the specific behavior of
NSColorPicker ’s methods.

Inherits From: NSObject

Conforms To: NSColorPickingDefault
NSObject (NSObject)

Declared In: AppKit/NSColorPicker.h

NSColorPicker 1-173

1

Method Types

Instance Methods

attachColorList:

– (void)attachColorList:(NSColorList *)colorList

Override this method to attach a color list to a color picker. See also
detachColorList: , NSColorList .

colorPanel

– (NSColorPanel *)colorPanel

Returns the NSColorPanel that owns this NSColorPicker .

detachColorList:

– (void)detachColorList:(NSColorList *)colorList

Override this method to detach a color list from a color picker. See also
attachColorList: , NSColorList .

initWithPickerMask:colorPanel:

– (id)initWithPickerMask:(int)aMask
colorPanel:(NSColorPanel *)colorPanel

Activity Class Method

Initializing an NSColorPicker – initWithPickerMask:colorPanel:

Getting the color panel – colorPanel

Adding button images – insertNewButtonImage:in:
– provideNewButtonImage

Setting the mode – setMode:

Using color lists – attachColorList:
– detachColorList:

Responding to a resized view – setMode:

1-174 OpenStep Programming Reference—September 1996

1

Initializes the receiver for the specified mask and color panel, caching the
colorPanel value so it can later be returned by the colorPanel method.
Override this method to respond to the values in aMask or do other custom
initialization. If you override this method in a subclass, you should forward
the message to super as part of the implementation. See also
setPickerMask: (NSColorPanel).

insertNewButtonImage:in:

– (void)insertNewButtonImage:(NSImage *)newImage
in:(NSButtonCell *)newButtonCell

Called by the color panel to insert a new image into the specified cell. Override
this method to customize newImage before insertion in newButtonCell . See
also provideNewButtonImage .

provideNewButtonImage

– (NSImage *)provideNewButtonImage

Returns the button image for the color picker. The color panel will place this
image in the mode button that the user uses to select this picker. (This is the
same image that the color panel uses as an argument when sending the
insertNewButtonImage:in: message.) The default implementation looks in
the color picker’s bundle for a TIFF file named after the color picker’s class,
with the extension .tiff .

setMode:

– (void)setMode:(int)mode

Override this method to set the color picker’s mode. See also
setPickerMode: (NSColorPanel).

viewSizeChanged:

– (void)viewSizeChanged:(id)sender

Override to respond to a size change.

NSColorWell 1-175

1

NSColorWell

Class Description

NSColorWell is an NSControl for selecting and displaying a single color
value. An example of an NSColorWell object (or simply color well) is found
in NSColorPanel , which uses a color well to display the current color
selection. NSColorWell is available from the Palettes panel of Interface
Builder.

An application can have one or more active NSColorWell s. You can activate
multiple NSColorWell s by invoking the activate: method with NO as its
argument. When a mouse-down event occurs on an NSColorWell ’s border, it
becomes the only active color well. When a color well becomes active, it brings
up the color panel also.

The mouseDown: method enables an instance of NSColorWell to send its
color to another NSColorWell or any other subclass of NSView that
implements the NSDraggingDestination protocol. See also NSColorPanel .

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorWell.h

1-176 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

activate:

– (void)activate:(BOOL)exclusive

Activates the NSColorWell , displays the Color panel, and makes the
NSColorPanel ’s current color the same as its own. If exclusive is YES, it
deactivates any other NSColorWell s; if NO, it keeps them active.

color

– (NSColor *)color

Returns the color of the color well.

deactivate

– (void)deactivate

Deactivates the color well.

drawWellInside:

– (void)drawWellInside:(NSRect)insideRect

Activity Class Method

Drawing – drawWellInside:

Activating – activate:
– deactivate
– isActive

Managing color – color
– setColor:
– takeColorFrom:

Managing borders – isBordered
– setBordered:

NSColorWell 1-177

1

Draws the colored area inside the color well at the location specified by
insideRect without drawing borders.

isActive

– (BOOL)isActive

Returns YES if the color well is active. Returns NO otherwise.

isBordered

– (BOOL)isBordered

Indicates whether the color well is bordered.

setBordered:

– (void)setBordered:(BOOL)bordered

Places or removes a border, depending on bordered .

setColor:

– (void)setColor:(NSColor *)color

Sets the color of the well to color .

takeColorFrom:

– (void)takeColorFrom:(id)sender

Changes the color of the well to that of sender .

1-178 OpenStep Programming Reference—September 1996

1

NSControl

Class Description

NSControl is an abstract superclass that provides three fundamental features
for implementing user-interface devices. First, as a subclass of NSView,
NSControl allows the on-screen representation of the device to be drawn.
Second, it receives and responds to user-generated events within its bounds by
overriding NSResponder ’s mouseDown: method and providing a position in
the responder chain. Third, it implements the sendAction:to: method to
send an action message to the NSControl ’s target object. Subclasses of
NSControl defined in the Application Kit are NSBrowser , NSButton (and its
subclass NSPopUpButton), NSColorWell , NSMatrix (and its subclass
NSForm), NSScroller , NSSlider , and NSTextField .

Target and Action

Target objects and action methods provide the mechanism by which
NSControl s interact with other objects in an application. A target is an object
that an NSControl has effect over. The target class defines an action method to
enable its instances to respond to user input. An action method takes only one
argument: the id of the sender. The sender may be either the NSControl that
sends the action message or another object that the target should treat as the
sender. When it receives an action message, a target can return messages to the
sender requesting additional information about its status. NSControl ’s
sendAction:to: asks the NSApplication object, NSApp, to send an action
message to the NSControl ’s target object. The method used for this is
NSApplication ’s sendAction:to:from: . You can also set the target to nil
and allow it to be determined at run time. When the target is nil , the
NSApplication object must look for an appropriate receiver. It conducts its
search in a prescribed order, by following the responder chain until it finds an
object that can respond to the message:

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSControl.h

NSControl 1-179

1

• It begins with the first responder in the key window and follows
nextResponder links up the responder chain to the NSWindow object.
After the NSWindow object, it tries the NSWindow’s delegate.

• If the main window is different from the key window, it then starts over
with the first responder in the main window and works its way up the main
window’s responder chain to the NSWindow object and its delegate.

• Next, it tries to respond itself. If the NSApplication object can’t respond, it
tries its own delegate. NSApp and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the
action method. However, these methods require that an NSControl have an
associated subclass of NSCell that provides a target and an action, such as
NSActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between
NSControl s and NSCell s. In most cases, a user interface device consists of an
instance of an NSControl subclass paired with one or more instances of an
NSCell subclass. Each implements specific details of the user interface
mechanism. For example, NSControl ’s mouseDown: method sends a
trackMouse:inRect:ofView:untilMouseUp: message to an NSCell ,
which handles subsequent mouse and keyboard events; an NSCell sends an
NSControl a sendAction:to: message in response to particular events.
NSControl ’s drawRect: method is implemented by sending a
drawWithFrame:inView: message to the NSCell . As another example,
NSControl provides methods for setting and formatting its contents; these
methods send corresponding messages to NSCell , which actually owns the
contents.

See the NSActionCell class specification for more on the implementation of
target and action behavior.

Changing the NSCell Class

Since NSControl uses the NSCell class to implement most of its actual
functionality, you can usually implement a unique user interface device by
creating a subclass of NSCell rather than NSControl . As an example, let’s say
you want all your application’s NSSlider s to have a type of cell other than the
generic NSSliderCell . First, you create a subclass of NSCell ,

1-180 OpenStep Programming Reference—September 1996

1

NSActionCell , or NSSliderCell . For explanation purposes call it
MyCellSubclass . Then, you can simply invoke NSSlider ’s setCellClass:
class method:

[NSSlider setCellClass:[MyCellSubclass class]];

All NSSlider s created thereafter will use MyCellSubclass until you call
setCellClass: again.

If you want to create generic NSSlider s (ones that use NSSliderCell) in the
same application as the customized NSSlider s that use MyCellSubclass ,
there are two possible approaches. One is to invoke setCellClass: as above
whenever you’re about to create a custom NSSlider , resetting the cell class to
NSSliderCell afterwards. The other approach is to create a custom subclass
of NSSlider that automatically uses MyCellSubclass , as explained in the
following section.

Creating New NSControls

If you create a custom NSControl subclass that uses a custom subclass of
NSCell , you should override NSControl ’s cellClass method:

+ (Class) cellClass
{
 return [MyCellSubclass class];
}

NSControl ’s initWithFrame: method will use the return value of
cellClass to allocate and initialize an NSCell of the correct type.

If you want to be able to change the type of cell that your subclass uses
without changing the type that its superclass uses, override setCellClass:
to store the NSCell subclass in a global variable, and modify cellClass to
return that variable:

static id myStoredCellClass;

+ setCellClass:classId
{
 myStoredCellClass = classId;
}
+ (Class) cellClass
{

NSControl 1-181

1

 return (myStoredCellClass ? myStoredCellClass : [MyCellSubclass
class]);
}

An NSControl subclass doesn’t have to use an NSCell subclass to implement
itself; NSScroller and NSColorWell are examples of NSControl s that
don’t. However, such subclasses have to take care of details that NSCell
would otherwise handle. Specifically, they have to override methods designed
to work with an NSCell . What’s more, the lack of an NSCell means you can’t
make use of NSMatrix —a subclass of NSControl designed specifically for
managing multi-cell arrays such as radio buttons.

Override the designated initializer (initWithFrame:) if you create a subclass
of NSControl that performs its own initialization.

1-182 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Initializing an NSControl object – initWithFrame:

Setting the control’s cell + cellClass
+ setCellClass:
– cell
– setCell:

Enabling and disabling the control – isEnabled
– setEnabled:

Indentifying the selected cell – selectedCell
– selectedTag

Setting the control’s value – doubleValue
– floatValue
– intValue
– setDoubleValue:
– setFloatValue:
– setIntValue:
– setNeedsDisplay
– setStringValue:
– stringValue

Interacting with other controls – takeDoubleValueFrom:
– takeFloatValueFrom:
– takeIntValueFrom:
– takeStringValueFrom:

Formatting text – alignment
– font
– setAlignment:
– setFont:
– setFloatingPointFormat:left:right:

Managing the field editor – abortEditing
– currentEditor
– validateEditing

Resizing the control – calcSize
– sizeToFit

Displaying the control and cell – drawCell:
– drawCellInside:
– selectCell:
– updateCell:
– updateCellInside:

NSControl 1-183

1

Class Methods

cellClass

+ (Class)cellClass

Returns nil ; overridden by subclasses. See also setCellClass: , cell ,
setCell: .

setCellClass:

+ (void)setCellClass:(Class)factoryId

Implemented by subclasses to set the NSCell class used. See also cellClass ,
cell , setCell: .

Target and action – action
– isContinuous
– sendAction:to:
– sendActionOn:
– setAction:
– setContinuous:
– setTarget:
– target

Assigning a tag – setTag:
– tag

Tracking the mouse – mouseDown:
– ignoresMultiClick
– setIgnoresMultiClick:

Methods Implemented by the Delegate – control:didFailToFormatString:
errorDescription:
– control:didFailToValidatePartialString:
errorDescription:
– control:isValidObject:
– control:textShouldBeginEditing:
– control:textShouldEndEditing:
– controlTextDidBeginEditing:
– controlTextDidEndEditing:
– controlTextDidChange:

Activity Class Method

1-184 OpenStep Programming Reference—September 1996

1

Instance Methods

abortEditing

– (BOOL)abortEditing

Terminates and discards any editing of text displayed by the receiving
NSControl . Returns YES, or NO if no editing was going on in the receiving
NSControl . This method doesn’t redisplay the old value of the NSControl .
See also currentEditor , validateEditing .

action

– (SEL)action

Returns the action message sent by the NSControl ’s NSCell , or the default
action message for an NSControl with multiple NSCell s (such as an
NSMatrix or NSForm). To retrieve the action message, this method sends an
action message to the NSCell . For NSControl s with multiple NSCell s, it’s
better to get the action message for a particular NSCell using:

someAction = [[theControl selectedCell] action];

See also isContinuous , sendAction:to: , sendActionOn: , setAction: ,
setContinuous: , setTarget: , target , action (NSCell).

alignment

– (NSTextAlignment)alignment

Returns the alignment of text in the control’s cell (via the cell’s alignment
method). The return value can be one of the follow values:

• NSLeftTextAlignment
• NSLeftRightAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See the “Text” section of the Application Kit’s “Types and Constants” chapter
for more information on text alignment. See also setAlignment: , font ,
setFont: , setFloatingPointFormat:left:right: .

NSControl 1-185

1

calcSize

– (void)calcSize

Recomputes any internal sizing information for the NSControl , if necessary,
by invoking its NSCell ’s calcDrawInfo: method. This method doesn’t
actually draw. It can be used for more sophisticated sizing operations as well
for example, NSForm. calcSize is automatically invoked whenever the
NSControl is displayed and something has changed; you need never invoke
it.

cell

– (id)cell

Returns the control’s NSCell . It is better to use selectedCell in the action
method of the target of the NSControl , since an NSControl may have
multiple NSCell s. See also cellClass , setCellClass: , setCell: .

currentEditor

– (NSText *)currentEditor

If the receiving NSControl is being edited (that is, has an NSText object
acting as its editor, and is the first responder in its NSWindow), this method
returns the NSText object being used to perform that editing. If the
NSControl isn’t being edited, this method returns nil . See also
abortEditing , validateEditing .

doubleValue

– (double)doubleValue

Returns the value of the NSControl ’s selected NSCell as a double-precision
floating point number. If the NSControl contains many cells (for example
NSMatrix), then the value of the currently selectedCell is returned. If the
NSControl is in the process of editing the affected NSCell , then
validateEditing is invoked before the value is extracted and returned. See
also floatValue , intValue , setDoubleValue: , setFloatValue: ,
setIntValue: , setNeedsDisplay , setStringValue: .

1-186 OpenStep Programming Reference—September 1996

1

drawCell:

– (void)drawCell:(NSCell *)aCell

If aCell is the cell used to implement this NSControl , then the NSControl is
displayed. This method is provided primarily to support a consistent set of
methods between NSControl s with single and multiple NSCell s, since an
NSControl with multiple NSCell s needs to be able to draw a single NSCell
at a time. See also drawCellInside: , selectCell: , updateCell: ,
updateCellInside: .

drawCellInside:

– (void)drawCellInside:(NSCell *)aCell

Draws the inside of a control (the area within a bezel or border). This method
invokes cell’s drawInteriorWithFrame:inView: method.
drawCellInside: is used to provide a minimal update of the control when
its value is changed. See also drawCell: .

floatValue

– (float)floatValue

Returns the value of the control's selected cell as a single-precision float . See
also doubleValue .

font

– (NSFont *)font

Returns the NSFont used to draw text in the control’s cell. See also setFont: ,
alignment .

ignoresMultiClick

– (BOOL)ignoresMultiClick

NSControl 1-187

1

Returns YES if multiple clicks are ignored, and returns NO otherwise. By
default, double-clicks (and higher order clicks) are treated the same as single
clicks. You can use this method to “debounce” an NSControl , so that it won’t
inadvertently send its action message twice when double-clicked. See also
setIgnoresMultiClick: , mouseDown: .

initWithFrame:

– (id)initWithFrame:(NSRect)frameRect

Initializes and returns a new instance of NSControl , by setting frameRect as
its frame rectangle. Since NSControl is an abstract class, messages to perform
this method should appear only in subclass methods; that is, there should
always be a more specific designated initializer for the subclass.
initWithFrame: is the designated initializer for the NSControl class.

intValue

– (int)intValue

Returns the value of the control's selected cell as a int . See also doubleValue .

isContinuous

– (BOOL)isContinuous

Returns YES if the control’s NSCell continuously sends its action message to
its target during mouse tracking. Returns NO otherwise. See also
setContinuous: , action .

isEnabled

– (BOOL)isEnabled

Returns yes if the NSControl reacts to mouse events, and NO otherwise. See
also setEnabled: .

mouseDown:

– (void)mouseDown:(NSEvent *)theEvent

1-188 OpenStep Programming Reference—September 1996

1

Invoked when the mouse button goes down while the cursor is within the
contro bounds. This method highlights the control’s cell and sends it a
trackMouse:inRect:ofView:untilMouseUp: message. Whenever the cell
finishes tracking the mouse (for example, because the cursor has left the cell’s
bounds), the cell is unhighlighted. If the mouse button is still down and the
cursor reenters the bounds, the cell is again highlighted and a new
trackMouse:inRect:ofView:untilMouseUp: message is sent. This
behavior repeats until the mouse button goes up.

selectCell:

– (void)selectCell:(NSCell *)aCell

If aCell is an NSCell of the receiving NSControl and is deselected, this
method selects aCell and redraws the NSControl . See also selectedCell .

selectedCell

– (id)selectedCell

Returns the control’s selected NSCell . The target of the NSControl should
use this method when it wants to get the NSCell of the sending NSControl .
Note that even though the cell method will return the same value for
NSControl s with only a single NSCell , it is strongly suggested that this
method be used since it will work for NSControl s with either a single or
multiple NSCell s. See also selectCell: , selectedTag , selectedCell
(NSMatrix).

selectedTag

– (int)selectedTag

Returns the tag of the control’s selected cell. This is equivalent to:

myTag = [[theControl selectedCell] tag];

This method returns –1 if there is no selected NSCell . The cell’s tag can be set
with NSActionCell ’s setTag: method. You should only use the setTag:
and tag methods in conjunction with viewWithTag: (NSView). See also
selectedCell .

NSControl 1-189

1

sendAction:to:

– (BOOL)sendAction:(SEL)theAction to:(id)theTarget

Sends a sendAction:to:from: message to NSApp (the NSApplication
object), which in turn sends a message to theTarget to perform theAction .
sendAction:to:from: adds the NSControl as the from: argument. If
theAction is NULL, no message is sent. sendAction:to: is invoked
primarily (and indirectly) by NSCell ’s trackMouse:inRect:ofView: .

If theTarget is nil , NSApp looks for an object that can respond to the
message by following the responder chain, as detailed in the Class Description.
This method returns YES if no object that responds to theAction could be
found, beeps and returns NO if NSApp is in a modal event loop, and otherwise
returns NO. See also action .

sendActionOn:

– (int)sendActionOn:(int)mask

Uses mask to record the events that cause sendAction:to: to be invoked
during tracking of the mouse, which is performed in NSCell ’s
trackMouse:inRect:ofView: . mask can contain the following values:

• NSLeftMouseUpMask
• NSLeftMouseDownMask
• NSLeftMouseDraggedMask
• NSPeriodicMask

Returns the old event mask. See the Event Handling section of the Application
Kit’s Types and Constants chapter for more information on event mask values.

setAction:

– (void)setAction:(SEL)aSelector

Makes aSelector the NSControl ’s action method. If aSelector is NULL,
then no action messages will be sent from the NSControl . See also action ,
setTarget: .

setAlignment:

– (void)setAlignment:(NSTextAlignment)mode

1-190 OpenStep Programming Reference—September 1996

1

Sets the alignment mode of the text in the NSControl 's cell (or of all the
NSControl ’s cells if it has more than one) to mode, and redraws the
NSControl . mode should be one of the following values:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See the “Text” section of the Application Kit’s “Types and Constants” chapter
for more information on text alignment. See also alignment .

setCell:

– (void)setCell:(NSCell *)aCell

Sets the control’s NSCell to aCell . Use this method with care as it can
irrevocably damage your NSControl ; specifically, only use this method in
initializers for subclasses of NSControl . See also cellClass ,
setCellClass: , cell .

setContinuous:

– (void)setContinuous:(BOOL)flag

Sets whether the control’s NSCell continuously sends its action to its target as
the mouse is tracked. See also action , setContinuous: (NSCell).

setDoubleValue:

– (void)setDoubleValue:(double)aDouble

Sets the value of the NSControl 's selected cell to aDouble (a double-precision
floating point number). If the affected NSCell is being edited, that editing is
aborted and the value being typed is discarded in favor of aDouble . If
autodisplay is on, then the NSCell ’s inside the area within a bezel or border is
redrawn. See also doubleValue .

setEnabled:

– (void)setEnabled:(BOOL)flag

NSControl 1-191

1

Sets whether the NSControl is active or not (that is, whether it tracks the
mouse and sends its action to its target). If flag is NO, any editing is aborted.
Redraws the entire NSControl if autodisplay is on. Subclasses may want to
override this to redraw only a portion of the NSControl when the enabled
state changes. See also isEnabled .

setFloatValue:

– (void)setFloatValue:(float)aFloat

Same as setDoubleValue: , but sets the control’s selected cell’s value to
aFloat , a single-precision floating point number. See also doubleValue .

setFloatingPointFormat:left:right:

– (void)setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)leftDigits right:(unsigned)rightDigits

Sets the floating-point autoranging and display format for the control’s cell, so
that at most leftDigits are displayed to the left of the decimal point, and
rightDigits to the right. If the NSControl has more than one NSCell ,
they’re all affected. See the description of this method in the NSCell class
specification for more detail. This method doesn’t redraw the NSControl but
marks it as needing redrawing, and affects only subsequent invocations of
setFloatValue: . See also alignment .

setFont:

– (void)setFont:(NSFont *)fontObject

Sets the NSFont object used to draw the text (if any) in the NSControl ’s
NSCell , or in all the NSCell s if the NSControl has more than one. You only
need to use this method if you don’t want to use the user’s default system font.
Marks the cell as needing redrawing. See also alignment .

setIgnoresMultiClick:

– (void)setIgnoresMultiClick:(BOOL)flag

1-192 OpenStep Programming Reference—September 1996

1

Sets the NSControl to ignore multiple clicks if flag is YES. By default,
double-clicks (and higher order clicks) are treated the same as single clicks.
You can use this method to “debounce” an NSControl , so that it won’t
inadvertently send its action message twice when double-clicked. See also
ignoresMultiClick , mouseDown: .

setIntValue:

– (void)setIntValue:(int)anInt

Sets the value of the control's selected cell to anInt , an integer. See also
intValue , doubleValue .

setNeedsDisplay

– (void)setNeedsDisplay

Sets a flag that informs the control that it’s state has changed, and that the
control needs redrawing.

setStringValue:

– (void)setStringValue:(NSString *)aString

Sets the value of the control's selected cell to aString , a string. See also
stringValue , doubleValue .

setTag:

– (void)setTag:(int)anInt

Sets the control’s tag to anInt . See also tag .

setTarget:

– (void)setTarget:(id)anObject

Sets the NSControl ’s action-message target to anObject . If anObject is nil ,
then when an action message is sent, NSApp looks for an object that can
respond to the message by following the responder chain, as detailed in the
Class Description. See also target , action .

NSControl 1-193

1

sizeToFit

– (void)sizeToFit

Changes the width and the height of the NSControl ’s frame so that they are
the minimum needed to contain the NSCell . If the NSControl has more than
one NSCell , then you must override this method. See also calcSize .

stringValue

– (NSString *)stringValue

Returns the value of the control's selected cell as an NSString . If the
NSControl is in the process of editing the affected NSCell , then
validateEditing is invoked before the value is extracted and returned. See
also setStringValue: , doubleValue .

tag

– (int)tag

Returns the receiving control’s tag. See also setTag: , selectedTag .

takeDoubleValueFrom:

– (void)takeDoubleValueFrom:(id)sender

Sets the receiving NSControl 's selected cell to the value obtained by sending a
doubleValue message to sender. This method can be used in action messages
between NSControl s. It permits one NSControl (the sender) to affect the
value of another NSControl (the receiver) by invoking this method in an
action message to the receiver. For example, an NSTextField can be made the
target of an NSSlider . Whenever the slider is moved, it will send a
takeDoubleValueFrom: message to the NSTextField . The NSTextField
will then get the slider’s floating-point value, turn it into a text string, and
display it, thus tracking the value of the slider. See also setDoubleValue: ,
doubleValue , takeFloatValueFrom: , takeIntValueFrom: ,
takeStringValueFrom: .

takeFloatValueFrom:

– (void)takeFloatValueFrom:(id)sender

1-194 OpenStep Programming Reference—September 1996

1

Sets the receiving control's selected cell to the value obtained by sending a
floatValue message to sender . See takeDoubleValueFrom: for an
example. See also setFloatValue: , floatValue .

takeIntValueFrom:

– (void)takeIntValueFrom:(id)sender

Sets the receiving control's selected cell to the value obtained by sending a
intValue message to sender . See takeDoubleValueFrom: for an example.
See also setIntValue: , intValue .

takeStringValueFrom:

– (void)takeStringValueFrom:(id)sender

Sets the receiving NSControl 's selected cell to the value obtained by sending a
stringValue message to sender . See takeDoubleValueFrom: for an
example. See also setStringValue: .

target

– (id)target

Returns the target for the action message of the control’s cell. If nil , then any
action messages sent by the NSControl will be sent up the responder chain, as
detailed in the Class Description. See also setTarget: , target (NSCell ,
NSActionCell).

updateCell:

– (void)updateCell:(NSCell *)aCell

Redisplays aCell or marks it for redisplay. See also updateCellInside: ,
drawCell: .

updateCellInside:

– (void)updateCellInside:(NSCell *)aCell

Redisplays the inside of aCell or marks it for redisplay. See also
updateCell: , drawCell: .

NSControl 1-195

1

validateEditing

– (void)validateEditing

Causes the value of the NSControl ’s selected cell to be set to the value of the
field being edited, if any. “Being edited” does not necessarily mean that a user
is typing; if a field (for example, an NSTextField object) has the application’s
global NSText object acting in its place as first responder, then the field is
considered as being edited. This method is invoked automatically from
stringValue , intValue , and other similar methods, so that a partially
edited field’s actual value will be correctly returned by those methods.

Methods Implemented by the Delegate

Note – NSControl itself doesn’t have a delegate. These delegate methods are
declared in NSControl.h but are intended for subclasses, such as
NSTextField and NSMatrix , that do have delegates and that allow text
editing.

control:didFailToFormatString:
errorDescription:

- (BOOL)control:(NSControl *)control
didFailToFormatString:(NSString *)string
errorDescription:(NSString *)error

Implement this method to respond to string to cell object conversions. See
NSFormatter .

control:didFailToValidatePartialString:
errorDescription:

- (void)control:(NSControl *)control
didFailToValidatePartialString:(NSString *)string
errorDescription:(NSString *)error

Implement this method to respond to partial string validation failures. See
NSFormatter .

1-196 OpenStep Programming Reference—September 1996

1

control:isValidObject:

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

This method is invoked when the cursor leaves a cell (that is, the associated
control relinquishes first-responder status), but before the string value of the
cell's object is displayed. Implementations should return YES to allow display
of the string and NO to reject display and return the cursor to the cell. See the
NSFormatter class description for an example.

control:textShouldBeginEditing:

– (BOOL)control:(NSControl *)control
textShouldBeginEditing:(NSText *)fieldEditor

Sent directly by control to the delegate; returns YES if the control should
be allowed to start editing the text.

control:textShouldEndEditing:

– (BOOL)control:(NSControl *)control
textShouldEndEditing:(NSText *)fieldEditor

Sent directly by control to the delegate; returns YES if the control should
be allowed to end its edit session.

controlTextDidBeginEditing:

– (void)controlTextDidBeginEditing:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSControlTextDidBeginEditingNotification . If the delegate
implements this method, it’s automatically registered to receive this
notification.

controlTextDidEndEditing:

– (void)controlTextDidEndEditing:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSControlTextDidEndEditingNotification . If the delegate
implements this method, it’s automatically registered to receive this
notification.

NSCStringText 1-197

1

controlTextDidChange:

– (void)controlTextDidChange:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSControlTextDidChangeNotification . If the delegate
implements this method, it’s automatically registered to receive this
notification.

NSCStringText

Class Description

The NSCStringText class declares the programmatic interface to objects that
manage text using eight-bit character encodings. The encoding is the same as
the default C string encoding provided by defaultCStringEncoding in the
NSString class. NSCStringText can be used in situations where backwards
compatibility with the detailed interfaces of the NeXTSTEP Text object is
important. Applications that can use the interface of NSText should do so.

The NSCStringText class is unlike most other classes in the Application Kit
in its complexity and range of features. One of its design goals is to provide a
comprehensive set of text-handling features so that you'll rarely need to create
a subclass. An NSCStringText object can (among other things):

• Control the color of its text and background.

• Control the font and layout characteristics of its text.

• Control whether text is editable.

• Wrap text on a word or character basis.

• Write text to, or read it from, a file, as either Rich Text Format (RTF) or plain
ASCII data.

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling (NSText)
NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSCStringText.h

1-198 OpenStep Programming Reference—September 1996

1

• Display graphic images within its text.

• Communicate with other applications through the Services menu.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between
NSCStringText objects.

• Let the user check the spelling of words in its text.

• Let the user control the format of paragraphs by manipulating a ruler.

NSCStringText can deal only with eight-bit characters. Therefore, it is not
able to deal with Unicode character sets, and NSCStringText can’t be fully
internationalized.

Plain and Rich NSCStringText Objects

When you create an NSCStringText object directly, it allows by default only
one font, line height, text color, and paragraph format for the entire text. You
can set the default font used by new NSCStringText instances by sending the
NSCStringText class object a setDefaultFont: message. Once an
NSCStringText object is created, you can alter its global settings using
methods such as setFont: , setLineHeight: , setTextGray: , and
setAlignment: . For convenience, such an NSCStringText object will be
called a plain NSCStringText object.

To allow multiple values for these attributes, you must send the
NSCStringText object a setRichText:YES message. An NSCStringText
object that allows multiple fonts also allows multiple paragraph formats, line
heights, and so on. For convenience, such an NSCStringText object will be
called a rich NSCStringText object.

A rich NSCStringText object can use RTF as an interchange format. Not all
RTF control words are supported: On input, an NSCStringText object ignores
any control word it doesn't recognize; some of those control words it can read
and interpret it won't write out. Refer to the Class Description of NSText for a
list of the RTF control words that an NSCStringText object recognizes.

NSCStringText 1-199

1

Note – An NSCStringText object writes eight-bit characters in the default C
string encoding, which differs somewhat from the ANSI character set.

In an NSCStringText object, each sequence of characters having the same
attributes is called a run. A plain NSCStringText object has only one run for
the entire text. A rich NSCStringText object can have multiple runs. Methods
such as setSelFont: and setSelColor: let you programmatically modify
the attributes of the selected sequence of characters in a rich NSCStringText
object. As discussed the following, the user can set these attributes using the
Font panel and the ruler.

NSCStringText objects are designed to work closely with various objects and
services. Some of these—such as the delegate or an embedded graphic
object—require a degree of programming on your part. Others—such as the
Font panel, spelling checker, ruler, and Services menu—take no effort other
than deciding whether the service should be enabled or disabled. The
following sections discuss these interrelationships.

Notifying the NSCStringText Object's Delegate

Many of an NSCStringText object's actions can be controlled through an
associated object, the NSCStringText object's delegate. If it implements any
of the following methods, the delegate receives the corresponding message at
the appropriate time:

• textWillResize:
• textDidResize:oldBounds:
• textWillSetSel:toFont:
• textWillConvert:fromFont:toFont:
• textWillStartReadingRichText:
• textWillFinishReadingRichText:
• textWillWrite:
• textDidRead:paperSize:

So, for example, if the delegate implements the
textWillConvert:fromFont:toFont: method, it will receive notification
upon the user's first attempt to change the font of the text. Moreover,
depending on the method's return value, the delegate can either allow or

1-200 OpenStep Programming Reference—September 1996

1

prohibit changes to the text. See the “Methods Implemented by the Delegate”
section. The delegate can be any object you choose, and one delegate can
control multiple NSCStringText objects.

Adding Graphics to the Text

A rich NSCStringText object allows graphics to be embedded in the text.
Each graphic is treated as a single (possibly large) “character”: The text's line
height and character placement are adjusted to accommodate the graphic
“character.” Graphics are embedded in the text in either of two ways:
programmatically or directly through user actions.

In the programmatic approach, you add an object—generally a subclass of
NSCell —to the text. This object manages the graphic image by drawing it
when appropriate. Although NSCell subclasses are commonly used, the only
requirement is that the embedded object responds to these messages—see the
“Methods Implemented by an Embedded Graphic Object” section for more
information:

• highlight:withFrame:inView:
• drawWithFrame:inView:
• trackMouse:inRect:ofView:untilMouseUp:
• cellSize:
• readRichText:forView:
• richTextforView:

You place the graphic object in the text by sending the NSCStringText object
a replaceSelWithCell: message.

An NSCStringText object displays a graphic in its text by sending the
managing object a drawWithFrame:inView: message. To record the graphic
to a file or to the pasteboard, the NSCStringText object sends the managing
object a richTextforView: message. The object must then write an RTF
control word along with any data such as the path of a TIFF file containing its
image data it might need to recreate its image. To reestablish the text
containing the graphic image from RTF data, an NSCStringText object must
know which class to associate with particular RTF control words. You associate
a control word with a class object by sending the NSCStringText class object
a registerDirective:forClass: message. Thereafter, whenever an
NSCStringText object finds the registered control word in the RTF data being
read from a file or the pasteboard, it will create a new instance of the class and
send the object a readRichText:forView: message.

NSCStringText 1-201

1

An alternate means of adding an image to the text is for the user to drag an
EPS or TIFF file icon directly into an NSCStringText object. The
NSCStringText object automatically creates a graphic object to manage the
display of the image. This feature requires a rich NSCStringText object that
has been configured to receive dragged images. See the
setImportsGraphics: method.

Images that have been imported in this way can be written as RTFD
documents. Programmatic creation of RTFD documents is not supported in this
version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file
package has the name of the document plus a .rtfd extension. The file
package always contains a file called TXT.rtf for the text of the document,
and one or more TIFF or EPS files for the images. An NSCStringText object
can transfer information in an RTFD document to a file and read it from a file.
See the writeRTFDToFile:atomically: and readRTFDFromFile:
methods in the NSText methods.

Cooperating with Other Objects and Services

NSCStringText objects are designed to work with the Application Kit's font
conversion system. By default, an NSCStringText object keeps the Font panel
updated with the font of the current selection. It also changes the font of the
selection (for a rich NSCStringText object) or of the entire text (for a default
NSCStringText object) to reflect the user's choices in the Font panel or menu.
To disconnect an NSCStringText object from this service, send it a
setUsesFontPanel:NO message.

If an NSCStringText object is a subview of an NSScrollView , it can
cooperate with the NSScrollView to display and update a ruler that displays
formatting information. The NSScrollView retiles its subviews to make room
for the ruler, and the NSCStringText object updates the ruler with the format
information of the paragraph containing the selection. The toggleRuler:
method controls the display of this ruler. Users can modify paragraph formats
by manipulating the components of the ruler.

By means of the Services menu, an NSCStringText object can make use of
facilities outside the scope of its own application. By default, an
NSCStringText object registers with the services system that it can send and
receive RTF and plain ASCII data. If the application containing the
NSCStringText object has a Services menu, a menu item is added for each

1-202 OpenStep Programming Reference—September 1996

1

service provider that can accept or return these formats. To prevent
NSCStringText objects from registering for services, send the
NSCStringText class object an excludeFromServicesMenu:YES message
before any NSCStringText objects are created.

Coordinates and sizes mentioned in the method descriptions that follow are in
PostScript units—1/72 of an inch.

NSCStringText 1-203

1

Method Types

Activity Class Method

Initializing a new
NSCStringText object

– initWithFrame:text:alignment:

Modifying the frame
rectangle

– resizeTextWithOldBounds:maxRect:

Managing global
characteristics

– setImportsGraphics:
– setRichText:

Laying out the text – calcLine
– changeTabStopAt:to:
– charWrap
– defaultParagraphStyle
– descentLine
– getMarginLeft:right:top:bottom:
– getMinWidth:minHeight:maxWidth:maxHeight:
– lineHeight
– paragraphStyleForFont:alignment:
– setCharWrap:
– setDescentLine:
– setLineHeight:
– setMarginLeft:right:top:bottom:
– setNoWrap
– setParagraphStyle:
– setSelProp:to:

Reporting line and position – lineFromPosition:
– positionFromLine:

Reading and writing text – finishReadingRichText
– firstTextBlock
– paragraphRect:start:end:
– startReadingRichText

Editing text – clear:
– hideCaret
– showCaret

1-204 OpenStep Programming Reference—September 1996

1

Managing the selection – getSelectionStart:end:
– replaceSel:
– replaceSel:length:
– replaceSel:length:runs:
– scrollSelToVisible
– selectError
– selectNull
– setSelectionStart:end:
– selectText:

Setting the font + defaultFont
+ setDefaultFont:
– setFont:paragraphStyle:
– setSelFont:
– setSelFont:paragraphStyle:
– setSelFontFamily:
– setSelFontSize:
– setSelFontStyle:

Finding text – findText:ignoreCase:backwards:wrap:

Modifying graphic attributes – runColor:
– selColor
– setSelColor:

Reusing an NSCStringText
object

– renewFont:text:frame:tag:
– renewFont:size:style:text:frame:tag:
– renewRuns:text:frame:tag:

Setting window attributes – isRetainedWhileDrawing
– setRetainedWhileDrawing:

Assigning a tag – setTag:
– tag

Handling event messages – becomeKeyWindow
– moveCaret:
– resignKeyWindow

Displaying graphics within
the text

+ registerDirective:forClass:
– locationOfCell:
– replaceSelWithCell:
– setLocation:ofCell:

Using the services menu and
the pasteboard

+ excludeFromServicesMenu:
– readSelectionFromPasteboard:
– validRequestorForSendType:returnType:
– writeSelectionToPasteboard:types:

Activity Class Method

NSCStringText 1-205

1

Class Methods

defaultFont

+ (NSFont *)defaultFont

Setting tables and functions – breakTable
– charCategoryTable
– charFilter
– clickTable
– drawFunc
– postSelSmartTable
– preSelSmartTable
– scanFunc
– setBreakTable:
– setCharCategoryTable:
– setCharFilter:
– setClickTable:
– setDrawFunc:
– setPostSelSmartTable:
– setPostSelSmartTable:
– setScanFunc:
– setTextFilter:
– textFilter

Printing – adjustPageHeightNew:top:bottom:limit:

Implemented by an
embedded graphic object

– cellSize
– drawWithFrame:inView:
– highlight:withFrame:inView:
– readRichText:forView::
– richTextForView:
– trackMouse:inRect:ofView:untilMouseUp:

Comparing methods – cStringTextInternalState

Methods Implemented by
the Delegate

– textDidRead:paperSize:
– textDidResize:oldBounds:
– textWillConvert:fromFont:toFont:
– textWillFinishReadingRichText:
– textWillResize:
– textWillSetSel:toFont:
– textWillStartReadingRichText:
– textWillWrite:

Activity Class Method

1-206 OpenStep Programming Reference—September 1996

1

Returns the default font object tfor NSCStringText objects. Unless you’ve
changed the default font by sending a setDefaultFont: message, this
method returns a font object for a 12-point Helvetica font with a flipped font
matrix. See also setDefaultFont: , setFont:paragraphStyle: ,
setSelFont: .

excludeFromServicesMenu:

+ excludeFromServicesMenu:(BOOL)flag

Controls whether NSCStringText objects will communicate with
interapplication services through the Services menu. By default, as each new
NSCStringText instance is initialized, it registers with the NSApplication
object that it’s capable of sending and receiving the pasteboard types identified
by NSStringPboardType and NSRTFPboardType . If you want to prevent
your applications NSCStringText objects from registering for services that
can receive and send these types, send the text class object an
excludeFromServicesMenu:YES message. If, for example, your application
displays text but doesn’t have editable text fields, you might use this method.

Send an excludeFromServicesMenu: message early in the execution of your
application, either before sending the NSApplication object a run message
or in the NSApplication delegate’s appWillFinishLaunching: method.
See also readSelectionFromPasteboard: ,
writeSelectionToPasteboard:types: ,
validRequestorForSendType:returnType: .

registerDirective:forClass:

+ registerDirective:(NSString *)directive forClass:class

Creates an association in the NSCStringText class object between the RTF
control word directive and class , a class object (usually NSCell or a
subclass). Thereafter, when a text object encounters directive while reading
a stream of RTF text, it creates a new class instance. The new instance is sent
a readRichText:forView: message to let it read its image data from the
RTF text. Conversely, when a text object is writing RTF data and encounters an
object of the class class, the text object sends the object a
richTextForView: message to let it record its representation in the RTF text.

NSCStringText 1-207

1

This method is instrumental in enabling a text object to read, display, and write
an image within a text stream. An object of the class class must implement
these methods:

• cellSize:
• drawWithFrame:inView:
• highlight:withFrame:inView:
• readRichText:forView:
• richTextForView:
• trackMouse:inRect:ofView:untilMouseUp:

See the “Methods Implemented by an Embedded Graphic Object” section for
more information on these methods.

setDefaultFont:

+ (void)setDefaultFont:(NSFont *)anObject

Sets the default font for the NSCStringText class object. Since an
NSCStringText object uses a flipped coordinate system, make sure the font
object you specify uses a matrix that flips the y-axis of the characters. See also
defaultFont .

Instance Methods

adjustPageHeightNew:top:bottom:limit:

– (void)adjustPageHeightNew:(float *)newBottom top:(float)oldTop
bottom:(float)oldBottom limit:(float)bottomLimit

Assists with automatic pagination of text. During automatic pagination, this
method is performed to help lay a grid of pages over the top-level view being
printed. newBottom is passed in undefined and must be set by this method.
oldTop and oldBottom are the current values for the horizontal strip being
created. bottomLimit is the topmost value newBottom can be set to. If this
limit is broken, the new value is ignored. By default, this method tries to
prevent the view from being cut in two. All parameters are in the view’s own
coordinate system.

1-208 OpenStep Programming Reference—September 1996

1

becomeKeyWindow

– (void)becomeKeyWindow

Activates the caret if the selection has a width of 0. This message is sent by an
application’s NSWindow object, which, upon receiving a mouse-down event,
sends a becomeKeyWindow message to the first responder. You should never
directly send this message to a text object. See also resignKeyWindow ,
moveCaret: .

breakTable

– (const NSFSM *)breakTable

Returns a pointer to the break table, the finite-state machine table that the
NSCStringText object uses to determine word boundaries. See also
setBreakTable: , charCategoryTable , clickTable ,
postSelSmartTable , preSelSmartTable .

calcLine

– (int)calcLine

Calculates the array of line breaks for the text. The text will then be redrawn if
autodisplay is set. This message should be sent after the text object’s frame is
changed. These methods send a calcLine message as part of their
implementation:

• initWithFrame:text:alignment:
• renewFont:text:frame:tag:
• renewRuns:text:frame:tag:
• setFont:paragraphStyle:
• setText:range:
• renewFont:size:style:text:frame:tag:
• setFont: (see NSText)
• setParagraphStyle:
• setText: (see NSText)

cellSize

– (NSSize)cellSize

NSCStringText 1-209

1

Responds to a message from the text object by providing the graphic object’s
width and height. The text object uses this information to adjust character
placement and line height to accommodate the display of the graphic object in
the text. See also cellSize (NSCell).

changeTabStopAt:to:

– (BOOL)changeTabStopAt:(float)oldX to:(float)newX

Moves the tab stop from the receiving text object’s x coordinate oldX to the
coordinate newX. For a plain Text object, all paragraphs are affected. For a rich
text object, only those paragraphs marked by the selection are affected. The
text is rewrapped and redrawn. Returns YES upon successful completion.

charCategoryTable

– (const unsigned char *)charCategoryTable

Returns a pointer to the character category table, the table that maps ASCII
characters to character categories. See also setCharCategoryTable: .

charFilter

– (NSCharFilterFunc)charFilter

Returns the current character filter function (the function that analyzes each
character the user enters). By default, this function is NSEditorFilter() . See
also setCharFilter: .

charWrap

– (BOOL)charWrap

Returns a flag indicating how words whose length exceeds the line length
should be treated. If YES is returned, long words are wrapped on a character
basis. If NO is returned, long words are truncated at the frame boundary. See
also setCharWrap: .

clear:

– (void)clear:(id)sender

1-210 OpenStep Programming Reference—September 1996

1

Deletes the selected text.

clickTable

– (const NSFSM *)clickTable

Returns a pointer to the click table, the finite-state machine table that defines
word boundaries for double-click selection. See also setClickTable: .

cStringTextInternalState

- (NSCStringTextInternalState *)cStringTextInternalState

Returns a structure that represents the instance variables of the NSCStringText
object. The structure is defined in appkit/NSCStringText.h , and in the
“Types and Constants” chapter of the Application Kit documentation. Note
that this method is provided for applications that really must depend on
changing the values of an NSCStringText object’s instance variables.

defaultParagraphStyle

– (void *)defaultParagraphStyle

Returns the default paragraph style. The pointer that’s returned refers to an
NSTextStyle structure. The fields of this structure contain default paragraph
indentation, alignment, line height, descent line, and tab information. The text
object’s default values for these attributes can be altered using methods such as
setParagraphStyle: , setLineHeight: , and setDescentLine: .

descentLine

– (float)descentLine

Returns the distance from the bottom of a line of text to the base line of the
text. See also setDescentLine: .

drawFunc

– (NSTextFunc)drawFunc

Returns the current draw function, the function that’s called to draw each line
of text. See also setDrawFunc: .

NSCStringText 1-211

1

drawWithFrame:inView:

– (void)drawWithFrame:(NSRect)cellFrame inView:(NSView
*)controlView

The embedded object draws itself, including frame, in cellFrame within
controlView . Don’t send a this message directly, although you may want to
override this method to change the way an embedded text object draws itself.

findText:ignoreCase:backwards:wrap:

– (BOOL)findText:(NSString *)textPattern
ignoreCase:(BOOL)ignoreCase

backwards:(BOOL)backwards wrap:(BOOL)wrap

Searches for textPattern in the text, starting at the insertion point.
ignoreCase instructs the search to disregard case; backwards means search
backwards; wrap means that when the search reaches the beginning or end of
the text (depending on the direction), it should continue by wrapping to the
end or beginning of the text.

finishReadingRichText

– (void)finishReadingRichText

Sent after the NSCStringText object reads RTF data, this message notifies the
text object that it has finished reading RTF data. The text object responds by
sending its delegate a textWillFinishReadingRichText: message,
assuming there is a delegate and it responds to this message. The delegate can
then perform any required cleanup. Alternatively, a subclass could put these
cleanup routines in its own implementation of this method. See also
startReadingRichText , firstTextBlock .

firstTextBlock

– (NSTextBlock *)firstTextBlock

1-212 OpenStep Programming Reference—September 1996

1

Returns a pointer to the first text block in the NSCStringText object. You can
traverse this head of the linked list of text blocks to read the contents of the
text object. See also startReadingRichText ,
paragraphRect:start:end: .

getMarginLeft:right:top:bottom:

– (void)getMarginLeft:(float *)leftMargin
right:(float *)rightMargin top:(float *)topMargin
bottom:(float *)bottomMargin

Calculates the dimensions of the text object’s margins and returns by reference
these values in its four arguments. See also
setMarginLeft:right:top:bottom: .

getMinWidth:minHeight:maxWidth:maxHeight:

– (void)getMinWidth:(float *)width minHeight:(float *)height
maxWidth:(float)widthMax maxHeight:(float)heightMax

Given the widthMax and heightMax (width and height maximums), this
method calculates the minimum area needed to display the text and returns
width and height by reference. This method doesn’t rewrap the text. To get
the absolute minimum dimensions of the text, send this message only after
sending a calcLine message.

getSelectionStart:end:

– (void)getSelectionStart:(NSSelPt *)start end:(NSSelPt *)end

Copies the starting and ending character positions of the selection into the
addresses referred to by start and end . start points to the beginning of the
selection; end points to the end of the selection. See also
setSelectionStart:end: .

hideCaret

– (void)hideCaret

Removes the caret from the text. The text object sends itself hideCaret
messages whenever the display of the caret would be inappropriate; you rarely
need to send a hideCaret message directly. Occasions when the hideCaret

NSCStringText 1-213

1

message is sent include whenever the text object receives a
resignKeyWindow , mouseDown: (NSObject), or keyDown: (NSObject ,
NSWindow) message.

highlight:withFrame:inView:

– (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame
inView:(NSView *)controlView

Upon receiving this message, the embedded object highlights or unhighlights
itself with cellFrame of controlView . If flag is YES, this method should
draw the graphic object in its highlighted state; if NO, it should draw the
graphic object in its normal state. See the NSCell class specification for one
implementation of this method. See also drawWithFrame:inView: .

initWithFrame:text:alignment:

– (id)initWithFrame:(NSRect)frameRect text:(NSString *)theText
alignment:(NSTextAlignment)mode

Returns a new NSCStringText object at frameRect , initialized with the
contents of theText and with mode alignment. mode can be one of the
following values:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

This method is the designated initializer for text objects. If you derive a
subclass, your subclass’s designated initializer must mantain the initializer
chain by sending a message to super to invoke this method.

The text object returned by this method uses the class object’s default font and
uses NSEditorFilter() as its character filter. It wraps words whose length
exceeds the line length. It sets its view properties to draw in its superview, to
be flipped, and to be transparent. For more efficient editing, you can send a
setOpaque: (NSImageRep) message to make the text object opaque.

1-214 OpenStep Programming Reference—September 1996

1

Text editing is designed to work in buffered windows only. In a nonretained or
retained window, editing text in a text object causes flickering. However, to get
better drawing performance without causing flickering during editing, see
setRetainedWhileDrawing: .

isRetainedWhileDrawing

– (BOOL)isRetainedWhileDrawing

Returns YES if the text object automatically changes its window’s buffering
type from buffered to retained whenever it redraws itself, and returns NO if
not. See also setRetainedWhileDrawing: .

lineFromPosition:

– (int)lineFromPosition:(int)position

Returns the line number that contains the character at position . See also
positionFromLine: .

lineHeight

– (float)lineHeight

Returns height of a line of text. See also setLineHeight: .

locationOfCell:

– (NSPoint)locationOfCell:(NSCell *)cell

Returns the x and y coordinates of cell . The coordinates are in the text
object’s coordinate system. cell is an NSCell object that’s displayed as part of
the text. See also NSPoint .

moveCaret:

– (void)moveCaret:(unsigned short)theKey

Moves the caret either left, right, up, or down if theKey is
NSLeftTextMovement , NSRightTextMovement , NSUpTextMovement , or
NSDownTextMovement . If theKey isn’t one of these four values, the caret
doesn’t move. See also hideCaret , showCaret .

NSCStringText 1-215

1

paragraphRect:start:end:

– (NSRect)paragraphRect:(int)paraNumber start:(int *)startPos
end:(int *)endPos

Returns the location and size of a paragraph identified by paraNumber ; also
returns the starting and ending character positions by reference. A paragraph
ends in a return character; the first paragraph is paragraph 0, the second is
paragraph 1, and so on. See also firstTextBlock .

paragraphStyleForFont:alignment:

– (void *)paragraphStyleForFont:(NSFont *)fontId
alignment:(int)alignment

Recalculates the paragraph style based on new font fontId and alignment .
The text object sends this message for you after its font has been changed; you
will rarely need to send this message directly. Returns a pointer to an
NSTextStyle structure that describes the default style. See also
defaultParagraphStyle .

positionFromLine:

– (int)positionFromLine:(int)line

Returns the character position of the line numbered line . Each line is
terminated by a Return character, and the first line in a text object is line 1. To
find the length of a line, you can send this message with two successive lines,
and use the difference of the two to get the line length. See also
lineFromPosition: .

postSelSmartTable

– (const unsigned char *)postSelSmartTable

Returns a pointer to the table that specifies which characters on the right end
of a selection are treated as equivalent to a space character. See also
setPostSelSmartTable: , preSelSmartTable .

preSelSmartTable

– (const unsigned char *)preSelSmartTable

1-216 OpenStep Programming Reference—September 1996

1

Returns a pointer to the table that specifies which characters on the left end of
a selection are treated as equivalent to a space character. See also
setPreSelSmartTable: , postSelSmartTable .

readRichText:forView:

– (void)readRichText:(NSString *)stringObject forView:(NSView
*)view

Responds to a message sent by the text object when it encounters an RTF
control word that’s associated with the embedded graphic object’s class (see
registerDirective:forClass:). The text object passes its id as the view
argument. See also richTextForView: .

readSelectionFromPasteboard:

– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Replaces the current selection with data from pasteboard pboard . When the
user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first
responder. That message is followed by a readSelectionFromPasteboard:
message, if the command requires the requesting application to replace its
selection with data from the service provider. See also
writeSelectionToPasteboard:types: ,
validRequestorForSendType:returnType: .

renewFont:text:frame:tag:

– (void)renewFont:(NSFont *)newFontObj text:(NSString *)newText
frame:(NSRect)newFrame tag:(int)newTag

Resets the NSCStringText object to draw different text newText in font
newFontObj within frame newFrame . newTag sets a text object’s tag. If
newText is NULL, the new text is the same as the previous text. This method is
a convenient cover for the renewRuns:text:frame:tag: method. See also
renewFont:size:style:text:frame:tag: .

NSCStringText 1-217

1

renewFont:size:style:text:frame:tag:

– (void)renewFont:(NSString *)newFontName size:(float)newFontSize
style:(int)newFontStyle text:(NSString *)newText
frame:(NSRect)newFrame tag:(int)newTag

Resets the NSCStringText object to draw different text newText in the font
identified by newFontName , newFontSize , and newFontStyle . Drawing
occurs within frame newFrame . This method is a convenient cover for the
renewRuns:text:frame:tag: method. See also
renewFont:text:frame:tag: .

renewRuns:text:frame:tag:

– (void)renewRuns:(NSRunArray *)newRuns text:(NSString *)newText
frame:(NSRect)newFrame tag:(int)newTag

Resets a text object so that it can be reused to draw or edit another piece of
text. If newRuns is NULL, the new text uses the same runs as the previous text.
If newText is NULL, the new text is the same as the previous text. newTag sets
a text object’s tag. See also renewFont:size:style:text:frame:tag: .

replaceSel:

– (void)replaceSel:(NSString *)aString

Replaces the current selection with text from aString , a null-terminated
character string, and then rewraps and redisplays the text. See also
replaceSel:length: .

replaceSel:length:

– (void)replaceSel:(NSString *)aString length:(int)length

Replaces the selection with length bytes of aString .

Replaces the current selection with length bytes of aString , and then
rewraps and redisplays the text. See also replaceSel: ,
replaceSel:length:runs: .

1-218 OpenStep Programming Reference—September 1996

1

replaceSel:length:runs:

– (void)replaceSel:(NSString *)aString length:(int)length
runs:(NSRunArray *)insertRuns

Replaces the selection with length bytes of aString . insertRuns is a
pointer to the current run in the run array. After replacing the selection, this
method rewraps and redisplays the text. See also replaceSel: ,
replaceSel:length: .

replaceSelWithCell:

– (void)replaceSelWithCell:(NSCell *)cell

Replaces the current selection with the image provided by cell . This method
works only with rich text objects. The image is treated like a single character.
Its height and width are determined by sending the cell a cellSize: message.
The height determines the line height of the line containing the image, and the
width sets the character placement in the line. The image is drawn by sending
the cell a drawWithFrame:inView: message. After receiving a
replaceSelWithCell: message, a text object rewraps and redisplays its
contents. See replaceSel: .

resignKeyWindow

– (void)resignKeyWindow

Deactivates the caret when the text object’s window ceases to be the key
window. A window, before it ceases to be the application’s key window, sends
this message to its first responder. Never directly send this message to a text
object. See also becomeKeyWindow .

resizeTextWithOldBounds:maxRect:

– (void)resizeTextWithOldBounds:(NSRect)oldBounds
maxRect:(NSRect)maxRect

Used by the NSCStringText object to resize and redisplay itself, after the text
object’s frame has changed in response to editing. Don’t send this message
directly, but you can override it.

NSCStringText 1-219

1

richTextForView:

– (NSString *)richTextForView:(NSView *)view

Causes the embedded object to store its RTF representation within view as a
string object and returns it. See also readRichText:forView: .

runColor:

– (NSColor *)runColor:(NSRun *)run

Returns the color of the specified text run . By definition, a run can have no
more than one color. See also selColor , NSColor .

scanFunc

– (NSTextFunc)scanFunc

Returns the scan function, the function that calculates the contents of each line
of text given the line width, font size, text alignment, and other factors.
NSScanALine() is the default scan function. See also setScanFunc: ,
drawFunc .

scrollSelToVisible

– (void)scrollSelToVisible

Scrolls the text so that the current selection is visible within the frame
rectangle. This method works by invoking the scrollRectToVisible:
method (NSView).

selColor

– (NSColor *)selColor

Returns the color of the selected text. See also setSelColor: .

selectError

– (void)selectError

1-220 OpenStep Programming Reference—September 1996

1

Makes the entire text the selection and highlights it. The text object applies this
method if the delegate requires the text object to maintain its status as the first
responder. You rarely need to send this message directly, although you may
want to override it. To highlight a portion of the text, use
setSelectionStart:end: . See also selectNull .

selectNull

– (void)selectNull

Removes the selection and makes the highlighting (or caret, if the selection is
zero-length) disappear. The text object’s delegate isn’t notified of the change.
The text object sends a this message whenever it needs to end the current
selection but retain its status as the first responder; you rarely need to override
this method or send selectNull messages directly. See also selectError .

selectText:

– (void)selectText:(id)sender

Attempts to make a text object the first responder and, if successful, then
selects all of its text. See also selectError , setSelectionStart:end: .

setBreakTable:

– (void)setBreakTable:(const NSFSM *)aTable

Sets the break table, the finite-state machine table that the text object uses to
determine word boundaries. See also breakTable .

setCharCategoryTable:

– (void)setCharCategoryTable:(const unsigned char *)aTable

Sets the table that maps ASCII characters to character categories used in the
word wrap or click tables. See also charCategoryTable .

setCharFilter:

– (void)setCharFilter:(NSCharFilterFunc)aFunction

NSCStringText 1-221

1

Sets the character filter function to aFunction. This function analyzes each
character the user enters. The text object has two character filter functions:
NSFieldFilter() and NSEditorFilter() . NSFieldFilter() interprets
Tab and Return characters as commands to end the text object’s status as the
first responder. NSEditorFilter() , the default filter function, accepts Tab
and Return characters into the text. See also charFilter .

setCharWrap:

– (void)setCharWrap:(BOOL)flag

Sets how to treat words whose length exceeds the line length. If YES, long
words are wrapped on a character basis. If NO, long words are truncated at the
frame boundary. See also charWrap .

setClickTable:

– (void)setClickTable:(const NSFSM *)aTable

Sets the finite-state machine table that defines word boundaries for double-
click selection. See also clickTable .

setDescentLine:

– (void)setDescentLine:(float)value

Sets the distance from the base line to the bottom of line to value . This
method neither rewraps nor redraws the text. Send a calcLine message if you
want the text rewrapped and redrawn after you reset the descent line. See also
descentLine .

setDrawFunc:

– (void)setDrawFunc:(NSTextFunc)aFunction

Makes aFunction the function that draws the text. NSDrawALine() is the
default draw function. See also drawFunc .

setFont:paragraphStyle:

– (void)setFont:(NSFont *)fontObj
paragraphStyle:(void *)paragraphStyle

1-222 OpenStep Programming Reference—September 1996

1

Sets the font object and paragraph style for all text. The text is then rewrapped
and redrawn. The paragraph style controls such features as tab stops and line
indentation. See also setSelFont: .

setImportsGraphics:

– (void)setImportsGraphics:(BOOL)flag

Sets whether the text object can import TIFF and EPS images dragged into it by
the user. A setImportsGraphics:YES message causes a setRichText:YES
message to be sent also. This implemenation overrides the method inherited
from NSText . See setRichText: .

setLineHeight:

– (void)setLineHeight:(float)value

Sets the minimum distance between adjacent lines. For a plain text object, this
will be the same for all lines. For rich text objects, line heights will be increased
for lines with larger fonts. Even if very small fonts are used, in no case will
adjacent lines be closer than this minimum. This method doesn’t rewrap or
redraw the text. Send a calcLine message if you want the text rewrapped and
redrawn after you reset the line height. If no line height is set, the default line
height will be taken from the default font. See also lineHeight .

setLocation:ofCell:

– (void)setLocation:(NSPoint)origin ofCell:(NSCell *)cell

Sets the x and y coordinates for the NSCell object specified by cell . The
coordinates are specified to by origin and are interpreted as being in the text
object’s coordinate system. This method is provided for programmers who
want to write their own scan functions and need a way to position NSCell
objects found in the text. Sending this message to a text object that uses the
standard scan function will have no effect on the placement of cell . See also
locationOfCell: , replaceSelWithCell: .

setMarginLeft:right:top:bottom:

– (void)setMarginLeft:(float)leftMargin right:(float)rightMargin
top:(float)topMargin bottom:(float)bottomMargin

NSCStringText 1-223

1

Adjusts the margins around the text. See also
getMarginLeft:right:top:bottom: .

setNoWrap

– (void)setNoWrap

Disables word wrap. It also sets the text alignment to NSLeftTextAlignment .
See also charWrap , setCharWrap: .

setParagraphStyle:

– (void)setParagraphStyle:(void *)paraStyle

Sets the default paragraph style for the entire text. The text is then rewrapped
and redrawn. The paragraph style controls features such as tab stops and line
indentation. See also setFont:paragraphStyle: , setSelFont: .

setPostSelSmartTable:

– (void)setPostSelSmartTable:(const unsigned char *)aTable

Sets the table that specifies which characters on the right end of a selection are
treated as equivalent to a space character. See also postSelSmartTable ,
setPreSelSmartTable: .

setPreSelSmartTable:

– (void)setPreSelSmartTable:(const unsigned char *)aTable

Sets the table that specifies which characters on the left end of a selection are
treated as equivalent to a space character. See also preSelSmartTable ,
setPostSelSmartTable: .

setRetainedWhileDrawing:

– (void)setRetainedWhileDrawing:(BOOL)flag

1-224 OpenStep Programming Reference—September 1996

1

Sets whether the text object automatically changes its window’s buffering type
from buffered to retained whenever it redraws itself. Drawing directly to the
screen improves the text object’s perceived performance, especially if the text
contains numerous fonts and formats. Rather than waiting until the entire text
is flushed to the screen, the user sees the text being drawn line-by-line.

The window’s buffering type changes to retained only while the text object is
redrawing itself. In other cases, such as when a user is entering text, the
window’s buffering type is unaffected. This method is designed to work with
text objects that are in buffered windows; don’t send this message to a text
object in a retained or nonretained window. See also
isRetainedWhileDrawing .

setRichText:

– (void)setRichText:(BOOL)flag

Sets whether the text in the text object allows for multiple values of attributes,
such as color and font (that is, RTF and RTFD). Sending a setRichText:NO
message causes a setImportsGraphics:NO message to be sent also. This
implemenation overrides the method inherited from NSText . See also
isRichText (NSText), setImportsGraphics: .

setScanFunc:

– (void)setScanFunc:(NSTextFunc)aFunction

Sets the function that calculates the contents of each line of text given the line
width, font size, type of text alignment, and other factors. NSScanALine() is
the default scan function. See also scanFunc , setDrawFunc: .

setSelColor:

– (void)setSelColor:(NSColor *)color

Sets the text color of the selected text, assuming the text object allows more
than one paragraph style and font. Otherwise, this method sets the text color
for the entire text. After the text color is set, the text is redisplayed. See also
selColor , runColor: , setSelFont: , NSColor .

NSCStringText 1-225

1

setSelFont:

– (void)setSelFont:(NSFont *)fontObj

Sets the font object for the selection. The text is then rewrapped and redrawn.
See also setSelFont:paragraphStyle: , setSelFontFamily: ,
setSelFontSize: .

setSelFont:paragraphStyle:

– (void)setSelFont:(NSFont *)fontObj
paragraphStyle:(void *)paragraphStyle

Sets the NSFont object and paragraph style for the selection. If fontObj is
NULL, no change is made to the selection’s font. See also setSelFont: .

setSelFontFamily:

– (void)setSelFontFamily:(NSString *)fontName

Sets the current selection’s font family to fontName . The text is then
rewrapped and redrawn. See also setSelFontSize: , setSelFont: .

setSelFontSize:

– (void)setSelFontSize:(float)size

Sets the current selection’s font size to size . The text is then rewrapped and
redrawn. See also setSelFontFamily: , setSelFont: .

setSelFontStyle:

– (void)setSelFontStyle:(NSFontTraitMask)traits

Sets the current selection’s font style. The text is then rewrapped and redrawn.
See also setSelFontFamily: , setSelFontSize: , setSelFont: .

setSelProp:to:

– (BOOL)setSelProp:(NSParagraphProperty)property to:(float)value

1-226 OpenStep Programming Reference—September 1996

1

Sets the paragraph style for one or more paragraphs. For a plain text object, all
paragraphs are affected. For a rich text object, only those paragraphs marked
by the selection are affected. property determines which property is
modified, and value provides additional information needed for some
properties. These constants are defined for property :

Constant Property Affected

NSLeftAlignedParagraph Text alignment. Aligns the text to
the left margin. value is ignored.

NSRightAlignedParagraph Text alignment. Aligns the text to
the right margin. value is ignored.

NSCenterAlignedParagraph Text alignment. Centers the text
between the left and right margins.
value is ignored.

NSJustificationAlignedParagraph Not yet implemented.

NSFirstIndentParagraph Indentation of the first line. value
specifies the number of units (in the
receiver’s coordinate system) along
the x axis to indent.

NSIndentParagraph Indentation of lines other than the
first line. value specifies the
number of units (in the receiver’s
coordinate system) along the x axis
to indent.

NSAddTabParagraph Tab placement. value specifies the
position on the x axis (in the
receiver’s coordinate system) to add
the new tab.

NSRemoveTabParagraph Tab placement. value identifies the
tab to be removed by specifying its
position on the x axis (in the
receiver’s coordinate system).

NSLeftMarginParagraph Left margin width. value gives the
new width as a number of units in
the receiver’s coordinate system.

NSRightMarginParagraph Right margin width. value gives
the new width as a number of units
in the receiver’s coordinate system.

NSCStringText 1-227

1

setSelProp:to: sets the left and right margins by performing the
setMarginLeft:right:top:bottom: method. For all other properties, it
performs the setFont:paragraphStyle: method. After the paragraph
property is set, the text is rewrapped and redrawn. See also
setParagraphStyle: , setMarginLeft:right:top:bottom: .

setSelectionStart:end:

– (void)setSelectionStart:(int)start end:(int)end

Makes the text object the first responder and then selects and highlights a
portion of the text from start to end . To create an empty selection, start
must equal end . Use this method to select a portion of the text
programmatically. See also selectError , selectNull .

setTag:

– (void)setTag:(int)anInt

Makes anInt the text object’s tag. See also tag .

setTextFilter:

– (void)setTextFilter:(NSTextFilterFunc)aFunction

Sets the function that analyzes text the user enters. See the
NSTextFilterFunc type definition in the Application Kit’s “Types and
Constants chapter” for a description of the text filter function. This filter is
different from the character filter in that you’re given where the text is to be
inserted and the new text that will be inserted. This enables you to write a
filter to do auto-indent, or a filter to allow only properly formatted floating
point numbers. The character filter doesn’t give enough context to determine
exactly what the state of the text object is before and after the edit. See also
textFilter .

showCaret

– (void)showCaret

1-228 OpenStep Programming Reference—September 1996

1

Displays the previously hidden caret in the text display. The text object sends
itself showCaret messages whenever it needs to redisplay the caret; you rarely
need to send a showCaret message directly. If the text object is not in a
window, or the window is not the key window, or the ext object is not editable,
this method has no effect. See also hideCaret .

startReadingRichText

– (void)startReadingRichText

This message is sent to the text object just before it begins reading RTF data.
The text object responds by sending its delegate a
textWillStartReadingRichText: message, assuming there is a delegate
and it responds to this message. The delegate can then perform any required
initialization. Alternatively, a subclass could put these initialization routines in
its own implementation of this method. See also finishReadingRichText .

tag

– (int)tag

Returns the text object’s tag. See also setTag: .

textFilter

– (NSTextFilterFunc)textFilter

Returns the current text filter function. See also setTextFilter: .

trackMouse:inRect:ofView:untilMouseUp:

– (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame
ofView:(NSView *)controlView untilMouseUp:(BOOL)untilMouseUp

The embedded object responds to this message from the text object by tracking
the mouse while it’s within the specified rectangle of the supplied view.
theEvent is a pointer to the mouse-down event that caused the text object to
send this message. cellFrame is the area within controlView (generally the
text object) where the mouse will be tracked. See the NSCell class specification
for one implementation of this method.

NSCStringText 1-229

1

validRequestorForSendType:returnType:

– (id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType

Responds to a message that the NSApplication object sends to determine
which items in the Services menu should be enabled or disabled at any
particular time. Don’t send this message directly, but you can override it in a
subclass.

A text object registers for services during initialization (however, see
excludeFromServicesMenu:). Thereafter, whenever the text object is the
first responder, the application object can send it one or more
validRequestorForSendType:ReturnType: messages during event
processing to determine which Services menu items should be enabled. If the
ext object can place data of type sendType on the pasteboard and receive data
of type returnType back, it should return self ; otherwise it should return
nil . The application object checks the return value to determine whether to
enable or disable commands in the Services menu.

Since an object can receive one or more of these messages per event, it’s
important that if you override this method in a subclass of text, the new
implementation include no time-consuming calculations. See also
validRequestorForSendType:returnType: (NSResponder).

writeSelectionToPasteboard:types:

– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types

Writes the current selection to the supplied pasteboard object, pboard . types
lists the data types to be copied to the pasteboard. A return value of NO
indicates that the data of the requested types could not be provided. When the
user chooses a command in the Services menu, this message is sent to the first
responder. This message is followed by a readSelectionFromPasteboard:
message if the command requires the requesting application to replace its
selection with data from the service provider. See also
readSelectionFromPasteboard: .

1-230 OpenStep Programming Reference—September 1996

1

Methods Implemented by the Delegate

textDidRead:paperSize:

– (void)textDidRead:(NSCStringText *)textObject
paperSize:(NSSize)paperSize

Lets the delegate review paper size. This message is sent to the delegate after
the text object reads RTF data, allowing the delegate to modify the paper size.
paperSize is the dimensions of the paper size specified by the \paperw and
\paperh RTF control words. See also textWillWrite: .

textDidResize:oldBounds:

– (NSRect)textDidResize:(NSCStringText *)textObject
oldBounds:(NSRect)oldBounds

Responds to a message informing the delegate that the text object has changed
its size. oldBounds is the text object’s bounds rectangle before the change.

textWillConvert:fromFont:toFont:

– (NSFont *)textWillConvert:(NSCStringText *)textObject
fromFont:(NSFont *)font toFont:(NSFont *)font

This message lets the delegate intercede in a selection’s font change. The
message is sent whenever the Font panel sends a changeFont: (NSText class)
message to the text object. fromFont is the old font that’s currently being
changed; toFont is the font that’s to replace fromFont .

textWillFinishReadingRichText:

– (void)textWillFinishReadingRichText:(NSCStringText *)textObject

Informs the delegate that the text object finished reading RTF data, either from
the pasteboard or from a text file.

textWillResize:

– (void)textWillResize:(NSCStringText *)textObject

NSCursor 1-231

1

Informs delegate of impending size change. This method can specify the
maximum dimensions of the text object by using the
resizeTextWithOldBounds:maxRect: method. If the delegate doesn’t
implement this method, the change is allowed by default.

textWillSetSel:toFont:

– (void)textWillSetSel:(NSCStringText *)textObject
toFont:(NSFont *)font

Lets delegate intercede in the updating of font in the Font panel.

textWillStartReadingRichText:

– (void)textWillStartReadingRichText:(NSCStringText *)textObject

Informs delegate that text object will read RTF data, either from the pasteboard
or from a text file.

textWillWrite:

– (NSSize)textWillWrite:(NSCStringText *)textObject

Lets the delegate specify paper size.

NSCursor

Class Description

An NSCursor holds an image that the window system can display for the
cursor. An NSCursor is initialized with an NSImage object (which can
subsequently be replaced by sending the NSCursor a setImage: message).
This NSImage object must contain an NSBitmapImageRep representation of
the image otherwise an error will occur. To make the window system display a
particular image as the current cursor, simply send a set message to the
NSCursor instance associated with that image.

Inherits From: NSObject

Conforms To: NSCoding NSObject (NSObject)

Declared In: AppKit/NSCursor.h

1-232 OpenStep Programming Reference—September 1996

1

For automatic cursor management, an NSCursor can be assigned to a cursor
rectangle within a window. When the window is key and the user moves the
cursor into the rectangle, the NSCursor becomes the current cursor. It ceases to
be the current cursor when the cursor leaves the rectangle. The assignment is
made using NSView’s addCursorRect:cursor: method, usually inside a
resetCursorRects method:

- (void)resetCursorRects
{
 [self addCursorRect:someRect cursor:theNSCursorObject];

}

This is the recommended way of associating a cursor with a particular region
inside a window. However, the NSCursor class provides two other ways of
setting the cursor:

• NSCursor maintains its own stack of cursors. Pushing an NSCursor
instance on the stack sets it to be the current cursor. Popping an NSCursor
from the stack sets the next NSCursor in line, the one that’s then at the top
of the stack, to be the current cursor.

• An NSCursor can be made the owner of a tracking rectangle and told to set
itself when it receives a mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NSCursor instances: the
standard arrow cursor, and the I-beam cursor that’s displayed over editable or
selectable text. These can be retrieved with the class methods arrowCursor
and IBeamCursor , respectively. There’s no NSCursor instance for the wait
cursor. The wait cursor is displayed automatically by the system, without any
required program intervention.

NSCursor 1-233

1

Method Types

Class Methods

arrowCursor

+ (NSCursor *)arrowCursor

Returns a ready-made arrow cursor. See also IBeamCursor .

currentCursor

+ (NSCursor *)currentCursor

Activity Class Method

Initializing a new
NSCursor object

– initWithImage:foregroundColor:backgroundColor:
– initWithImage:foregroundColor:backgroundColor:hotSpot
– initWithImage:hotSpot:

Defining the
cursor

– getForeground:andBackground:
– setForeground:andBackground:
– hotSpot
– image
– setImage:
– setImage:foregroundColor:backgroundColor:

Setting the cursor + hide
+ pop
+ setHiddenUntilMouseMoves:
+ unhide
– isSetOnMouseEntered
– isSetOnMouseExited
– mouseEntered:
– mouseExited:
– pop
– push
– set
– setOnMouseEntered:
– setOnMouseExited:

Getting the cursor + arrowCursor
+ currentCursor
+ IBeamCursor

1-234 OpenStep Programming Reference—September 1996

1

Returns the current cursor. The current cursor is the cursor currently being
used by the application.

hide

+ (void)hide

Hides the cursor. See also unhide .

IBeamCursor

+ (NSCursor *)IBeamCursor

Returns a ready-made I-beam cursor. See also arrowCursor .

pop

+ (void)pop

Removes the cursor at the top of the cursor stack, and sets the cursor that was
beneath it to the current cursor. See also push , pop (instance method).

setHiddenUntilMouseMoves:

+ (void)setHiddenUntilMouseMoves:(BOOL)flag

Hides the cursor when flag is YES; reveals it otherwise.

unhide

+ (void)unhide

Shows the cursor. See also hide .

Instance Methods

getForeground:andBackground:

– (void)getForeground:(NSColor *)fg andBackground:(NSColor *)bg

Returns the cursor foreground color in fg and the cursor background color in
bg . See also setForeground:andBackground: .

NSCursor 1-235

1

hotSpot

– (NSPoint)hotSpot

Returns the point on the cursor image that is reported as the cursor location.

image

– (NSImage *)image

Returns the NSImage object that contains the cursor image. See also
setImage: .

initWithImage:foregroundColor:backgroundColor:

– (id)initWithImage:(NSImage *)newImage
foregroundColor:(NSColor *) fg
backgroundColor: (NSColor *) bg

Initializes a new NSCursor object with newImage . newImage must be an
NSBitmapImageRep . Its contents will be interpreted as follows.

• Only the bottom-left-most 16 by 16 square of the image will be used for the
cursor.

• If the image contains alpha samples, then the shape of the cursor composed
from the image will correspond to the shape of the portion of the image
with nonzero alpha samples.

• If the image does not contain alpha samples, then the shape of the cursor
will be a 16 by 16 square.

• If the image has a bitmap representation with 1 bit-per-sample, then the on
bits will be colored with the foreground color in the resulting cursor, while
the off bits will be colored with the background color.

• If the image has a gray scale bitmap representation (2 or fewer samples per
pixel), then this representation will first be translated into a 1-bit-per-sample
representation by thresholding the gray scale values at some level (note: this
level can be either built in, or computed heuristically based on the values in
the image). The resulting representation will then be treated as the 1 bit-per-
sample representation described above.

1-236 OpenStep Programming Reference—September 1996

1

• If the image has an RGB bitmap representation, then the respresentation will
first be converted to gray scale, and then treated as the gray scale
representation above.

Note that newImage should be an NSBitmapImageRep object, otherwise an
error will occur. See also initWithImage:hotSpot: ,
initWithImage:foregroundColor:backgroundColor:hotSpot .

initWithImage:foregroundColor:backgroundColor:
hotSpot

– (id)initWithImage:(NSImage *)newImage
foregroundColor:(NSColor *)fg backgroundColor: (NSColor *) bg
hotSpot: (NSPoint) hotSpot

Initializes a new NSCursor with the given foreground and background colors,
and sets the hot spot of the new cursor to hotSpot . Note that newImage
should be an NSBitmapImageRep object, otherwise an error will occur. See
initWithImage:foregroundColor:backgroundColor: for more
information.

initWithImage:hotSpot:

- (id)initWithImage:(NSImage *)newImage hotSpot:(NSPoint)hotSpot

Initializes a new NSCursor using the default foreground and background
colors, and sets the hot spot of the new cursor to hotSpot . Note that
newImage should be an NSBitmapImageRep object, otherwise an error will
occur. See initWithImage:foregroundColor:backgroundColor: for
more information.

isSetOnMouseEntered

– (BOOL)isSetOnMouseEntered

Returns YES if a mouseEntered: message will set the cursor. See also
isSetOnMouseExited , setOnMouseEntered: , mouseEntered: ,
mouseExited: .

isSetOnMouseExited

– (BOOL)isSetOnMouseExited

NSCursor 1-237

1

Returns YES if a mouseExited: message will set the cursor. See also
isSetOnMouseEntered , setOnMouseExited: , mouseEntered: ,
mouseExited: .

mouseEntered:

– (void)mouseEntered:(NSEvent *)theEvent

Responds to a mouse-entered event by setting the receiver to be the current
cursor, but only if enabled to do so by a previous setOnMouseEntered:
message. This method does not push the receiver on the cursor stack. See also
setOnMouseEntered: , mouseExited: .

mouseExited:

– (void)mouseExited:(NSEvent *)theEvent

Responds to a mouse-exited event by setting the receiver to be the current
cursor, but only if enabled to do so by a previous setOnMouseExited:
message. This method does not push the receiver on the cursor stack. See also
setOnMouseExited: , mouseEntered: .

pop

– (void)pop

Removes the topmost cursor object from the cursor stack, and makes the next
cursor object the current cursor. This method is a cover for the class method of
the same name. See also push , pop (class method).

push

– (void)push

Puts the receiving cursor on the cursor stack and sets it to be the current
cursor. This method can be used in conjunction with the pop method to
manage a group of cursors within a local context. Every push should be
matched by a subsequent pop . See also pop .

set

– (void)set

1-238 OpenStep Programming Reference—September 1996

1

Sets the NSCursor object to be the current cursor.

setForeground:andBackground:

– (void)setForeground:(NSColor *)fg andBackground:(NSColor *)bg

Changes the cursor foreground color to fg and the background color to bg .
The image associated with the cursor is unchanged. See also
getForeground:andBackground: .

setImage:

– (void)setImage:(NSImage *)newImage

Assigns a new cursor image to the receiving cursor. newImage should be an
NSImage object for an image that’s 16 pixels wide by 16 pixels high. If the
image is smaller than 16-by-16, an error is generated when the application tries
to use the cursor, and the previous cursor remains in use. If the image is larger
than 16-by-16, only the lower-left 16-by-16 pixels of the image will be
displayed. Resetting the image of an cursor while it is the current cursor may
have unpredictable results. See also image ,
initWithImage:foregroundColor:backgroundColor: .

setImage:foregroundColor:backgroundColor:

– (void)setImage:(NSImage *)newImage
foregroundColor: (NSCOlor *) fg
backgroundColor: (NSColor *) bg

Makes newImage the NSImage object that supplies the cursor image, fg the
new foreground cursor color, and bg the new background cursor color. See
also initWithImage:foregroundColor:backgroundColor: ,
setForeground:andBackground: .

setOnMouseEntered:

– (void)setOnMouseEntered:(BOOL)flag

Sets a flag that determines whether on not the mouseEntered: message sets
the cursor. If flag is YES, then a mouseEntered: message will set the cursor.
Otherwise, a mouseEntered: message does not set the cursor. See also
isSetOnMouseEntered , mouseEntered: .

NSCustomImageRep 1-239

1

setOnMouseExited:

– (void)setOnMouseExited:(BOOL)flag

Sets a flag that determines whether on not the mouseExited: message sets
the cursor. If flag is YES, then a mouseExited: message sets cursor;
otherwise a mouseExited: message does not set the cursor. See also
isSetOnMouseExited , mouseExited: .

NSCustomImageRep

An NSCustomImageRep is an object that uses a delegated method to render an
image. When called upon to produce the image, it sends a message to its
delegate to have the method performed.

Like most other kinds of NSImageReps, an NSCustomImageRep is generally
used indirectly, through an NSImage object. An NSImage must be able to
choose between various representations of a given image. It also needs to
provide an off-screen cache of the appropriate depth for any image it uses. It
determines this information by querying its NSImageReps.

To work with an NSImage, an NSCustomImageRep must be able to provide
some information about its image. Use the following methods, inherited from
the NSImageRep class, to set these attributes of the NSCustomImageRep :

• setSize:
• setColorSpaceName:
• setAlpha:
• setPixelsHigh:
• setPixelsWide:
• setBitsPerSample:

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding,
NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCustomImageRep.h

1-240 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

delegate

– (id)delegate

Returns the delegate. See also drawSelector ,
initWithDrawSelector:delegate: .

drawSelector

– (SEL)drawSelector

Returns the associated draw method selector. See also delegate ,
initWithDrawSelector:delegate: .

initWithDrawSelector:delegate:

– (id)initWithDrawSelector:(SEL)aSelector delegate:(id)anObject

Initializes a new instance so that it delegates the responsibility for drawing to
anObject . When the NSCustomImageRep receives a draw message, it sends
an aSelector message to anObject . See also delegate , drawSelector .

Activity Class Method

Initializing a new
NSCustomImageRep

– initWithDrawSelector:delegate:

Identifying the object – delegate
– drawSelector

NSDataLink 1-241

1

NSDataLink

Class Description

An NSDataLink object (or data link) defines a single link between a selection in
a source document and a dependent, dynamically updated selection in a
destination document. A data link is typically created when linkable data is
copied to the pasteboard. First, an NSSelection object describing the data is
created. Then a link to that selection is created. The link can then be written to
the pasteboard.

Once the data and link have been written to the pasteboard, they can be added
to a destination document by an object that can respond to a message to Paste
and Link. The object responding to this message will paste the data as usual.
The destination application will then read the link from the pasteboard, create
an NSSelection describing the linked data within the destination document,
and add the link to the destination document’s link manager
(NSDataLinkManager).

When the link is added to the destination document’s link manager, it becomes
a destination link. At that time, the data link’s object establishes a connection
with the source document’s link manager, which automatically creates a source
link in the source application; the source link refers to the source selection.

A link that isn’t managed by a link manager is a broken link. (Both source and
destination links have link managers.) All links are broken links when they are
created. This ensures that they cause no updates. The disposition of a link
(destination, source, or broken) can be retrieved with the disposition
method. Most of the messages defined by the NSDataLink class can be sent to
a link of any disposition, but some only make sense when sent to a link with a
specific disposition; these are so noted in their method descriptions.

Links of all dispositions except links to files maintain an NSSelection object
referring to the link’s selection in the source document; this selection is
returned by the sourceSelection method. Source and destination links also

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSDataLink.h

1-242 OpenStep Programming Reference—September 1996

1

maintain an NSSelection describing the location of the data in the
destination document; this selection is returned by the
destinationSelection method.

Note – NSDataLink is not part of the OpenStep specification.

See the NSSelection class description for more information on NSSelection
objects. See also NSDataLinkManager .

Method Types

Instance Methods

currentSourceFilename

- (NSString *)currentSourceFilename

Returns the links “best guess” at the current location of the source file. Returns
nil if the location cannot be ascertained.

destinationApplicationName

– (NSString *)destinationApplicationName

Activity Class Method

Information about
the link

– disposition
– linkNumber
– manager

Information about
the link’s source

– currentSourceFilename
– lastUpdateTime
– sourceApplicationName
– sourceFilename
– sourceSelection
– types

Information about
the link’s
destination

– destinationApplicationName
– destinationFilename
– destinationSelection

NSDataLink 1-243

1

Returns the name of the application that owns the destination document. See
also sourceApplicationName , destinationFilename .

destinationFilename

– (NSString *)destinationFilename

Returns the destination document file name. See also sourceFilename ,
destinationApplicationName , destinationSelection .

destinationSelection

– (NSSelection *)destinationSelection

Returns the destination selection, which describes how the linked data is
represented in the destination document. See also sourceSelection ,
destinationApplicationName , destinationFilename .

disposition

– (NSDataLinkDisposition)disposition

Identifies the link as a source link, a destination link, or a broken link by
returning one of the following values:

• NSLinkInDestination
• NSLinkInSource
• NSLinkBroken

See also linkNumber , manager .

lastUpdateTime

– (NSDate *)lastUpdateTime

Returns the last time the link was updated. A link could be updated for many
reasons; for example, a message could be sent to the source document’s link
manager telling it that its document was saved, or the link could be brought up
to date with an updateDestination message.

1-244 OpenStep Programming Reference—September 1996

1

linkNumber

– (NSDataLinkNumber)linkNumber

Returns a destination link’s link number, which may be useful in identifying
the link. This number is constant through the life of the document, and unique
among the document’s links; it is not meaningful in source links. See also
manager .

manager

– (NSDataLinkManager *)manager

Returns the link’s manager, or nil if it doesn’t have a manager (for example,
returns nil if a link is broken).

sourceApplicationName

– (NSString *)sourceApplicationName

Returns the name of the application that owns the source document. See also
sourceFilename , sourceSelection , types , lastUpdateTime .

sourceFilename

– (NSString *)sourceFilename

Returns the source document’s file name. See also sourceApplicationName ,
sourceSelection , types .

sourceSelection

– (NSSelection *)sourceSelection

Returns the source selection or nil if the link refers to an entire file, in which
case the source file can be retrieved using sourceFilename . See also
sourceApplicationName .

types

– (NSArray *)types

NSDataLinkManager 1-245

1

Returns the pasteboard types that the source document can provide. See also
NSPasteboard .

NSDataLinkManager

Class Description

An NSDataLinkManager object (also known as a data link manager or simply
link manager) manages data linked from and into a document through
NSDataLink objects. NSDataLink objects (or data links) provide a link
between a selection in a source document and a dependent, dynamically
updated selection in a destination document. When a user does a Paste and
Link command in the destination document, the link manager creates the link
in response . When this link is added to the destination document, it makes a
connection with the source document’s link manager, which creates a source
link in the source application.

Note – NSDataLinkManager is not part of the OpenStep specification.

For more information about NSDataLink objects, see the NSDataLink class
description. See the NSSelection class description for more information on
NSSelection objects.

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSDataLinkManager.h

1-246 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

destinationLinkEnumerator

– (NSEnumerator *)destinationLinkEnumerator

Returns an enumerator of the destination’s source links. See also
sourceLinkEnumerator , NSEnumerator (Foundation Kit).

initWithDelegate:

– (id)initWithDelegate:(id)anObject

Initializes and returns a newly allocated NSDataLinkManager instance for a
new document. The link manager’s delegate, specified by anObject , will be
expected to provide source data, paste destination data, and help the data link
manager keep links up to date. Before data in the document can be linkable,
the document will have to be saved and the link manager will have to be
informed of the document’s name by a noteDocumentSavedAs: message.

sourceLinkEnumerator

– (NSEnumerator *)sourceLinkEnumerator

Returns an NSEnumerator of the receiver’s source links. See also
destinationLinkEnumerator , NSEnumerator (Foundation Kit).

Activity Class Method

Initializing and freeing a link
manager

– initWithDelegate:

Getting and setting information
about the manager’s links

– destinationLinkEnumerator
– sourceLinkEnumerator

NSDataLinkPanel 1-247

1

NSDataLinkPanel

Class Description

An NSDataLinkPanel is an NSPanel that allows the user to inspect data
links. The NSDataLinkPanel sends messages to the current data link manager
(representing the current document) and to the current link (representing the
current selection if it’s based on a data link). Thus, the panel should be
informed, by a setLink:manager:isMultiple: message, any time the
selection changes or a document is created or activated. Since the selection may
need to be tracked even before the panel is created, this message can be sent to
either the NSDataLinkPanel class or the shared instance.

The NSDataLinkPanel is generally displayed using NSApplication ’s
orderFrontDataLinkPanel: method. An application’s sole instance of
NSDataLinkPanel can be accessed with the sharedDataLinkPanel
method.

Note – NSDataLinkPanel is not part of the OpenStep specification.

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSDataLinkPanel.h

1-248 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

getLink:manager:isMultiple:

+ (void)getLink:(NSDataLink **)link
manager:(NSDataLinkManager **)linkManager
isMultiple:(BOOL *)flag

Gets information about the NSDataLinkPanel ’s currently selected link;
returns the link in link , the link manager in linkManager , and the multiple
selection status in flag . Whenever a link is selected or deselected, this
information must be set using setLink:manager:isMultiple: .

setLink:manager:isMultiple:

+ (void)setLink:(NSDataLink *)link
manager:(NSDataLinkManager *)linkManager isMultiple:(BOOL)flag

Informs the NSDataLinkPanel of the current document and selection. This
message must be sent any time data, based on a data link, is selected or
deselected, or when a document (and therefore a new link manager) is
activated. Since the state of the selection always needs to be tracked, this
message can be sent to either the NSDataLinkPanel class or instance. link is
the currently selected link; it should be nil if no link is selected.

Activity Class Method

Initializing + sharedDataLinkPanel

Keeping the panel up-to-date + getLink:manager:isMultiple:
+ setLink:manager:isMultiple:
– getLink:manager:isMultiple:
– setLink:manager:isMultiple:

Customizing the panel: – accessoryView
– setAccessoryView:

Responding to user input – pickedBreakAllLinks:
– pickedBreakLink:
– pickedOpenSource:
– pickedUpdateDestination:
– pickedUpdateMode:

NSDataLinkPanel 1-249

1

linkManager is the current link manager. flag should be YES if the panel is
to indicate that more than one link is selected. See also
setLink:manager:isMultiple: (instance method).

sharedDataLinkPanel

+ (NSDataLinkPanel *)sharedDataLinkPanel

Initializes and returns the shared NSDataLinkPanel object.

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the NSDataLinkPanel ’s custom accessory view. See also
setAccessoryView: .

getLink:manager:isMultiple:

– (void)getLink:(NSDataLink **)link
manager:(NSDataLinkManager **)linkManager
isMultiple:(BOOL *)flag

Returns information about the NSDataLinkPanel ’s currently selected link.
This method returns the link in link , the link manager in linkManager , and
the multiple selection status in flag . This method functions identically to the
class method of the same name. Whenever a link is selected or deselected, this
information must be set using setLink:andManager:isMultiple: .

pickedBreakAllLinks:

– (void)pickedBreakAllLinks:(id)sender

Invoked when the user clicks the Break All Links button, this method puts up
an attention panel to confirm the user’s action, and then sends a
breakAllLinks (NSDataLinkManager) message to the current link manager,
as set by setLink:manager:isMultiple: . See also pickedBreakLink: ,
pickedOpenSource: , pickedUpdateDestination: ,
pickedUpdateMode: .

1-250 OpenStep Programming Reference—September 1996

1

pickedBreakLink:

– (void)pickedBreakLink:(id)sender

Invoked when the user clicks the Break Link button; puts up an attention panel
to confirm the user’s action, and then sends a break message (NSDataLink)
to the current link, as set by setLink:manager:isMultiple: . See also
pickedBreakAllLinks: .

pickedOpenSource:

– (void)pickedOpenSource:(id)sender

Invoked when the user clicks the Open Source button, this method sends an
openSource message (NSDataLink) to the current link, as set by
setLink:manager:isMultiple: . See also pickedBreakAllLinks: .

pickedUpdateDestination:

– (void)pickedUpdateDestination:(id)sender

Invoked when the user clicks the Update from Source button; sends a message
to the current link to verify and update the data source and then update the
destination data. See also pickedBreakAllLinks: .

pickedUpdateMode:

– (void)pickedUpdateMode:(id)sender

Invoked when the user selects the update mode; sends a setUpdateMode:
message to the current link, as set by setLink:andManager:isMultiple: .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Adds aView to the NSDataLinkPanel ’s view hierarchy. Applications can
invoke this method to add an NSView that contains their own controls. The
panel is automatically resized to accommodate aView . This method can be
invoked repeatedly to change the accessory view depending on the situation. If
aView is nil , then the panel’s current accessory view, if any, is removed. See
also accessoryView .

NSEPSImageRep 1-251

1

setLink:manager:isMultiple:

– (void)setLink:(NSDataLink *)link
manager:(NSDataLinkManager *)linkManager isMultiple:(BOOL)flag

Informs the NSDataLinkPanel of the current document and selection. link is
the currently selected link; it should be nil if no link is selected.
linkManager is the current link manager. flag should be YES if the panel is
to indicate that more than one link is selected. Returns the NSDataLinkPanel
class. This message must be sent any time data based on a data link is selected
or deselected, or when a document (and therefore a new link manager) is
activated. This method functions identically to the class method of the same
name; since the state of the selection always needs to be tracked, this message
can be sent to either the NSDataLinkPanel class or instance.

NSEPSImageRep

Class Description

An NSEPSImageRep is an object that can render an image from encapsulated
PostScript code (EPS). Like most other kinds of NSImageReps, an
NSEPSImageRep is generally used indirectly, through an NSImage object. An
NSImage must be able to choose between various representations of a given
image. It also needs to provide an off-screen cache of the appropriate depth for
any image it uses. It determines this information by querying its
NSImageReps.

To work with an NSImage, an NSEPSImageRep must be able to provide some
information about its image. The size of the object is set from the bounding box
specified in the EPS header comments. Use these methods, inherited from the
NSImageRep class, to set the other attributes of the NSEPSImageRep:

• setColorSpaceName:
• setAlpha:

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding,
NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSEPSImageRep.h

1-252 OpenStep Programming Reference—September 1996

1

• setPixelsHigh:
• setPixelsWide:
• setBitsPerSample:

Method Types

Class Methods

imageRepWithData:

+ (id)imageRepWithData:(NSData *)epsData

Invokes initWithData: to return an instance with data from epsData . See
also initWithData: .

Instance Methods

boundingBox

– (NSRect)boundingBox

Returns the rectangle that bounds the image. See also EPSRepresentation .

EPSRepresentation

– (NSData *)EPSRepresentation

Returns the EPS representation of the image. See also boundingBox .

Activity Class Method

Initializing a new instance + imageRepWithData:
– initWithData:

Getting image data – boundingBox
– EPSRepresentation

Drawing the image – prepareGState

NSEvent 1-253

1

initWithData:

– (id)initWithData:(NSData *)epsData

Initialize an instance with data from epsData . See also imageRepWithData: .

prepareGState

– (void)prepareGState

Implemented by subclasses to initialize the graphics state before the image is
drawn.

NSEvent

Class Description

An NSEvent object contains information about an event such as a mouse-click
or a key-down. The window system associates each such user action with a
window, reporting the event to the application that created the window.
Pertinent information about each event—such as which character was typed
and where the mouse was located—is collected in an NSEvent object and
made available to the application. As events are received in the application,
they’re temporarily placed in storage called the event queue. When the
application is ready to process an event, it takes an NSEvent from the queue.

NSEvent s are typically passed to the responder chain—a set of objects within
the window that inherit from NSResponder . For example, NSResponder ’s
mouseDown: and keyDown: methods take an NSEvent as an argument. When
an NSApplication retrieves an NSEvent from the event queue, it dispatches
it to the appropriate NSWindow (which is itself an NSResponder) by invoking
keyDown: or a similar message. The NSWindow passes the event to the first
responder, and the event gets passed on down the responder chain until some

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSEvent.h

1-254 OpenStep Programming Reference—September 1996

1

object handles it. In the case of a mouse-down, a mouseDown: message is sent
to the NSView in which the user clicked the mouse, which relays the message
to its next responder if it can’t handle the message itself.

Most events follow this same path: from the window system to the
application’s event queue, and from there, to the appropriate objects of the
application. However, the Application Kit can create an NSEvent from scratch
and insert it into the event queue for distribution, or send it directly to its
destination. It’s rare for an application to create an event directly, but it’s
possible, using NSEvent class methods. The newly created events can be
added to the event queue by invoking NSWindow’s (or NSApplication ’s)
postEvent:atStart: method.

Events are retrieved from the event queue by calling the NSWindow method
nextEventMatchingMask:untilDate:inMode:dequeue: or a similar
NSApplication method. These methods return an instance of NSEvent . The
nature of the retrieved event can then be ascertained by invoking NSEvent
instance methods—type , window , and so forth. All types of events are
associated with a window. The corresponding NSWindow object can be gotten
by invoking window . The location of the event within the window’s coordinate
system is obtained from locationInWindow , and the time of the event is
gotten from timestamp . The modifierFlags method returns an indication of
which modifier keys (Command, Control, Shift, and so forth) were held down
while the event occurred.

The type method returns an NSEventType , a constant that identifies the sort
of event. The different types of events fall into five groups:

• Keyboard events
• Mouse events
• Tracking-rectangle events
• Periodic events
• Cursor-update events

Some of these groups comprise several NSEventType constants; others only
one. The following sections discuss the groups, along with the corresponding
NSEventType constants.

Keyboard Events

Among the most common events sent to an application are direct reports of the
user's keyboard actions, identified by these three NSEventType constants:

NSEvent 1-255

1

• NSKeyDown: The user generated a character by pressing a key.

• NSKeyUp: The key was released.

• NSFlagsChanged : The user pressed or released a modifier key, or turned
Alpha Lock on or off.

Of these, key-down events are the most useful to the application. When the
type method returns NSKeyDown, your next step is typically to determine the
character or characters generated by the key-down, by sending the NSEvent a
characters message.

Key-up events are less used since they follow almost automatically when there
has been a key-down event. Because NSEvent ’s modifierFlags method
returns the state of the modifier keys regardless of the type of event,
applications normally don't need to receive flags-changed events; they're
useful only for applications that have to keep track continuously of the state of
these keys.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and
by changes in the position of the mouse cursor on the screen. This category
consists of:

• NSLeftMouseDown , NSLeftMouseUp , NSRightMouseDown ,
NSRightMouseUp : Two sets of mouse-down and mouse-up events, one for
the left mouse button and one for the right. “Mouse-down” means the user
pressed the button; “mouse-up” means the button was released. If the
mouse has just one button, only left mouse events are generated. By sending
a clickCount message to the NSEvent , you can determine whether the
mouse event was a single-click, double-click, and so on.

• NSLeftMouseDragged , NSRightMouseDragged : Two types of mouse-
dragged events—one for when the mouse is moved with its left mouse
button down, or with both buttons down, and one for when it's moved with
just the right button down. A mouse with a single button generates only left
mouse-dragged events. As the mouse is moved with a button down, a series
of mouse-dragged events is produced. The series is always preceded by a
mouse-down event and followed by a mouse-up event.

• NSMouseMoved: The user moved the mouse without holding down either
mouse button.

1-256 OpenStep Programming Reference—September 1996

1

Mouse-dragged and mouse-moved events are generated repeatedly as long as
the user keeps moving the mouse. If the user holds the mouse stationary,
neither event is generated until it moves again.

Note – OpenStep doesn’t specify facilities for the third button of a three-button
mouse.

Tracking-Rectangle Events

NSMouseEntered and NSMouseExited events are like the “Mouse Events”
listed previously, in that they’re dependent on mouse movements. However,
unlike the others, they’re generated only if the application has asked the
window system to set a tracking rectangle in a window. An NSMouseEntered
or NSMouseExited event is created when the cursor has entered the tracking
rectangle or left it. A window can have any number of tracking rectangles; the
NSEvent method trackingNumber identifies which rectangle was entered or
exited.

Periodic Events

An event of type NSPeriodic simply notifies an application that a certain
time interval has elapsed. By using the NSEvent class method
startPeriodicEventsAfterDelay:withPeriod: , an application can
register that it wants periodic events and that they should be placed in its
event queue at a certain frequency. When the application no longer needs
them, the flow of periodic events can be turned off by invoking
stopPeriodicEvents . An application can’t have more than one stream of
periodic events active at a time. Unlike keyboard and mouse events, periodic
events aren’t dispatched to an NSWindow.

Cursor-Update Events

Events of type NSCursorUpdate are used to implement NSView’s cursor-
rectangle methods. An NSCursorUpdate event is generated when the cursor
has crossed the boundary of a predefined rectangular area. The application can
respond by updating the cursor's shape.

NSEvent 1-257

1

Method Types

Activity Class Method

Creating NSEvent
objects

+ enterExitEventWithType:location:modifierFlags:
timestamp:windowNumber:context:eventNumber:
trackingNumber:userData:
+ keyEventWithType:location:modifierFlags:
timestamp:windowNumber:context:characters:
charactersIgnoringModifiers:isARepeat:keyCode:
+ mouseEventWithType:location:modifierFlags:
timestamp:windowNumber:context:eventNumber:
clickCount:pressure:
+ otherEventWithType:location:modifierFlags:
timestamp:windowNumber:context:subtype: data1:data2:

Getting general
event information

– context
– locationInWindow
– modifierFlags
– timestamp
– type
– window
– windowNumber

Getting key event
information

– characters
– charactersIgnoringModifiers
– isARepeat
– keyCode

Getting mouse event
information

– clickCount
– eventNumber
– pressure

Getting tracking
event information

– trackingNumber
– userData

Requesting periodic
events

+ startPeriodicEventsAfterDelay:withPeriod:
+ stopPeriodicEvents

Getting information
about specially
defined events

– data1
– data2
– subtype

1-258 OpenStep Programming Reference—September 1996

1

Class Methods

enterExitEventWithType:location:modifierFlags:
timestamp:windowNumber:context:eventNumber:
trackingNumber:userData:

+ (NSEvent *)enterExitEventWithType:(NSEventType)type
location:(NSPoint)location modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time windowNumber:(int)windowNum
context:(NSDPSContext *)context eventNumber:(int)eventNum
trackingNumber:(int)trackingNum userData:(void *)userData

Creates and returns an NSEvent object initialized with general event data and
information specific to mouse tracking (eventNum , trackingNum , userData).
Applications rarely create these objects.

keyEventWithType:location:modifierFlags:
timestamp:windowNumber:context:characters:
charactersIgnoringModifiers:isARepeat:keyCode:

+ (NSEvent *)keyEventWithType:(NSEventType)type
location:(NSPoint)location modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time windowNumber:(int)windowNum
context:(NSDPSContext *)context characters:(NSString *)keys
charactersIgnoringModifiers:(NSString *)ukeys
isARepeat:(BOOL)repeatKey keyCode:(unsigned short)code

Creates and returns an NSEvent object initialized with general event data and
information specific to keyboard events (keys , repeatKey , code , ukeys).
ukeys sets the unmodified character string. Applications rarely create these
objects.

mouseEventWithType:location:modifierFlags:
timestamp:windowNumber:context:eventNumber:
clickCount:pressure:

+ (NSEvent *)mouseEventWithType:(NSEventType)type
location:(NSPoint)location modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time windowNumber:(int)windowNum
context:(NSDPSContext *)context eventNumber:(int)eventNum
clickCount:(int)clickNum pressure:(float)pressureValue

NSEvent 1-259

1

Creates and returns an NSEvent object initialized with general event data and
information specific to mouse events (eventNum, clickNum ,
pressureValue). Applications rarely create these objects.

otherEventWithType:location:modifierFlags:
timestamp:windowNumber:context:subtype:
data1:data2:

+ (NSEvent *)otherEventWithType:(NSEventType)type
location:(NSPoint)location modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time windowNumber:(int)windowNum
context:(NSDPSContext *)context subtype:(short)subType
data1:(int)data1 data2:(int)data2

Creates and returns an NSEvent object initialized with general event data and
information specific to kit-defined events (subType , data1 , data2).
Applications rarely create these objects.

startPeriodicEventsAfterDelay:withPeriod:

+ (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delaySeconds
withPeriod:(NSTimeInterval)periodSeconds

Starts generating periodic events with frequency periodSeconds after delay
delaySeconds for the current thread. Used for initial delay and periodic
behavior in tracking loops. See also stopPeriodicEvents .

stopPeriodicEvents

+ (void)stopPeriodicEvents

Stops generating periodic events for the current thread, and discard any
periodic events remaining in the queue. See also
startPeriodicEventsAfterDelay:withPeriod: .

Instance Methods

characters

– (NSString *)characters

1-260 OpenStep Programming Reference—September 1996

1

Returns the character code (a string of characters generated by the key event).
See also charactersIgnoringModifiers , isARepeat , keyCode .

charactersIgnoringModifiers

– (NSString *)charactersIgnoringModifiers

Returns the string of characters generated by the key event as if no modifier
key had been pressed (except for Shift). See also characters .

clickCount

– (int)clickCount

Returns the number of mouse clicks associated with the mouse event. See also
pressure .

context

– (NSDPSContext *)context

Returns the Display PostScript context of the event. See also modifierFlags ,
timestamp , locationInWindow .

data1

– (int)data1

Returns special data associated with the event. Used for Application Kit,
system, and application-defined events. See also data2 , subtype .

data2

– (int)data2

Returns special data associated with the event. Used for Application Kit,
system, and application-defined events. See also data1 , subtype .

eventNumber

– (int)eventNumber

NSEvent 1-261

1

Returns the event number of the latest mouse-down event. This information is
also useful for handling tracking events. See also clickCount .

isARepeat

– (BOOL)isARepeat

Returns whether the key event is being repeated (user is holding down the
key). See also characters .

keyCode

– (unsigned short)keyCode

Returns the code that maps to a key on the keyboard. See also characters .

locationInWindow

– (NSPoint)locationInWindow

Returns the event’s location in the base coordinate system of the event’s
window. See also window , windowNumber .

modifierFlags

– (unsigned int)modifierFlags

Returns an integer bitfield containing modifier-key flags. See also context ,
type .

pressure

– (float)pressure

Returns a value indicating the pressure applied to the input device (used for
appropriate devices, not a mouse). See also clickCount .

subtype

– (short)subtype

Returns the identifier of the specially defined event.

1-262 OpenStep Programming Reference—September 1996

1

timestamp

– (NSTimeInterval)timestamp

Returns the time the event occurred in seconds since system startup. See also
context .

trackingNumber

– (int)trackingNumber

Returns the number that identifies the tracking rectangle. See also userData .

type

– (NSEventType)type

Returns the event type (left-mouse-up, right-mouse-dragged, key-down, etc.).
The event types are

• NSNoEvent
• NSLeftMouseDown
• NSLeftMouseUp
• NSRightMouseDown
• NSRightMouseUp
• NSMouseMoved
• NSLeftMouseDragged
• NSRightMouseDragged
• NSMouseEntered
• NSMouseExited
• NSKeyDown
• NSKeyUp
• NSFlagsChanged
• NSAppKitDefined
• NSSystemDefined
• NSApplicationDefined
• NSPeriodic
• NSCursorUpdate

userData

– (void *)userData

NSFont 1-263

1

Returns data arbitrarily associated with the event. See also trackingNumber .

window

– (NSWindow *)window

Returns the window object associated with the event.See also context ,
windowNumber .

windowNumber

– (int)windowNumber

Returns the number of the window associated with the event. See also window .

NSFont

Class Description

The NSFont class declares the programmatic interface to objects that
correspond to fonts. NSFont is in principle an abstract class that represents
fonts in general, not just PostScript fonts. In practice, at this time, NSFont
objects represent PostScript fonts. Each NSFont object records a font’s name,
size, style, and matrix. When an NSFont object receives a set message, it
establishes its font as the current font in the PostScript Server’s current
graphics state.

For a given application, only one NSFont object is created for a particular
PostScript font/size or font/matrix combination. That is—if you ask for 24-
point Optima, a new font object is created for 24-point Optima if such an object
doesn’t exist already. When the NSFont class object receives a message to
create a new object for a particular font, it first checks whether an object has
already been created for that font. If so, the the NSFont class object returns the
existing font object; otherwise, the the NSFont class object creates a new font
object and returns it.

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

1-264 OpenStep Programming Reference—September 1996

1

This sharing of NSFont objects minimizes the number of distinct font objects
created. It also implies that no one object in your application can know
whether it has the only reference to a particular NSFont object. Thus, NSFont
objects shouldn’t be deallocated, but should be treated like autoreleased
Foundation class objects.

Where matrix is used, it refers to a PostScript-style six-element array of
numbers that indicate transformations to be applied to a font. An
NSFontIdentityMatrix identifies a font matrix used for fonts created by
specifying a size.

The size of a font in the method definitions is defined in “points”, which in
currently accepted practice are actually PostScript units. A PostScript unit is
1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a PostScript unit is
0.3528 millimetres. PostScript “points” are minimally different from “printer’s
points”, so for all intents and purposes you can think of PostScript units and
points as interchangeable.

In general, you instantiate an NSFont object by sending one of the methods in
the “Creating a Font Object” list below to the NSFont class object. The
methods with system and user in their names obtain special predetermined
fonts defined at the system level and the application level. In general, you
would use the fontWithName:size: and fontWithName:matrix: methods
to obtain a named font.

A variety of methods are available for querying a font object. In particular,
AFM (Adobe Font Metrics) data can be obtained by invoking afmDictionary
or afmFileContents . Methods whose descriptions state “Returns…and
matrix NSFontIdentityMatrix ” actually return an
NSFontIdentityMatrix whose first and fourth elements are multiplied by
the current size of the font.

Exceptions

Methods listed in “Creating a Font Object” can all raise a
NSFontUnavailableException if the requested font can’t be constructed.

NSFont 1-265

1

Method Types

Activity Class Method

Creating a font object + boldSystemFontOfSize:
+ fontWithName:matrix:
+ fontWithName:size:
+ systemFontOfSize:
+ userFixedPitchFontOfSize:
+ userFontOfSize:

Setting the font + setUserFixedPitchFont:
+ setUserFont:
+ useFont:
– set

Querying the font – afmDictionary
– afmFileContents
– ascender
– boundingRectForFont
– capHeight
– descender
– displayName
– encodingScheme
– familyName
– fontName
– glyphWithName:
– isBaseFont
– isFixedPitch
– italicAngle
– matrix
– pointSize
– printerFont
– screenFont
– underlinePosition
– underlineThickness
– widthOfString:
– widths
– xHeight

Manipulating glyphs – advancementForGlyph:
– boundingRectForGlyph:
– glyphIsEncoded:
– positionOfGlyph:precededByGlyph:isNominal:

1-266 OpenStep Programming Reference—September 1996

1

Class Methods

boldSystemFontOfSize:

+ (NSFont *)boldSystemFontOfSize:(float)fontSize

Returns a font object representing the bold system font of size fontSize using
the identity matrix. The bold system font is used for text in attention panels
and window titles. If fontSize is 0, then NSUserDefaults (Foundation Kit)
supplies the default size. This method raises NSFontUnavailableException
if a suitable font object cannot be found.

fontWithName:matrix:

+ (NSFont *)fontWithName:(NSString *)fontName
matrix:(const float *)fontMatrix

Returns a font object for font fontName and matrix fontMatrix . If this font
object already exists, it is returned. Otherwise a new font object is created and
returned. If an error occurs, nil is returned. See also fontWithName:size: .

fontWithName:size:

+ (NSFont *)fontWithName:(NSString *)fontName size:(float)fontSize

Returns a font object for font fontName of size fontSize . If this font object
already exists, it is returned. Otherwise a new font object is created and
returned. If an error occurs, nil is returned. See also
fontWithName:matrix: .

setUserFixedPitchFont:

+ (void)setUserFixedPitchFont:(NSFont *)aFont

Sets the default fixed-pitch font used in the application to aFont .This method
is intended for an application that wants to override the default fixed-pitch
font. See also setUserFont: , NSUserDefaults (Foundation Kit).

setUserFont:

+ (void)setUserFont:(NSFont *)aFont

NSFont 1-267

1

Sets the default standard font used in the application to aFont . This method is
intended for an application that wants to override the default standard font.
See also setUserFixedPitchFont: , NSUserDefaults (Foundation Kit).

systemFontOfSize:

+ (NSFont *)systemFontOfSize:(float)fontSize

Returns the font object representing the system font of size fontSize and
matrix NSFontIdentityMatrix . The system font is used for text in panels,
menus, and similar objects. If fontSize is 0, then NSUserDefaults
(Foundation Kit) supplies the default size.

useFont:

+ (void)useFont:(NSString *)fontName

Registers that fontName is used in the document. This information is used by
the printing machinery. The font class object keeps track of the fonts that are
being used in a document by registering the font whenever a font object
receives a set message. When a document is being prepared for printing, the
font class provides the list of fonts required for the %%DocumentFonts
comment (see Document Structuring Conventions by Adobe Systems Inc.).
useFont: augments this system by providing a way to register fonts that are
included in the document but not set using the font’s set method. For
example, you might set a font by executing the setfont operator within a
function created by pswrap . In such a case, make sure to pair the use of the
font with a useFont: message to register the font with the Font class object.
See also set .

userFixedPitchFontOfSize:

+ (NSFont *)userFixedPitchFontOfSize:(float)fontSize

Returns the font object representing the application’s fixed-pitch font of size
fontSize and matrix NSFontIdentityMatrix . If fontSize is 0, then
NSUserDefaults (Foundation Kit) supplies the default fixed-pitch font size.
This method raises NSFontUnavailableException if a suitable font object
cannot be found. See also userFontOfSize: .

1-268 OpenStep Programming Reference—September 1996

1

userFontOfSize:

+ (NSFont *)userFontOfSize:(float)fontSize

Returns the font object representing the application’s standard font of size
fontSize and matrix NSFontIdentityMatrix . If fontSize is 0, then
NSUserDefaults (Foundation Kit) supplies the default fixed-pitch font size.
This method provides an easy way of determining the user’s font preference,
which you can then use to initialize new documents. This method raises
NSFontUnavailableException if a suitable font object cannot be found. See
also userFixedPitchFontOfSize: .

Instance Methods

advancementForGlyph:

– (NSSize)advancementForGlyph:(NSGlyph)aGlyph

Returns the horizontal and vertical advancement for aGlyph . That is, this
method returns the amount by which the current point would be displaced in
both horizontal and vertical axes if the specified glyph were rendered in the
current font and size. In general, the vertical displacement for “Western” fonts
will be zero. See also NSSize (Foundation Kit).

afmDictionary

– (NSDictionary *)afmDictionary

Returns the font’s AFM dictionary if the font has an AFM file. The return value
can possibly be nil , so you must check to determine if a non-nil value was
actually returned. See also afmFileContents .

afmFileContents

– (NSString *)afmFileContents

Returns the raw contents of the entire AFM file, in terms of strings, if the font
has an AFM file. Returns nil otherwise. See also afmDictionary .

NSFont 1-269

1

ascender

- (float)ascender

Returns the font’s height above the base line. This value is used to determine
interline spacing. See also descender .

boundingRectForFont

– (NSRect)boundingRectForFont

Returns the bounding rectangle for the font, scaled to the current size of the
font. See also boundingRectForGlyph: , NSRect (Foundation Kit).

boundingRectForGlyph:

– (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph

Returns a bounding rectangle for aGlyph , scaled to the font’s actual size and
matrix. See also advancementForGlyph:, glyphIsEncoded: ,
positionOfGlyph:precededByGlyph:isNominal: , NSRect (Foundation
Kit).

capHeight

- (float)capHeight

Returns the nominal height of the font’s capital letters. This is defined as the
height of the Latin uppercase X letter, where applicable.

descender

- (float)descender

Returns the recommended typographic descent below the font baseline. Used for
determining interline spacing. See also ascender .

displayName

– (NSString *)displayName

1-270 OpenStep Programming Reference—September 1996

1

Returns the full name of the font as displayed in the font panel: for example,
the font name “Futura-CondExtraBoldObl” returns the display name “Futura
Condensed Extra Bold Oblique”. This is the localized version of the font’s
name. It is not necessarily the FullName field of the font. See also
familyName .

encodingScheme

- (NSString *)encodingScheme

Returns the name of the character set used to encode the font glyphs.

familyName

– (NSString *)familyName

Returns the font’s family name. For example, the font named “Futura-
CondExtraBoldObl” returns the family name “Futura”. See also fontName ,
displayName .

fontName

– (NSString *)fontName

Returns the font name, as would be used in a PostScript language program.
See also displayName , familyName .

glyphIsEncoded:

– (BOOL)glyphIsEncoded:(NSGlyph)aGlyph

Indicates whether aGlyph is encoded. That is, this method returns YES if
aGlyph is present in the encoding for the font.

glyphWithName:

- (NSGlyph)glyphWithName:(NSString *)aName

Returns the font glyph with name aName.

NSFont 1-271

1

isBaseFont

– (BOOL)isBaseFont

Returns YES if the font is a base font, as opposed to a composite font.

isFixedPitch

- (BOOL)isFixedPitch

Returns YES if the receiver is a fixed-pitch font, and returns NO otherwise.

italicAngle

- (float)italicAngle

Returns the posture angle of the typeface design, in 1/64 degrees, measured
from the glyph origin counterclockwise from the three o’clock position.

matrix

– (const float *)matrix

Returns a pointer to an array of six floats representing the font’s matrix. You
should not alter the data pointed to by matrix . If you wish to change values
for any reason you must make a copy of the matrix. See also widths .

pointSize

– (float)pointSize

Returns the font size, in points.

positionOfGlyph:precededByGlyph:isNominal:

– (NSPoint)positionOfGlyph:(NSGlyph)curGlyph
precededByGlyph:(NSGlyph)prevGlyph isNominal:(BOOL *)nominal

Returns curGlyph ’s position when it follows prevGlyph . nominal is a
pointer to a BOOL. If not nil , this method fills in nominal with YES, to
indicate that the position has been modified by kerning information, and NO to
indicate that no kerning information was present.

1-272 OpenStep Programming Reference—September 1996

1

printerFont

– (NSFont *)printerFont

Returns the printer font for the font object, if the receiving font object is a
screen font. Otherwise this method returns self . See also screenFont .

screenFont

– (NSFont *)screenFont

Returns the screen font for the font object, if there is one. Otherwise this
method returns self . See also printerFont .

set

– (void)set

Makes this font the graphic state’s current font. When a font object receives a
set message, it registers with the font class object that its PostScript font has
been used. In this way, the Application Kit, when called upon to generate a
conforming PostScript language document file, can list the fonts used within a
document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an
EPS file), such fonts must be registered by sending the class object a useFont:
message. See also setUserFont: , setUserFixedPitchFont: , useFont: .

underlinePosition

- (float)underlinePosition

Returns the distance from the font baseline to the top of the underline. See also
underlineThickness .

underlineThickness

- (float)underlineThickness

Returns the underline thickness. See also underlinePosition .

NSFontManager 1-273

1

widthOfString:

– (float)widthOfString:(NSString *)string

Returns the width of string using this font. Use this method with caution: it
assumes that the characters in string can all actually be rendered in the font.
It uses lossy encoding methods in NSString to get the character data.

widths

– (float *)widths

Returns a pointer to an array of 256 unscaled widths of the glyphs in the font.

xHeight

- (float)xHeight

Returns the nominal height above the baseline of the lowercase font glyphs. This
is defined as the height of the Latin lowercase x where applicable.

NSFontManager

Class Description

NSFontManager declares the programmatic interface to objects that manage
font conversion in an application. NSFontManager is the center of activity for
font conversion. NSFontManager accepts messages from font conversion user-
interface objects such as the Font menu or the Font panel (see NSFontPanel
for more details) and appropriately converts the current font in the selection by
sending a changeFont: message (see the NSText class) up the responder
chain.

When an object receives a changeFont: message, it should message
NSFontManager (by sending it a convertFont: message), asking it to
convert the font in whatever way the user has specified. Thus, any object

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFontManager.h

1-274 OpenStep Programming Reference—September 1996

1

containing a font that can be changed should respond to the changeFont:
message by sending a convertFont: message back to the NSFontManager
for each font in the selection.

To use NSFontManager , you simply insert a Font menu into your application’s
menu using the appropriate interface construction tools (such as Interface
Builder). You can also obtain a Font menu by sending a getFontMenu:
message to NSFontManager and then inserting the menu it returns into the
application’s main menu. Once the Font menu is installed, your application
automatically gains the functionality of both the Font menu and the Font
panel.

NSFontManager ’s delegate can restrict which font names will appear in the
Font panel. See “Methods Implemented by the Delegate” at the end of this
class specification for more information.

NSFontManager can be used to convert a font or find out the attributes of a
font. It can also be overridden to convert fonts in some application-specific
manner. The default implementation of font conversion is very conservative:
The font isn’t converted unless all traits of the font can be maintained across
the conversion.

Generally, you obtain an instance of NSFontManager by sending a
sharedFontManager message to the NSFontManager class object.
NSFontManager will return a font manager object that is shared within your
application. NSFontManager normally returns a predefined font manager
object, but the actual object which is returned can be changed by sending the
setFontManagerFactory: message.

Font Traits

Fonts work mainly in terms of traits, or characteristics, such as bold, italic,
condensed, and so on. Traits are described by a collection of constants such as
NSItalicFontMask , NSBoldFontMask , and so on. The full complement of
traits are defined in AppKit/NSFontManager.h . The values of traits are
defined in bitwise form so they can be logically OR’ed together, although some
traits, such as NSBoldFontMask and NSUnboldFontMask naturally conflict
and have the effect of turning each other off. You use one of the convertFont
methods to obtain a font of the desired characteristics from an existing font.

NSFontManager 1-275

1

The convertFont:toHaveTrait: and the
convertFont:toNotHaveTrait: methods deal with only one trait at a time.
To convert a font to have (or not have) multiple traits, you must invoke these
methods for each separate trait you wish to add to or remove from the font.
Alternatively, use the fontWithFamily:traits:weight:size: method to
specify multiple traits in one invocation.

The size of a font in the method definitions in the following is defined in
“points”, which are currently PostScript units. A PostScript unit is 1/72 of an
inch, or 0.0139 of an inch. In metric equivalents, a PostScript unit is 0.3528
millimetres. PostScript “points” are minimally different from “printer’s
points”, so for all intents and purposes you can think of PostScript units and
points as interchangeable.

The weight of a font as used in these methods is simply a value representing
a point in a continuum of font weights from lightest to heaviest. There’s no
simple one-to-one mapping of some integer value to, say, a bold weight. If you
query the font for its weight value, increment the value, and use it as a new
weight, you’ll not necessarily obtain a different face (such as a transition from
medium to bold) in a new instance of the font.

1-276 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Managing the font manager + setFontManagerFactory:
+ setFontPanelFactory:
+ sharedFontManager

Converting fonts – addFontTrait:
– convertFont:
– convertFont:toFamily:
– convertFont:toFace:
– convertFont:toHaveTrait:
– convertFont:toNotHaveTrait:
– convertFont:toSize:
– convertWeight:ofFont:
– fontWithFamily:traits:weight:size:
– modifyFont:
– modifyFontViaPanel:
– removeFontTrait:

Setting and getting parameters – action
– availableFontNamesWithTraits:
– availableFonts
– fontNamed:hasTraits:
– fontMenu:
– fontPanel:
– isEnabled
– isMultiple
– orderFrontFontPanel:
– selectedFont
– setAction:
– setEnabled:
– setFontMenu:
– setSelectedFont:isMultiple:
– traitsOfFont:
– weightOfFont:

Target and action methods – sendAction

Assigning a delegate – delegate
– setDelegate:

Methods Implemented by the
Delegate

– fontManager:willIncludeFont:

NSFontManager 1-277

1

Class Methods

setFontManagerFactory:

+ (void)setFontManagerFactory:(Class)classId

Sets the class object that will be used to create the font manager, allowing you
to specify a class of your own. See also setFontPanelFactory: .

setFontPanelFactory:

+ (void)setFontPanelFactory:(Class)classId

Sets the class object that’s used to create the NSFontPanel object when the
user chooses the Font panel command from the Font menu and no such panel
has yet been created. Unless you use this method to specify another class, the
NSFontPanel class will be used. See also setFontManagerFactory: .

sharedFontManager

+ (NSFontManager *)sharedFontManager

Returns a shared NSFontManager object, and also creates a shared
NSFontPanel object if necessary. See the “Class Description” for more
information on the shared font manager. See also setFontManagerFactory: ,
setFontPanelFactory: .

Instance Methods

action

– (SEL)action

Returns the action message that’s sent by the font manager to the first
responder when the user selects a new font from the Font panel or from the
Font menu. See also setAction: , sendAction .

addFontTrait:

- addFontTrait:(id)sender

1-278 OpenStep Programming Reference—September 1996

1

Causes the font manager’s action message (by default, changeFont:) to be sent
up the responder chain. When the responder replies with a convertFont:
message, the font is converted to add the trait specified by sender .

Before the action message is sent up the responder chain, the Font Manager
ascertains the trait to be changed by send sender a selectedTag
(NSControl) message. When the convertFont: message is received, the font
manager converts the supplied font by sending itself a
convertFont:toHaveTrait: message. See the Fonts section of the
Application Kit’s Types and Constants chapter for a list of Font Manager tags.
See also removeFontTrait: , convertFont:toHaveTrait: , changeFont:
(NSText).

availableFontNamesWithTraits:

- (NSArray *)availableFontNamesWithTraits:
(NSFontTraitMask)fontTraits

Searches for fonts with the given font traits, and returns those font names found.
The font traits are:

• NSItalicFontMask
• NSBoldFontMask
• NSUnboldFontMask
• NSNonStandardCharacterSetFontMask
• NSNarrowFontMask
• NSExpandedFontMask
• NSCondensedFontMask
• NSSmallCapsFontMask
• NSPosterFontMask
• NSCompressedFontMask
• NSUnitalicFontMask
• NSUnitalicFontMask
• NSFixedPitchFontMask

See also fontNamed:hasTraits: .

availableFonts

– (NSArray *)availableFonts

NSFontManager 1-279

1

Returns array listing all the fonts available for use by the Window Server. The
returned names are suitable for creating new NSFont s. The fonts are not in any
guaranteed order, but no font name is repeated in the list. It’s the sender’s
responsibility to free the list when finished with it.

convertFont:

– (NSFont *)convertFont:(NSFont *)fontObject

Converts fontObject according to the user’s selections from the Font panel
or the Font menu. Returns the converted font. See also
convertFont:toFamily: , convertFont:toFace: ,
convertFont:toHaveTrait: , convertFont:toNotHaveTrait: ,
convertFont:toSize: .

convertFont:toFamily:

– (NSFont *)convertFont:(NSFont *)fontObject
toFamily:(NSString *)family

Returns an NSFont object whose traits are the same as those of fontObject
except as specified by family . If the conversion can’t be made, the method
returns fontObject itself. This method can be used to convert a font, or it can
be overridden to convert fonts in a different manner. See also convertFont: .

convertFont:toFace:

– (NSFont *)convertFont:(NSFont *)fontObject
toFace:(NSString *)typeface

Returns an NSFont object whose traits are the same as those of fontObject
except as specified by typeface . If the conversion can’t be made, the method
returns fontObject itself. This method can be used to convert a font, or it can
be overridden to convert fonts in a different manner. See also convertFont: .

convertFont:toHaveTrait:

– (NSFont *)convertFont:(NSFont *)fontObject
toHaveTrait:(NSFontTraitMask)trait

1-280 OpenStep Programming Reference—September 1996

1

Returns a NSFont object whose traits are the same as those of fontObject
except as altered by the addition of the traits specified by trait . Of course,
conflicting traits (such as NSCondensedFontMask and
NSExpandedFontMask) have the effect of turning each other off. If the
conversion can’t be made, the method returns fontObject itself. This method
can be overridden to convert fonts in a different manner. See the “Fonts”
section of the Application Kit’s “Types and Constants” chapter for a list of font
trait masks. See also convertFont:toNotHaveTrait: .

convertFont:toNotHaveTrait:

– (NSFont *)convertFont:(NSFont *)fontObject
toNotHaveTrait:(NSFontTraitMask)trait

Returns an NSFont object whose traits are the same as those of fontObject
except as altered by the removal of the traits specified by trait . If the
conversion can’t be made, the method returns fontObject itself. This method
can be overridden to convert fonts in a different manner. See also
convertFont:toHaveTrait: .

convertFont:toSize:

 (NSFont *)convertFont:(NSFont *)fontObject toSize:(float)size

Returns an NSFont object whose traits are the same as those of fontObject
except as specified by size . If the conversion can’t be made, the method
returns fontObject itself. This method can be used to convert a font, or it can
be overridden to convert fonts in a different manner. See also convertFont: .

convertWeight:ofFont:

– (NSFont *)convertWeight:(BOOL)upFlag ofFont:(NSFont *)fontObject

Attempts to increase (if upFlag is YES) or decrease (if upFlag is NO) the
weight of the font specified by fontObject . If it can change the font weight, it
returns a new font object with the higher (or lower) weight. If it can’t, it returns
fontObject itself. By default, this method converts the weight only if it can
maintain all of the traits of the original fontObject . This method can be
overridden to convert fonts in a different manner. See also convertFont: .

NSFontManager 1-281

1

delegate

– (id)delegate

Returns the NSFontManager ’s delegate. See also setDelegate: .

fontMenu:

– (NSMenu *)fontMenu:(BOOL)create

Returns a menu suitable for insertion in an application’s menu. The menu
contains an item that brings up the Font panel as well as some common
accelerators (such as Bold and Italic). If the create flag is YES, the menu is
created if it doesn’t already exist. See also setFontMenu: , fontPanel: .

fontNamed:hasTraits:

- (BOOL)fontNamed:(NSString *)name
hasTraits:(NSFontTraitMask)traits

Retrieves font name’s font traits . Returns NO if font name is not found. See
also availableFontNamesWithTraits: .

fontPanel:

– (NSFontPanel *)fontPanel:(BOOL)create

Returns the NSFontPanel that will be used when the user chooses the Font
Panel command from the Font menu. If the create flag is YES, the
NSFontPanel is created if it doesn’t already exist. Unless you’ve specified a
different class by sending a setFontPanelFactory: message to the
NSFontManager class before creating the NSFontManager object, an
NSFontPanel object is returned. See also fontMenu: .

fontWithFamily:traits:weight:size:

– (NSFont *)fontWithFamily:(NSString *)family
traits:(NSFontTraitMask)traits
weight:(int)weight size:(float)size

1-282 OpenStep Programming Reference—September 1996

1

If there’s a font on the system with the specified family , traits , weight ,
and size , then it’s returned; otherwise, nil is returned. If NSBoldFontMask
or NSUnboldFontMask is one of the traits, weight is ignored. See the Fonts
section of the Application Kit’s Types and Constants chapter for a list of font
masks.

isEnabled

– (BOOL)isEnabled

Returns YES if the Font panel and menu are enabled, and returns NO otherwise.
See also setEnabled: .

isMultiple

– (BOOL)isMultiple

Returns YES if the currently selected text contains multiple fonts, and returns
NO otherwise. See also setSelectedFont:isMultiple: .

modifyFont:

- modifyFont:(id)sender:

Causes the font manager’s action message (by default NSText ’s changeFont:
method) to be sent up the responder chain. When the responder replies with a
convertFont: message, the font is converted in a way specified by the
selectedTag of the sender of this message. The Font menu items invoke this
method. See also addFontTrait: , removeFontTrait: , changeFont:
(NSText).

modifyFontViaPanel:

- modifyFontViaPanel:(id)sender:

Causes the font manager’s action message (by default, changeFont:) to be sent
up the responder chain. When the receiver replies with a convertFont:
message, the font manager sends a panelConvertFont: message to the Font
panel to complete the conversion.

NSFontManager 1-283

1

This message is usually sent by a control object in the Font panel. The Font
panel uses the font manager’s convert routines to do the conversion based on the
choices the user has made on the Font panel.

orderFrontFontPanel:

- orderFrontFontPanel:(id)sender:

Sends orderFront: (NSWindow) to the font panel. If there is no font panel, it is
created, by the NSFontPanel class object, or by an object you specified with the
font manager’s setFontPanelFactory: class method. See also orderFront:
(NSWindow).

removeFontTrait:

- removeFontTrait:(id)sender:

Sends the font manager’s action message (by default NSText ’s
changeFont: method) up the responder chain. When the responder replies with
a convertFont: message, the font is converted to remove the trait specified by
sender . When the convertFont: message is received, the font manager
converts the supplied font by sending itself a
convertFont:toNotHaveTrait: message. See also addFontTrait: ,
convertFont:toHaveTrait: .

selectedFont

– (NSFont *)selectedFont

Returns the first font in the current selection. See also
setSelectedFont:isMultiple: .

sendAction

– (BOOL)sendAction

Sends the NSFontManager ’s action message up the responder chain. You
rarely, if ever, need to send a sendAction: message or to override this
method. The message is sent by the target-action messages sent by different
user-interface objects that allow users to manipulate the font of the current text
selection for example, the Font panel and the Font menu. See also
setAction: , action .

1-284 OpenStep Programming Reference—September 1996

1

setAction:

– (void)setAction:(SEL)aSelector

Sets the action to that specified by aSelector to be sent by the font manager
when the user selects a new font from the Font panel or from the Font menu.
See also action , sendAction .

setDelegate:

– (void)setDelegate:(id)anObject

Sets the NSFontManager ’s delegate to anObject . The delegate can restrict
which font names appear in the Font panel. See also delegate .

setEnabled:

– (void)setEnabled:(BOOL)flag

Sets whether the controls in the Font panel and the commands in the Font
menu are enabled or disabled depending on flag . By default, these controls
and commands are enabled. Even when disabled, the Font panel allows the
user to preview fonts. However, when the Font panel is disabled, the user can’t
apply the selected font to text in the application’s main window. You can use
this method to disable the user interface to the font selection system when its
actions would be inappropriate. For example, you might disable the font
selection system when your application has no document window. See also
isEnabled .

setFontMenu:

– (void)setFontMenu:(NSMenu *)newMenu

Sets the font menu to newMenu. See also fontMenu: .

setSelectedFont:isMultiple:

– (void)setSelectedFont:(NSFont *)fontObject isMultiple:(BOOL)flag

NSFontManager 1-285

1

Notifies font manager of the selection’s current font from fontObject with
flag indicating whether the selection has multiple fonts. An object containing
a document should send this message every time its selection changes. If the
selection contains multiple fonts, flag should be YES. See also
selectedFont .

traitsOfFont:

– (NSFontTraitMask)traitsOfFont:(NSFont *)fontObject

Returns the font traits of fontObject . See the Fonts section of the Application
Kit’s Types and Constants chapter for more information on font masks. See
also fontWithFamily:traits:weight:size: .

weightOfFont:

– (int)weightOfFont:(NSFont *)fontObject

Returns the fontObject weight.

Methods Implemented by the Delegate

fontManager:willIncludeFont:

– (BOOL)fontManager:(id)sender willIncludeFont:(NSString *)fontName

Responds to a message informing the NSFontManager ’s delegate that the
NSFontPanel is about to include fontName in the list displayed to the user.
fontName is the name of the font, for example “Helvetica-Narrow-Bold”. If
this method returns NO, the font isn’t added; otherwise, it is.

A delegate that implements this method can receive multiple fontObject
messages whenever the Font panel needs updating, such as when the user
selects a different family name to determine which typefaces are available. For
each typeface within that family, the delegate will receive notification.
Consequently, your implementation of this method shouldn’t take long to
execute.

1-286 OpenStep Programming Reference—September 1996

1

NSFontPanel

Class Description

The NSFontPanel class declares the programmatic interface to a user-interface
object that displays a list of available fonts, enabling users to preview them
and change the typefaces in which text is displayed. Actual changes to text are
effected through conversion messages sent to the NSFontManager . There is
only one NSFontPanel object for each application.

In general, you add the facilities of the NSFontPanel and of the other
components of the font conversion system, the NSFontManager and the Font
menu to your application through interface construction tools such as Interface
Builder. You do this by including a Font menu into one of your application’s
menus. At run time, when the user chooses the Font Panel command for the
first time, the NSFontPanel object is created and hooked into the font
conversion system. You can also create (or access) NSFontPanel through the
sharedFontPanel method.

An NSFontPanel can be customized by adding an additional NSView object
or hierarchy of NSView objects by using the setAccessoryView: method. If
you want the NSFontManager to instantiate a panel object from some class
other than NSFontPanel , use the NSFontManager ’s
setFontPanelFactory: method. See NSFontManager for details on the font
manager object that performs font conversion tasks.

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSFontPanel.h

NSFontPanel 1-287

1

Method Types

Class Methods

sharedFontPanel

+ (NSFontPanel *)sharedFontPanel

Returns an NSFontPanel object. The panel is created if it doesn’t already exist.

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the application-customized view set by setAccessoryView: .

isEnabled

– (BOOL)isEnabled

Returns YES if the NSFontPanel ’s Set button is enabled, and returns NO
otherwise. See also setEnabled: .

Activity Class Method

Creating an NSFontPanel + sharedFontPanel
– panelConvertFont:

Setting the Font – setPanelFont: isMultiple:

Configuring the NSFontPanel – accessoryView
– isEnabled
– setAccessoryView:
– setEnabled:
– worksWhenModal

Displaying the NSFontPanel – orderWindow:relativeTo:

1-288 OpenStep Programming Reference—September 1996

1

orderWindow:relativeTo:

– (void)orderWindow:(NSWindowOrderingMode)place
relativeTo:(int)otherWindows

Repositions the NSFontPanel above or below the other windows
otherWindows as indicated by place and updates the NSFontPanel if
necessary. place can be one of:

• NSWindowAbove
• NSWindowBelow
• NSWindowOut

If it’s NSWindowOut, the panel is removed from the screen list and otherWin
is ignored. If it’s NSWindowAbove or NSWindowBelow, otherWin is the
window number of the window that the NSFontPanel is to be placed above
or below. If otherWin is 0, the panel will be placed above or below all other
windows. See also orderWindow:relativeTo: (NSWindow),
makeKeyAndOrderFront: (NSWindow).

panelConvertFont:

– (NSFont *)panelConvertFont:(NSFont *)fontObject

Returns an NSFont object whose traits are the same as those of fontObject
except as specified by the user’s choices in the Font Panel. If the conversion
can’t be made, the method returns fontObject itself. The NSFontPanel
makes the conversion by using the NSFontManager ’s methods that convert
fonts. A panelConvertFont: message is sent by the NSFontManager
whenever it needs to convert a font as a result of user actions in the Font panel.
See also sharedFontPanel .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Customizes the Font panel by adding aView above the action buttons at the
bottom of the panel. The NSFontPanel is automatically resized to
accommodate aView . aView should be the top NSView in a view hierarchy. If
aView is nil , any existing accessory view is removed. If aView is the same as
the current accessory view, this method does nothing. See also
accessoryView .

NSForm 1-289

1

setEnabled:

– (void)setEnabled:(BOOL)flag

Enables (the default state) or disables the FontPanel’s Set button depending on
flag. Even when disabled, the Font panel allows the user to preview fonts.
However, when the Font panel is disabled, the user can’t apply the selected
font to text in the application’s main window. You can use this method to
disable the user interface to the font selection system when its actions would
be inappropriate. For example, you might disable the font selection system
when your application has no document window. See also isEnabled .

setPanelFont: isMultiple:

– (void)setPanelFont:(NSFont *)fontObject isMultiple:(BOOL)flag

Sets the NSFontPanel ’s current font from fontObject with flag indicating
whether it contains multiple fonts. This message should only be sent by the
NSFontManager .

worksWhenModal

– (BOOL)worksWhenModal

Returns whether the NSFontPanel will operate while a modal panel is
displayed within the application. By default, this method returns YES. See also
worksWhenModal (NSPanel).

NSForm

Class Description

An NSForm is an NSMatrix subclass that contains titled entries (text fields)
into which a user can type data values. Entries are indexed from the top down
(starting with zero). Each item in the NSForm, including the titles, is an

Inherits From: NSMatrix : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSForm.h

1-290 OpenStep Programming Reference—September 1996

1

NSFormCell . A mouse click on an NSFormCell (that is, on the title or in the
entry area) starts text editing in that entry. If the user presses the Return or
Enter key while editing an entry, the action of the entry is sent to the target of
the entry; or, if the entry doesn't have an action, the NSForm sends its action to
its target. If the user presses the Tab key, the next entry in the NSForm is
selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the NSFormCell and NSMatrix class specifications.

Method Types

Class Methods

cellClass

+ (Class)cellClass

Activity Class Method

Laying out the form – addEntry:
– insertEntry:atIndex:
– removeEntryAtIndex:
– setInterlineSpacing:

Finding indices – indexOfCellWithTag:
– indexOfSelectedItem

Modifying graphic attributes – setBezeled:
– setBordered:
– setTextAlignment:
– setTextFont:
– setTitleAlignment:
– setTitleFont:

Setting the cell class + cellClass
+ setCellClass:

Getting a cell – cellAtIndex:

Displaying a cell – drawCellAtIndex:

Editing a cell – selectTextAtIndex:

Resizing the form – setEntryWidth:

NSForm 1-291

1

Returns the class last set in a setCellClass: message, or the NSFormCell
class if setCellClass: has never been called. See also setCellClass: .

setCellClass:

+ (void)setCellClass:(Class)classId

Configures the NSForm class to use instances of classId for its cells. classId
should be an NSFormCell subclass id , obtained by sending the class
message (NSObject) to either the NSFormCell subclass object, or to an
instance of that subclass. The default cell class is NSFormCell . “Creating New
NSControls” in the NSControl class specification has more information on
how to safely set the cell class used by a subclass of NSControl . See also
cellClass , initWithFrame: .

Instance Methods

addEntry:

– (NSFormCell *)addEntry:(NSString *)title

Adds and returns a new entry, with title as its title, at the end of the form.
See also insertEntry:atIndex: , removeEntryAtIndex: ,
setInterlineSpacing: .

cellAtIndex:

– (id)cellAtIndex:(int)index

Returns the cell at location index or nil if none exists. See also
cellAtRow:column: (NSMatrix).

drawCellAtIndex:

– (void)drawCellAtIndex:(int)index

Displays the cell at the specified index . See also drawCellAtRow:column:
(NSMatrix).

1-292 OpenStep Programming Reference—September 1996

1

indexOfCellWithTag:

– (int)indexOfCellWithTag:(int)aTag

Returns the index for the cell with tag aTag , or -1 if none exists. See also
indexOfSelectedItem .

indexOfSelectedItem

– (int)indexOfSelectedItem

Returns the index of the currently selected entry, or -1 if none is selected. See
also indexOfCellWithTag: .

insertEntry:atIndex:

– (NSFormCell *)insertEntry:(NSString *)title atIndex:(int)index

Inserts a new entry, with the title title , at position index in the form. The
entry at the top of the form has an index of 0. The new NSFormCell has no
tag, target, or action. Returns the newly inserted NSFormCell . Does not
redraw the form. See also removeEntryAtIndex: , addEntry: .

removeEntryAtIndex:

– (void)removeEntryAtIndex:(int)index

Removes the entry at location index . See also insertEntry:atIndex: ,
addEntry: .

selectTextAtIndex:

– (void)selectTextAtIndex:(int)index

If given a valid index , selects the text in the entry at index .

setBezeled:

– (void)setBezeled:(BOOL)flag

NSForm 1-293

1

If flag is YES, all cells in the form are set to show a bezel around their editable
text and are redrawn; if flag is NO, cells in the form have no bezel. A bezel is
mutually exclusive with a border, and invoking this method with NO as the
argument will not remove a border. See also setBordered: .

setBordered:

– (void)setBordered:(BOOL)flag

If flag is YES, all cells in the form are set to show a one-pixel black border
around their editable text and are redrawn; if flag is NO, cells in the form have
no border. A border is mutually exclusive with a bezel, and invoking this
method with NO as the argument will not remove a bezel. See also
setBezeled: .

setEntryWidth:

– (void)setEntryWidth:(float)width

Sets the width of all the entries (including the title part) to width . Doesn’t
redraw the form. Invoke sizeToCells (NSMatrix) after using this method.

setInterlineSpacing:

– (void)setInterlineSpacing:(float)spacing

Sets the spacing between entries to spacing . Does not redraw the form. See
also addEntry: .

setTextAlignment:

– (void)setTextAlignment:(NSTextAlignment)mode

Sets the alignment mode for the editable text in the form. mode can be one of
three values:

• NSLeftTextAlignment
• NSCenteredTextAlignment
• NSRightTextAlignment

The default is left aligned. Redraws the form. See also setTextFont: ,
setTitleAlignment: , setTitleFont: .

1-294 OpenStep Programming Reference—September 1996

1

setTextFont:

– (void)setTextFont:(NSFont *)fontObject

Sets the font used to draw entry text to fontObject . Marks the form as
needing redrawing. See also setTitleFont: , setTextAlignment: .

setTitleAlignment:

– (void)setTitleAlignment:(NSTextAlignment)mode

Sets the alignment mode for titles in the form. mode can be one of three values:

• NSLeftTextAlignment
• NSCenteredTextAlignment
• NSRightTextAlignment

The default is right aligned. See also setTextAlignment: .

setTitleFont:

– (void)setTitleFont:(NSFont *)fontObject

Sets the font used to draw entry titles to fontObject . Redraws the form. See
also setTitleAlignment: , setTextFont: .

NSFormCell

Class Description

NSFormCell is used to implement entries in an NSForm. It displays a title
within itself, on the left side of the cell. Editing is allowed only in the
remaining (right) portion. See the NSForm class specification for more on the
use of NSFormCell .

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSFormCell.h

NSFormCell 1-295

1

Method Types

Instance Methods

cellSizeForBounds:

– (NSSize)cellSizeForBounds:(NSRect)aRect

Calculates the NSFormCell ’s size, assuming it is constrained within aRect .
Returns the size.

drawInteriorWithFrame:inView:

– (void)drawInteriorWithFrame:(NSRect)cellFrame
inView:(NSView *)controlView

Draws only the text inside the NSFormCell (not the bezel or the title of the
NSFormCell) within the given cellFrame , for the given controlView .

initTextCell:

– (id)initTextCell:(NSString *)aString

Activity Class Method

Initializing an NSFormCell – initTextCell:

Determining an NSFormCell’s size – cellSizeForBounds:

Determining graphic attributes – isOpaque

Modifying the title – setTitle:
– setTitleAlignment:
– setTitleFont:
– setTitleWidth:
– title
– titleAlignment
– titleFont
– titleWidth
– titleWidth:

Displaying – drawInteriorWithFrame:inView:

1-296 OpenStep Programming Reference—September 1996

1

Initializes and returns the receiver, a new instance of NSFormCell , with its
contents set to the empty string (“”) and its title set to aString . The font for
both title and text is the user’s chosen system font in 12.0 point, and the text
area is drawn with a bezel. This method is the designated initializer for
NSFormCell .

isOpaque

– (BOOL)isOpaque

Returns YES if the NSFormCell is opaque, NO otherwise. If the NSFormCell
has a title, then it’s not opaque (since the title field is not opaque).

setTitle:

– (void)setTitle:(NSString *)aString

Sets the NSFormCell ’s title to aString . See also title ,
setTitleAlignment: , setTitleFont: , setTitleWidth: ,
titleAlignment , titleFont , titleWidth , titleWidth: .

setTitleAlignment:

– (void)setTitleAlignment:(NSTextAlignment)mode

Sets the alignment of the title to mode which can be one of the following:

• NSLeftTextAlignment
• NSCenterTextAlignment
• NSRightTextAlignment

See also setTitle: .

setTitleFont:

– (void)setTitleFont:(NSFont *)fontObject

Sets the font used to draw the title to fontObject . See also setTitle: .

setTitleWidth:

– (void)setTitleWidth:(float)width

NSFormCell 1-297

1

Sets the width of the title field. If width is –1, the title field’s width is always
calculated when needed. Use this method only if the NSFormCell ’s title isn’t
going to change, or if your code always resets the title width when it resets the
title. See also setTitle: .

title

– (NSString *)title

Returns the NSFormCell ’s title. See also setTitle: .

titleAlignment

– (NSTextAlignment)titleAlignment

Returns the alignment of the title. See also setTitleAlignment: .

titleFont

– (NSFont *)titleFont

Returns the font used to draw the title. See also setTitleFont: , setTitle: .

titleWidth

– (float)titleWidth

Returns the title width. See also setTitleWidth: , setTitle: ,
titleWidth: .

titleWidth:

– (float)titleWidth:(NSSize)aSize

If the title width has been set, then it’s returned. Otherwise, the width is
calculated constrained to aSize . aSize may be NULL, in which case the width
is calculated without constraint. See also setTitleWidth: , setTitle: ,
titleWidth .

1-298 OpenStep Programming Reference—September 1996

1

NSHelpPanel

Class Description

The NSHelpPanel class is the central component of the OpenStep help system.
It provides the Help panel that displays the text and illustrations that
constitute your application’s help information. The NSHelpPanel class object
itself stores the table of associations between an application’s user-interface
objects and specific passages of the help text.

Users can display the Help panel by choosing the Help command from an
application’s Info menu. The panel employs the metaphor of a book: It
displays a table of contents, body text, and an index. Users can browse through
the text by clicking entries in the table of contents or index. The panel also
supports hypertext-like help links, which appear as diamond-shaped images
within the text and allow the user to easily follow cross references. By using
the help cursor and clicking user-interface objects, the user can query the Help
panel for information associated with those objects.

The Help Text

An NSHelpPanel object looks in a language-specific directory within the
application’s file package for the text that it will display. (Some
implementations may employ more efficient means of storage than files and
directories.) For example, if the user’s language preference is English, the panel
searches for a directory named Help within the C.lproj directory of the
application’s file package. It searches for two files: TableOfContents.rtf
and Index.rtfd . There may also be one or more files containing the body text
that the Help panel will display. The table of contents, index, and body files are
interconnected by a system of help links and help markers.

A help marker is a named position holder in the stream of text—in most cases,
it’s invisible to users. A help link is a diamond-shaped button embedded in the
text. Help links store a file name and, optionally, a help marker name. When a

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSHelpPanel.h

NSHelpPanel 1-299

1

user clicks a help link, the Help panel displays the named file. If the help link
also stores a marker name, the displayed file is scrolled to the position of the
marker, and the text is selected from the marker’s position to the end of the
line.

Table-of-Contents and Index Files

The table-of-contents and index files are specially designed documents in Rich
Text Format (RTF). An NSHelpPanel object identifies these files by name
(TableOfContents.rtf and Index.rtfd) and processes them differently
than it does other help files.

The table of contents file should contain one entry for each help text file in the
help directory. Each entry begins with a help link that stores the name of the
destination file for that entry. Following the link is the text of the entry, which
may wrap and span several lines. Although the table of contents in the Help
panel looks like it’s displayed by an NSMatrix , it’s actually displayed by a
modified NSText object. You can use the full generality of RTF to format your
table of contents.

The index file is structured similarly although there is no enforced one-to-one
mapping. Generally, the help link that begins an index entry stores both a file
name and a marker name, since an index entry usually points to a specific
word or phrase within a file.

Generic Help Files

An application’s Help directory can contain only table-of-contents and index
files, and yet the application may be able to display numerous help subjects,
each of a general nature. This is because OpenStep applications have access to
generic help files contained in a directory found in a system-specific location.

When a help link is being resolved, the NSHelpPanel first looks for the
specified file within the appropriate language.lproj/Help directory of the
application’s file package. If the file isn’t found, it then searches the directory
of generic help files. This search path is used for all links, whether they are in
the table of contents, index, or body text.

1-300 OpenStep Programming Reference—September 1996

1

If one of these generic help files is inappropriate for your application, you have
two remedies: You can remove the table-of-contents and index entries that refer
to it, or you can override the file with one that’s more appropriate. By placing
a file of the same name and relative location within your application’s Help
directory, NSHelpPanel will display it rather than the generic file.

Associating Help Text with Objects

The NSHelpPanel class stores associations between user-interface objects and
help text. When the user presses the Help modifier key, which varies
depending on the hardware running the application), a question mark cursor
appears. If the user clicks an object using this cursor, the Help panel displays
the associated help text.

You can attach a help file to a user-interface object programmatically by
sending an attachHelpFile:markerName:to: message to the
NSHelpPanel class object. This method takes a file name, a marker name, and
an object id as its arguments. The detachHelpFrom: message removes such
an association.

Just as with help links, an NSHelpPanel searches both the application’s file
package and the generic help files in attempting to find the file associated with
a particular user-interface object.

Hidden Files

Although in general there’s a one-to-one relationship between table-of-contents
entries and files in the Help directory, you can force a single table-of-contents
entry to represent multiple “hidden” files. This can be useful in reducing the
overall length of the table of contents.

Hidden files can’t be accessed from the table of contents; rather, the user must
find them by Help-clicking an object in the application’s user interface, by
using the Help panel’s Find command, by using the index, or by following a
help link from some other file. However, when a hidden file is displayed, the
Help panel must select some entry in the table of contents.

NSHelpPanel 1-301

1

Conversely, when the user selects such a table-of-contents entry, the Help panel
must display one of the files in the directory of hidden files; by convention, this
file must be named Prolog.rtfd . This prolog file typically informs users that
they can get help on a particular user-interface object by Help-clicking that
object.

The Help panel’s Find button searches through all the files that are connected
to table-of-contents entries, first looking in the application’s Help directory
and then in the generic help material. If you don’t want some hidden file in the
generic help material to appear in your application’s Help panel as the result
of a Find operation, override the file with an empty file of the same name.
Since the file is empty, no search string will ever be found in it, and it will
effectively block the generic file of the same name from being searched.

Searching the Help Text

By clicking the Help panel’s Find button, users can search the help text for
strings. NSHelpPanel uses two approaches to locate text containing a specific
string. First, it attempts to find the string in the currently displayed help text
by sending the object that displays the text (an instance of NSCStringText) a
findText:ignoreCase:backwards:wrap: message. If the search is
unsuccessful, or if the search is continued past the last occurrence of the string
in the current file, the NSHelpPanel object scans for the string in other help
files, both within the application’s help files and within the generic help files.
Some implementations of NSHelpPanel may make use of a previously built
index of all the help text to speed this search.

Help Supplements

Since in OpenStep an application may load executable modules dynamically
(for example, a drawing program could allow the user to load a new drawing
tool), an NSHelpPanel object provides the ability to load supplemental help
information. When the application loads the module, it sends the
NSHelpPanel object an addSupplement:inPath: message to inform the
object of the location of the new help supplement. The NSHelpPanel object
appends the contents of the supplement’s TableOfContents.rtf to the
existing table of contents, so the supplement should have a title that clearly
sets it off from the main part of the table of contents, for example:

1-302 OpenStep Programming Reference—September 1996

1

—Pattern Tool Supplement—
Pattern Options

Brick
Stucco
Wood
Tile

Custom
Resizing and Rotating
Index to Supplement

The supplement’s index is only accessible from the table of contents; the Help
panel’s Index button displays only the main index.

Method Types

Class Methods

attachHelpFile:markerName:to:

+ (void)attachHelpFile:(NSString *)filename
markerName:(NSString *)markerName to:(id)anObject

Associates the help file filename and markerName with anObject .

detachHelpFrom:

+ (void)detachHelpFrom:(id)anObject

Activity Class Method

Accessing the help panel + sharedHelpPanel
+ sharedHelpPanelWithDirectory:

Managing the contents + setHelpDirectory:
– addSupplement:inPath:
– helpDirectory
– helpFile

Attaching help to objects + attachHelpFile:markerName:to:
+ detachHelpFrom:

Showing help – showFile:atMarker:
– showHelpAttachedTo:

Printing – print:

NSHelpPanel 1-303

1

Removes any help information associated with anObject .

setHelpDirectory:

+ (void)setHelpDirectory:(NSString *)helpDirectory

Initializes the panel to display the help text found in helpDirectory . By
default, the receiver looks for a directory named Help .

sharedHelpPanel

+ (NSHelpPanel *)sharedHelpPanel

Creates, if necessary, and returns the NSHelpPanel object.

sharedHelpPanelWithDirectory:

+ (NSHelpPanel *)sharedHelpPanelWithDirectory:
(NSString *)helpDirectory

Creates, if necessary, and returns the NSHelpPanel object. If the panel is
created, it loads the help directory specified by helpDirectory . The help
directory must reside in the main bundle. If a Help panel already exists but has
loaded a help directory other than helpDirectory , a second panel will be
created.

Instance Methods

addSupplement:inPath:

– (void)addSupplement:(NSString *)helpDirectory
inPath:(NSString *)supplementPath

Append additional help entries to the Help panel’s table of contents.

helpDirectory

– (NSString *)helpDirectory

Returns the absolute path of the help directory.

1-304 OpenStep Programming Reference—September 1996

1

helpFile

– (NSString *)helpFile

Returns the path of the currently loaded help file.

print:

– (void)print:(id)sender

Prints the currently displayed help text.

showFile:atMarker:

– (void)showFile:(NSString *)filename atMarker:(NSString
*)markerName

Causes the panel to display the help contained in filename at markerName .

showHelpAttachedTo:

– (BOOL)showHelpAttachedTo:(id)anObject

Causes the panel to display help attached to anObject .

NSImage

Class Description

An NSImage object contains an image that can be composited anywhere
without first being drawn in any particular view. It manages the image by:

• Reading image data from the application bundle, from an NSPasteboard ,
or from an NSData object

• Keeping multiple representations of the same image

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImage.h

NSImage 1-305

1

• Choosing the representation that’s appropriate for a particular data type

• Choosing the representation that’s appropriate for any given display device

• Caching the representations it uses by rendering them in off-screen
windows

• Optionally retaining the data used to draw the representations, so that they
can be reproduced when needed

• Compositing the image from the off-screen cache to where it’s needed on-
screen

• Reproducing the image for the printer so that it matches what’s displayed
on-screen, yet is the best representation possible for the printed page

• Automatically using any filtering services installed by the user to convert
image data from unsupported formats to supported formats

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• Untagged (raw) bitmap data

• Other image data supported by an NSImageRep subclass registered with the
NSImage class

• Data that can be filtered to a supported type by a user-installed filter service

If data is placed in a file (for example, in an application bundle), the NSImage
object can access the data whenever it’s needed to create the image. If data is
read from an NSData object, the NSImage object may need to store the data
itself.

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NSImage
object. In this case, the NSImage maintains only the cached image.

• By defining a method that can be used to draw the image when needed.
This allows the NSImage to delegate responsibility for producing the image
to some other object.

1-306 OpenStep Programming Reference—September 1996

1

Image Representations

An NSImage object can keep more than one representation of an image.
Multiple representations permit the image to be customized for the display
device. For example, different hand-tuned TIFF images can be provided for
monochrome and color screens, and an EPS representation or a custom method
might be used for printing. All representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to a
representations message. Each representation is a kind of NSImageRep
object:

You can define other NSImageRep subclasses for objects that render images
from other types of source data. To make these new subclasses available to an
NSImage object, they need to be added to the NSImageRep class registry by
invoking the registerImageRepClass: class method. NSImage determines
the data types that each subclass can support by invoking its
imageUnfilteredFileTypes and imageUnfilteredPasteboardTypes
methods.

Table 1-13 Subclasses of NSImageRep

Subclass What It Represents

NSEPSImageRep An image that can be recreated from EPS data that’s either
stored by the object or at a known location in the file
system.

NSBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NSCustomImageRep An image that can be redrawn by a method defined in the
application.

NSCachedImageRep An image that has been rendered in an off-screen cache
from data or instructions that are no longer available. The
image in the cache provides the only data from which the
image can be reproduced. Cached image copying is done
by PostScript compositing. Unless it is copied, the cached
image representation’s backing store is the actual window
it was initialized from. Any changes to this window will be
reflected in the cached image representation.

NSImage 1-307

1

Choosing Representations

The NSImage object will choose the representation that best matches the
rendering device. By default, the choice is made according to the following set
of ordered rules. Each rule is applied in turn until the choice of representation
is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale
representation for a monochrome device.

2. Choose a representation with a resolution that matches the resolution of the
device, or if no representation matches, choose the one with the highest
resolution. By default, any image representation with a resolution that’s an
integer multiple of the device resolution is considered to match. If more
than one representation matches, the NSImage will choose the one that’s
closest to the device resolution. However, you can force resolution matches
to be exact by passing NO to the setMatchesOnMultipleResolution:
method. Rule 2 prefers TIFF and bitmap representations, which have a
defined resolution, over EPS representations, which don’t. However, you
can use the setUsesEPSOnResolutionMismatch: method to have the
NSImage choose an EPS representation in case a resolution match isn’t
possible.

3. If all else fails, choose the representation with a specified bits per sample
that matches the depth of the device. If no representation matches, choose
the one with the highest bits per sample.

By passing NO to the setPrefersColorMatch: method, you can have the
NSImage try for a resolution match before a color match. This essentially
inverts the first and second rules above.

If these rules fail to narrow the choice to a single representation—for example,
if the NSImage has two color TIFF representations with the same resolution
and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the
representation that’s best for the destination display device, as outlined above.
It renders the representation in an off-screen window on the same device, then
composites it from this cache to the desired location. Subsequent requests to
composite the image use the same cache. Representations aren’t cached until

1-308 OpenStep Programming Reference—September 1996

1

they’re needed for compositing. When printing, the NSImage tries not to use
the cached image. Instead, it attempts to render on the printer the best version
of the image that it can, using the appropriate image data, or a delegated
method. Only as a last resort will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of
the base coordinate system. If a representation is smaller or larger than the
specified size, it can be scaled to fit. If the size of the image hasn’t already been
set when the NSImage is provided with a representation, the size will be set
from the data. The bounding box is used to determine the size of an
NSEPSImageRep. The TIFF fields “ImageLength” and “ImageWidth” are used
to determine the size of an NSBitmapImageRep .

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate
system; they can’t be rotated or flipped. When composited, an image maintains
this orientation, no matter what coordinate system it’s composited to. (The
destination coordinate system is used only to determine the location of a
composited image, not its size or orientation.) It’s possible to refer to portions
of an image when compositing by specifying a rectangle in the image’s
coordinate system, which is identical to the base coordinate system, except that
the origin is at the lower left corner of the image.

Named Images

An NSImage object can be identified either by its id or by a name. Assigning
an NSImage a name adds it to a table kept by the class object; each name in the
database identifies one and only one instance of the class. When you ask for an
NSImage object by name (with the imageNamed: method), the class object
returns the one from its database, which also includes all the system bitmaps
provided by the Application Kit. If there’s no object in the database for the
specified name, the class object tries to create one by checking for a system
bitmap of the same name, checking the name of the application’s own image,
and then checking for the image in the application’s main bundle.

NSImage 1-309

1

If a section or file matches the name, an NSImage is created from the data
stored there. You can create NSImage objects simply by including EPS or TIFF
data for them within the executable file, or in files inside the application’s file
package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter
services for converting unsupported image file types to supported image file
types. The class method imageFileTypes returns an array of all file types
from which NSImage can create an instance of itself. This list includes all file
types supported by registered subclasses of NSImageRep, and those types that
can be converted to supported file types through a user-installed filter service.

1-310 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Initializing a new NSImage
instance

– initByReferencingFile:
– initWithContentsOfFile:
– initWithData:
– initWithPasteboard:
– initWithSize:

Setting the size of the image – setSize:
– size

Referring to images by name + imageNamed:
– setName:
– name

Specifying the image – addRepresentation:
– addRepresentations:
– lockFocus
– lockFocusOnRepresentation:
– unlockFocus

Using the image – compositeToPoint:operation:
– compositeToPoint:fromRect:operation:
– dissolveToPoint:fraction:
– dissolveToPoint:fromRect:fraction:

Choosing which image
representation to use

– setPrefersColorMatch:
– prefersColorMatch
– setUsesEPSOnResolutionMismatch:
– usesEPSOnResolutionMismatch
– setMatchesOnMultipleResolution:
– matchesOnMultipleResolution

Getting the representations – bestRepresentationForDevice:
– representations
– removeRepresentation:

Determining how the image is
stored

– setCachedSeparately:
– isCachedSeparately
– setDataRetained:
– isDataRetained
– setCacheDepthMatchesImageDepth:
– cacheDepthMatchesImageDepth

NSImage 1-311

1

Class Methods

canInitWithPasteboard:

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Tests if the receiver can create a representation from the pasteboard . Returns
YES if the NSImage class object can create an NSImage instance from the data
represented by pasteboard . Returns YES if NSImage’s list of registered
NSImageReps includes a class that can handle the data represented by
pasteboard . By default, this method returns YES if pasteboard ’s type is
NSTIFFPboardType , NSPostScriptPboardType , or
NSFilenamesPboardType (for file names with extension .tiff , .tif , or
.eps).

NSImage uses the NSImageRep class method
imageUnfilteredPasteboardTypes to find the class that can handle the
data in pasteboard . When creating a subclass of NSImageRep that accepts

Determining how the image is
drawn

– isFlipped
– setFlipped:
– isValid
– setScalesWhenResized:
– scalesWhenResized
– backgroundColor
– setBackgroundColor:
– drawRepresentation:inRect:
– recache

Assigning a delegate – setDelegate:
– delegate

Producing TIFF data for the
image

– TIFFRepresentation
– TIFFRepresentationUsingCompression:factor:

Managing NSImageRep
subclasses

+ imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

Testing image data sources + canInitWithPasteboard:
+ imageFileTypes
+ imagePasteboardTypes

Methods Implemented by the
Delegate

– imageDidNotDraw:inRect:

Activity Class Method

1-312 OpenStep Programming Reference—September 1996

1

image data from a nondefault pasteboard type, override the
imageUnfilteredPasteboardTypes method to notify NSImage of the
pasteboard types your class supports.

imageFileTypes

+ (NSArray *)imageFileTypes

Returns a null-terminated array of NSString s representing file types for
which a registered NSImageRep exists. This list includes all file types
supported by registered subclasses of NSImageRep, and those types that can
be converted to supported file types through a user-installed filter service. The
array returned by this method may be passed directly to the NSOpenPanel ’s
runModalForTypes: method. The returned array belongs to the system, and
should not be freed by the application.

File types are identified by extension. By default, the list returned by this
method contains “tiff”, “tif”, “eps”. When creating a subclass of NSImageRep
that accepts image data from non-default file types, override the
imageUnfilteredFileTypes method to notify NSImage of the file types
your class supports.

imageNamed:

+ (id)imageNamed:(NSString *)name

Creates and returns the NSImage object having name if found. Returns nil if
an image with the given name isn’t found. Searches the main bundle for the
image if necessary. See also NSString .

imagePasteboardTypes

+ (NSArray *)imagePasteboardTypes

Returns an array of supported pasteboard types for which a registered
NSImageRep exists. This list includes all pasteboard types supported by
registered subclasses of NSImageRep, and those that can be converted to
supported pasteboard types through a user-installed filter service. By default,
the list returned by this method contains NSPostScriptPboardType , and
NSTIFFPboardType . See also NSImageRep.

NSImage 1-313

1

imageUnfilteredFileTypes

+ (NSArray *)imageUnfilteredFileTypes

Returns an array of file types recognized by the NSImage without filtering.
This list comes from all registered NSImageReps. This array should not be
freed or changed. See also NSArray .

imageUnfilteredPasteboardTypes

+ (NSArray *)imageUnfilteredPasteboardTypes

Returns an array of pasteboard types recognized by the NSImage. This array
should not be freed or changed.

Instance Methods

addRepresentation:

– (void)addRepresentation:(NSImageRep *)imageRep

Adds imageRep to the receiver’s list of representations. The image-
representation object is retained by the image object. See also NSImageRep.

addRepresentations:

– (void)addRepresentations:(NSArray *)imageRepArray

Adds the image representations from imageRepArray to the receiver’s list of
representations. The image-representation objects are retained by the image
object. See NSImageRep.

backgroundColor

– (NSColor *)backgroundColor

Returns the background color of the image. Returns the background color of
the rectangle where the image is cached. If no background color has been
specified, NS_COLORCLEAR is returned, indicating a totally
transparent background. The background color will be visible when the image
is composited only if the image doesn’t completely cover all the pixels within
the area specified for its size. See NSColor .

1-314 OpenStep Programming Reference—September 1996

1

bestRepresentationForDevice:

– (NSImageRep *)bestRepresentationForDevice:
(NSDictionary *)deviceDescription

Returns the best representation for the device described by
deviceDescription . If deviceDescription is nil , the current device is
assumed. See NSGraphics.h for appropriate dictionary keys and values. Do
not send this message before the application object is running, and a DPS
context created. See also removeRepresentation: , representations .

cacheDepthMatchesImageDepth

– (BOOL)cacheDepthMatchesImageDepth

Returns YES if the default depth limit applies to cached representation (in an
off-screen window). Otherwise returns NO.

compositeToPoint:operation:

– (void)compositeToPoint:(NSPoint)aPoint
operation:(NSCompositingOperation)op

Composites the image to the location specified by aPoint . op names the type
of compositing operation requested, which must be one of of the following
constants:

• NSCompositeClear
• NSCompositeCopy
• NSCompositeSourceOver
• NSCompositeSourceIn
• NSCompositeSourceOut
• NSCompositeSourceAtop
• NSCompositeDestinationOver
• NSCompositeDestinationIn
• NSCompositeDestinationOut
• NSCompositeDestinationAtop
• NSCompositeXOR
• NSCompositePlusDarker
• NSCompositePlusLighter

NSImage 1-315

1

Note – The NSCompositeHighlight constant should not be used with this
method.

aPoint is specified in the current coordinate system—the coordinate system of
the currently focused view—and designates where the lower left corner of the
image will appear. The image will have the orientation of the base coordinate
system, regardless of the destination coordinates. The image is composited
from its off-screen window cache. Since the cache isn’t created until the image
representation is first used, this method may need to render the image before
compositing.

When printing, the compositing methods do not composite, but attempt to
render the same image on the page that compositing would render on the
screen, choosing the best available representation for the printer. The op
argument is ignored. See also compositeToPoint:operation: ,
compositeToPoint:fromRect:operation: , and
dissolveToPoint:fraction: .

compositeToPoint:fromRect:operation:

– (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)aRect
operation:(NSCompositingOperation)op

Composites the aRect portion of the image to aPoint using the operation op ,
in the current coordinate system. The source rectangle is specified relative to a
coordinate system that has its origin at the lower left corner of the image, but
is otherwise the same as the base coordinate system. This method doesn’t
check to be sure that the rectangle encloses only portions of the image.
Therefore it can conceivably composite areas that don’t properly belong to the
image, if the aRect rectangle happens to include them. If this turns out to be a
problem, you can prevent it from happening by having the NSImage cache its
representations in their own individual windows (with the
setCachedSeparately: method). In this case, the window’s clipping path
will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image,
but printing part of an image is not. When printing, it’s necessary to draw the
whole image and rely on a clipping path to be sure that only the desired
portion appears. See also compositeToPoint:operation: ,

1-316 OpenStep Programming Reference—September 1996

1

dissolveToPoint:fraction: ,
dissolveToPoint:fromRect:fraction: , and
NSCompositingOperation .

delegate

– (id)delegate

Returns the NSImage delegate, or nil if no delegate is set.

dissolveToPoint:fraction:

– (void)dissolveToPoint:(NSPoint)aPoint fraction:(float)aFloat

Composites the image to the location specified by aPoint , just as
composite:toPoint: does, but uses the dissolve operator rather than
composite. aFloat is a fraction between 0.0 and 1.0 that specifies how much of
the resulting composite will come from the NSImage.

To slowly dissolve one image into another, this method (or
dissolveToPoint:fromRect:fraction:) needs to be invoked repeatedly
with an ever-increasing aFloat value. Since aFloat refers to the fraction of
the source image that’s combined with the original destination, not the
destination image after some of the source has been dissolved into it, the
destination image should be replaced with the original destination before each
invocation. This is best done in a buffered window before the results of the
composite are flushed to the screen.

When printing, this method is identical to compositeToPoint:operation: ,
and aFloat is ignored. See also dissolveToPoint:fromRect:fraction: ,
compositeToPoint:operation: .

dissolveToPoint:fromRect:fraction:

– (void)dissolveToPoint:(NSPoint)aPoint fromRect:(NSRect)aRect
fraction:(float)aFloat

Composites the aRect portion of the image to aPoint using the dissolve
operator. aFloat is a value from 0.0 to 1.0 that determines how much of the
resulting composite comes from the NSImage. When printing, this method is
identical to compositeToPoint:fromRect:fraction: , and aFloat is
ignored. See also dissolveToPoint:fraction: .

NSImage 1-317

1

drawRepresentation:inRect:

– (BOOL)drawRepresentation:(NSImageRep *)imageRep
inRect:(NSRect)aRect

Fills the specified rectangle with the background color, then sends the
imageRep a drawInRect: (NSImageRep) message to draw itself inside the
rectangle (if the NSImage is scalable), or a drawAtPoint: (NSImageRep)
message to draw itself at the location of the rectangle (if the NSImage is not
scalable). The rectangle is located in the current window and is specified in the
current coordinate system.

This method shouldn’t be called directly; the NSImage uses it to cache and
print its representations. By overriding it in a subclass, you can change how
representations appear in the cache, and thus how they’ll appear when
composited. For example, your version of the method could scale or rotate the
coordinate system, then send a message to super to perform this version.

This method returns the value returned by the drawInRect: or
drawAtPoint: (NSImageRep) method, which indicates whether or not the
representation was successfully drawn. When NO is returned, the NSImage will
ask another representation, if there is one, to draw the image. If the
background color is fully transparent and the image is not being cached by the
NSImage, the rectangle won’t be filled before the representation draws. See
also NSImageRep.

initByReferencingFile:

– (id)initByReferencingFile:(NSString *)filename

Initializes the new NSImage from the data in filename. The file is assumed to
persist and may be reread later if the NSImage is resized or otherwise
modified. This method initializes lazily: the NSImage doesn’t actually open
filename or create an image representation from its data until an application
attempts to composite or requests information about the NSImage.

filename may be a full or relative path name, and should include an
extension that identifies the data type in the file. The mechanism that actually
creates the image representation for filename will look for an NSImageRep
subclass that handles that data type from among those registered with
NSImage. By default, the files handled are those with the extensions tiff ,
tif , and eps .

1-318 OpenStep Programming Reference—September 1996

1

After finishing the initialization, this method returns self . However, if the
new instance can’t be initialized, it is freed and nil is returned. Since this
method doesn’t actually create an image representation for the data, your
application should do error checking before attempting to use the image; one
way to do so is by invoking the lockFocus method to check whether the
image can be drawn.

initWithContentsOfFile:

– (id)initWithContentsOfFile:(NSString *)filename

Creates and registers an NSImageRep object for the receiver. Initializes the new
NSImageRep object with the contents of filename, and with a size of 0. Returns
self if successful, or nil otherwise.

initWithData:

– (id)initWithData:(NSData *)data

Creates and registers an NSImageRep object for the receiver. Initializes the new
NSImageRep from data , and with a size of 0. Returns self if successful, or
nil otherwise. See slso NSImageRep, NSData .

initWithPasteboard:

– (id)initWithPasteboard:(NSPasteboard *)pasteboard

Initializes the new NSImage with the data in pasteboard . pasteboard
should be of a type returned by one of the registered NSImageRep’s
imageUnfilteredPasteboardTypes methods; the default types supported
are NSPostscriptPboardType (NSEPSImageRep) and NSTIFFPboardType
(NSBitmapImageRep). If pasteboard is an NSFilenamesPboardType , the
file name should have an extension returned by one of the registered
NSImageRep’s imageUnfilteredFileTypes methods; the default types
supported are TIFF , TIF , (NSBitmapImageRep) and EPS (NSEPSImageRep).

initWithSize:

– (id)initWithSize:(NSSize)aSize

NSImage 1-319

1

Initializes the receiver, a newly allocated NSImage instance, to the size
specified and returns self . The size should be specified in units of the base
coordinate system. It must be set before the NSImage can be used. This method
is the designated initializer for the class (the method that incorporates the
initialization of classes higher in the hierarchy through a message to super).
All other initialization methods defined in this class work through this method.
See also NSSize , size , and setSize: .

isCachedSeparately

– (BOOL)isCachedSeparately

Returns YES if each representation of the image is cached alone in an off-screen
window of its own, and NO if they can be cached in off-screen windows
together with other images. A return of NO doesn’t mean that the windows are,
in fact, shared, just that they can be. The default is NO. See also
setCachedSeparately: , compositeToPoint:fromRect:operation: .

isDataRetained

– (BOOL)isDataRetained

Returns YES if the image data is retained after the image is cached. Returns NO
otherwise. The default is NO. If the data is available in a section of the
application executable or in a file that won’t be moved or deleted, or if
responsibility for drawing the image is delegated to another object with a
custom method, there’s no reason for the NSImage to retain the data. However,
if the NSImage reads image data from a stream, you may want to have it keep
the data itself; for example, to render the same image on another device at a
different resolution. See also setDataRetained: .

isFlipped

- (BOOL)isFlipped

Returns YES if a flipped coordinate system is used when locating the image, and
NO if it isn’t. The default is NO. See also setFlipped: .

isValid

– (BOOL)isValid

1-320 OpenStep Programming Reference—September 1996

1

Returns YES to indicate that the receiver’s image is valid, otherwise returns NO.
An image can be invalid if the file from which it was initialized is non-existent,
or the data in that file is invalid. The following code shows how to use
isValid .

if ([myImage isValid]) {
 [myImage lockFocus];

 // ...

 [myImage unlockFocus];
> }

See also lockFocus .

lockFocus

– (void)lockFocus

Focuses on the best representation for the NSImage by

• Making the off-screen window where the representation will be cached the
current window

• Making a coordinate system specific to the area where the image will be
drawn the current coordinate system.

Use this method in preparation for drawing. The best representation is the one
that best matches the deepest available frame buffer; it’s the same object
returned by the bestRepresentationForDevice: method. If the NSImage
has no representations, lockFocus creates one with default depth.

A lockFocus message should first check for a valid image, and must be
balanced by a subsequent unlockFocus message to the same receiver. For
example:

if ([myImage isValid]) {
 [myImage lockFocus];

 // ...

 [myImage unlockFocus];
> }

See also lockFocusOnRepresentation: , unlockFocus ,
bestRepresentationForDevice: , isValid .

NSImage 1-321

1

lockFocusOnRepresentation:

– (void)lockFocusOnRepresentation:(NSImageRep *)imageRep

Focuses on the imageRep representation by making the off-screen window
where imageRep will be cached the current window, and by making a
coordinate system specific to the area where the image will be drawn the
current coordinate system. Use this method in preparation for drawing. A
lockFocusOnRepresentation: message should first check for a valid
image, and must be balanced by a subsequent unlockFocus message to the
same receiver. For example:

if ([myImage isValid]) {
 [myImage lockFocusOnRepresentation:myRep];

 // ...

 [myImage unlockFocus];
> }

See also lockFocus , unlockFocus , isValid .

matchesOnMultipleResolution

– (BOOL)matchesOnMultipleResolution

Returns YES if the resolution of the device and the resolution specified for the
image are considered to match if one is a multiple of the other, and NO if device
and image resolutions are considered to match only if they are exactly the
same. The default is YES. See also setMatchesOnMultipleResolution: ,
setUsesEPSOnResolutionMismatch: , usesEPSOnResolutionMismatch .

name

– (NSString *)name

Returns the name assigned to the NSImage, or nil if no name has been
assigned See also setName: , imageNamed: .

prefersColorMatch

– (BOOL)prefersColorMatch

1-322 OpenStep Programming Reference—September 1996

1

Returns YES if, when selecting the representation it will use, the NSImage first
looks for a representation that matches the color capability of the rendering
device; that is, choosing a gray-scale representation for a monochrome device
and a color representation for a color device. Then if necessary the NSImage
narrows the selection by looking for one that matches the resolution of the
device. If NO is returned, the NSImage first looks for a representation that
matches the resolution of the device, then tries to match the representation to
the color capability of the device. The default is YES. See also
setPrefersColorMatch: .

recache

– (void)recache

Invalidates the off-screen caches of all representations and frees them. The next
time any representation is composited, it will first be asked to redraw itself in
the cache. Cached image representations aren’t destroyed by this method. If an
image is not likely to be used again, it is a good idea to free its caches, since
that will reduce that amount of memory consumed by your program and
therefore improve performance.

removeRepresentation:

– (void)removeRepresentation:(NSImageRep *)imageRep

Frees imageRep after removing it from the NSImage’s list of representations.
See also representations . See also representations ,
bestRepresentationForDevice: .

representations

– (NSArray *)representations

Returns an array of all the image representations. The array belongs to the
NSImage object, and there’s no guarantee that the same array will be returned
each time. Therefore, rather than saving the array that is returned, you should
ask for it each time you need it. See also bestRepresentationForDevice: ,
removeRepresentation: .

NSImage 1-323

1

scalesWhenResized

– (BOOL)scalesWhenResized

Returns YES if image representations are scaled to fit the size specified for the
NSImage. If representations are not scalable, this method returns NO. The
default is NO. Representations created from data that specifies a size (for
example, the “ImageLength” and “ImageWidth” fields of a TIFF representation
or the bounding box of an EPS representation) will have the size the data
specifies, which may differ from the size of the NSImage. See also
setScalesWhenResized: .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)aColor

Sets the background color of the image to aColor . The default is a transparent
background. The background color will be visible only for representations that
don’t completely cover all the pixels within the image when drawing. The
background color is ignored for cached image representations; such caches are
always created with a white background. This method doesn’t cause the
receiving NSImage to recache itself.

setCacheDepthMatchesImageDepth:

– (void)setCacheDepthMatchesImageDepth:(BOOL)flag

Determines whether the depth of the off-screen windows, where the
NSImage’s representations are cached, should be limited by the application’s
default depth limit. If flag is NO, window depths will be determined by the
specifications of the representations, rather than by the current display devices.
The default is YES. This method doesn’t cause the receiving NSImage to
recache itself.

setCachedSeparately:

– (void)setCachedSeparately:(BOOL)flag

Sets whether each image representation will be cached in its own off-screen
window or in a window shared with other images. If flag is YES, each
representation is guaranteed to be in a separate window. If flag is NO, a
representation can be cached together with other images, though in practice it

1-324 OpenStep Programming Reference—September 1996

1

might not be. The default is NO. If an NSImage is to be resized frequently, it’s
more efficient to cache its representations in unique windows. This method
does not invalidate any existing caches. See also isCachedSeparately .

setDataRetained:

– (void)setDataRetained:(BOOL)flag

Determines whether the NSImage retains the data needed to render the image.
The default is NO. If the data is available in a section of the application
executable or in a file that won’t be moved or deleted, or if responsibility for
drawing the image is delegated to another object with a custom method,
there’s no reason for the NSImage to retain the data. However, if the NSImage
reads image data from a stream, you may want to have it keep the data itself.
Generally, this is useful to redraw the image to a device of different resolution.
If an image representation is created lazily (through the
initByReferencingFile: method, for example), the only data retained is
the source name. See also isDataRetained .

setDelegate:

– (void)setDelegate:(id)anObject

Makes anObject the delegate of the NSImage. See also delegate .

setFlipped:

- (void)setFlipped:(BOOL)flag

Determines whether the polarity of the y-axis is inverted when drawing an
image. If flag is YES, the image will have its coordinate origin in the upper left
corner and the positive y-axis will extend downward. This method affects only
the coordinate system used to draw the image, and doesn’t cause the receiving
NSImage to recache itself. See also isFlipped .

setMatchesOnMultipleResolution:

– (void)setMatchesOnMultipleResolution:(BOOL)flag

Determines whether image representations with resolutions that are exact
multiples of the resolution of the device are considered to match the device.
The default is YES. See also matchesOnMultipleResolution .

NSImage 1-325

1

setName:

– (BOOL)setName:(NSString *)name

Assigns name to be the receiver’s name, and registers the image under that
name. Returns NO if name is already in use; otherwise, returns YES. See also
name.

setPrefersColorMatch:

– (void)setPrefersColorMatch:(BOOL)flag

Determines how the NSImage will select which representation to use. If flag
is YES, it first tries to match the representation to the color capability of the
rendering device, choosing a color representation for a color device and a gray-
scale representation for a monochrome device. Then if necessary the NSImage
narrows the selection by trying to match the resolution of the representation to
the resolution of the device. If flag is NO, the NSImage first tries to match the
representation to the resolution of the device, and then tries to match it to the
color capability of the device. The default is YES. See also
prefersColorMatch .

setScalesWhenResized:

– (void)setScalesWhenResized:(BOOL)flag

Determines whether representations with sizes that differ from the size of the
NSImage will be scaled to fit. The default is NO. Generally, representations that
are created through NSImage methods have the same size as the NSImage.
However, a representation that’s added with the addRepresentation:
method may have a different size, and representations created from data that
specifies a size (for example, the “ImageLength” and “ImageWidth” fields of a
TIFF representation or the bounding box of an EPS representation) will have
the size specified. This method doesn’t cause the receiving NSImage to recache
itself when it is next composited. See also scalesWhenResized .

setSize:

– (void)setSize:(NSSize)aSize

1-326 OpenStep Programming Reference—September 1996

1

Sets the width and height of the image in base coordinates. The NSImage size
must be set before it can be used. The NSImage size can be changed after it has
been used, but changing it invalidates all its caches and frees them. When the
image is next composited, the selected representation will draw itself in an off-
screen window to recreate the cache. See also size .

setUsesEPSOnResolutionMismatch:

– (void)setUsesEPSOnResolutionMismatch:(BOOL)flag

Determines whether EPS representations will be preferred when there are no
image representations that match the resolution of the device. The default is
NO. See also usesEPSOnResolutionMismatch .

size

– (NSSize)size

Returns the image size. If no size has been set, all values in the structure will
be set to 0.0. See also setSize: .

TIFFRepresentation

– (NSData *)TIFFRepresentation

Returns a data object containing TIFF data for imagel representations, using
their default compressions. See also
TIFFRepresentationUsingCompression:factor: .

TIFFRepresentationUsingCompression:factor:

– (NSData *)TIFFRepresentationUsingCompression:
(NSTIFFCompression)comp factor:(float)aFloat

Returns a data object containing TIFF data for all image representations. The
compression arguments comp and aFloat specify the type of compression and
the compression amount (factor). The compression factor provides a hint for
those compression types that implement variable compression ratios; currently
only JPEG compression uses the compression factor argument.

NSImage 1-327

1

unlockFocus

– (void)unlockFocus

Balances a previous lockFocus or lockFocusOnRepresentation:
message. All successful lockFocus and lockFocusOnRepresentation:
messages must be followed by a subsequent unlockFocus message. Those
that return NO should never be followed by unlockFocus .

usesEPSOnResolutionMismatch

– (BOOL)usesEPSOnResolutionMismatch

Returns YES if an EPS representation of the image should be used whenever
it’s impossible to match the resolution of the device to the resolution of another
representation of the image (a TIFF representation, for example). By default,
this method returns NO to indicate that EPS representations are not necessarily
preferred. See also setUsesEPSOnResolutionMismatch: .

Methods Implemented by the Delegate

imageDidNotDraw:inRect:

– (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect

This method should be implemented in the delegate, and should respond to a
message that sender couldn’t be composited into aRect . If an instance of
NSImage cannot composite or dissolve after having tried all its
representations, it will call its error handler which will try to send a
imageDidNotDraw:inRect: to the delegate. If there's no delegate or it
doesn't understand this method, then the NSImage will clear the destination
area with the background color. Otherwise, the delegate is assumed to return
an instance of NSImage to which the same dissolve or composite message will
be sent. The delegate can also return nil , in which case it is assumed to have
taken care of things. See also delegate , setDelegate: .

1-328 OpenStep Programming Reference—September 1996

1

NSImageRep

Class Description

NSImageRep is an abstract superclass; each of its subclasses knows how to
draw an image from a particular kind of source data. While an NSImageRep
subclass can be used directly, it’s typically used through an NSImage object.
An NSImage manages a group of representations, choosing the best one for the
current output device.

There are four subclasses defined in the Application Kit:

You can define other NSImageRep subclasses for objects that render images
from other types of source information. New subclasses must be added to the
NSImageRep class registry by invoking the registerImageRepClass: class
method. The NSImageRep subclass informs the registry of the data types it can
support through its imageUnfilteredFileTypes ,
imageUnfilteredPasteboardTypes , and canInitWithData: class
methods. Once an NSImageRep subclass is registered, an instance of that
subclass is created any time NSImage encounters the type of data handled by
that subclass.

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImageRep.h

Table 1-14 NSImageRep Subclasses

Subclass Source Data

NSBitmapImageRep Tag Image File Format (TIFF) and other bitmap data

NSEPSImageRep Encapsulated PostScript (EPS) code

NSCustomImageRep A delegated method that can draw the image

NSCachedImageRep A rendered image, usually in an off-screen window

NSImageRep 1-329

1

Method Types

Activity Class Method

Creating an NSImageRep + imageRepWithContentsOfFile:
+ imageRepsWithContentsOfFile:
+ imageRepWithPasteboard:
+ imageRepsWithPasteboard:

Checking data types + canInitWithData:
+ canInitWithPasteboard:
+ imageFileTypes
+ imagePasteboardTypes
+ imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

Setting the size of the image – setSize:
– size

Specifying information about the
representation

– bitsPerSample
– colorSpaceName
– hasAlpha
– isOpaque
– pixelsHigh
– pixelsWide
– setAlpha:
– setBitsPerSample:
– setColorSpaceName:
– setOpaque:
– setPixelsHigh:
– setPixelsWide:

Drawing the image – draw
– drawAtPoint:
– drawInRect:

Managing NSImageRep subclasses + imageRepClassForData:
+ imageRepClassForFileType:
+ imageRepClassForPasteboardType:
+ registerImageRepClass:
+ registeredImageRepClasses
+ unregisterImageRepClass:

1-330 OpenStep Programming Reference—September 1996

1

Class Methods

canInitWithData:

+ (BOOL)canInitWithData:(NSData *)data

Overridden in subclasses to return YES if the receiver can initialize itself from
data . The default implementation returns NO. See also
canInitWithPasteboard: , imageFileTypes , imagePasteboardTypes ,
imageUnfilteredFileTypes , imageUnfilteredPasteboardTypes .

canInitWithPasteboard:

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Returns YES if NSImageRep can handle the data represented by pasteboard .
This method invokes the imageUnfilteredPasteboardTypes and
imageFileTypes class methods to return arrays of directly supported
pasteboard types and files, and checks these against the data in pasteboard.
When creating a subclass of NSImageRep that accepts image data from a
nondefault pasteboard type, you override the
imageUnfilteredPasteboardTypes and imageFileTypes methods to
assure that this method returns the correct response.

imageFileTypes

+ (NSArray *)imageFileTypes

Returns an array of strings representing all file types supported by
NSImageRep. The list includes both those types returned by the
NSGetFileTypes() function and those types that can be converted to a
supported type by a user-installed filter service. Don’t override this method
when subclassing NSImageRep. It always returns a valid list for a subclass of
NSImageRep. See also NSGetFileTypes() (in the Application Kit’s
“Functions” chapter).

imagePasteboardTypes

+ (NSArray *)imagePasteboardTypes

NSImageRep 1-331

1

Returns an array representing all pasteboard types supported by NSImageRep
or one of its subclasses. The list includes both those types returned by the
imageUnfilteredPasteboardTypes class method and those that can be
converted by a user-installed filter service to a supported type. Don’t override
this method when subclassing NSImageRep; it always returns a valid list for a
subclass of NSImageRep that correctly overrides the
imageUnfilteredPasteboardTypes method. See also imageFileTypes .

imageRepClassForData:

+ (Class)imageRepClassForData:(NSData *)data

Returns the NSImageRep subclass that handles data of type data . See also
registerImageRepClass: , registeredImageRepClasses ,
unregisterImageRepClass: , imageRepClassForFileType: ,
imageRepClassForPasteboardType: .

imageRepClassForFileType:

+ (Class)imageRepClassForFileType:(NSString *)type

Returns the NSImageRep subclass that handles data of file type type . See also
imageRepClassForData: , registerImageRepClass: .

imageRepClassForPasteboardType:

+ (Class)imageRepClassForPasteboardType:(NSString *)type

Returns the NSImageRep subclass that handles data of pasteboard type type .
See also imageRepClassForData: , registerImageRepClass: .

imageRepWithContentsOfFile:

+ (id)imageRepWithContentsOfFile:(NSString *)filename

In subclasses that respond to imageFileTypes and imageRepWithData:
(for example NSBitmapImageRep), returns an object that has been initialized
with the data in filename . NSImageRep’s implementation returns an instance
of the appropriate registered subclass. See also
imageRepsWithContentsOfFile: , imageRepWithPasteboard: .

1-332 OpenStep Programming Reference—September 1996

1

imageRepsWithContentsOfFile:

+ (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename

In subclasses that respond to imageFileTypes , imageRepWithData: ,and
imageRepWithData: (for example, NSBitmapImageRep), returns an array of
objects that have been initialized with the data in filename . NSImageRep’s
implementation returns an array of objects (each an instance of the appropriate
registered subclass) that have been initialized with the data in filename . See
also imageRepWithContentsOfFile: .

imageRepWithPasteboard:

+ (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard

In subclasses that respond to imagePasteboardTypes and
imageRepWithData: (for example, NSBitmapImageRep), returns an object
that has been initialized with the data in pasteboard . NSImageRep’s
implementation returns an instance of the appropriate registered subclass. See
also imageRepsWithPasteboard: , imageRepWithContentsOfFile: .

imageRepsWithPasteboard:

+ (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard

In subclasses that respond to imagePasteboardTypes and
imageRepsWithData: (or imageRepWithData:), returns an array of objects
that have been initialized with the data in pasteboard . NSImageRep’s
implementation returns an array of objects (each an instance of the appropriate
registered subclass) that have been initialized with the data in pasteboard .
See also imageRepWithPasteboard: , imageRepWithContentsOfFile: .

imageUnfilteredFileTypes

+ (NSArray *)imageUnfilteredFileTypes

Returns an array of strings representing all file types (extensions) supported by
the NSImageRep. By default, the returned array is emtpy. When creating an
NSImageRep subclass, override this method to return a list of strings
representing the file types supported. For example, NSBitmapImageRep
implements the following code for this method:

NSImageRep 1-333

1

+ (NSArray *)imageUnfilteredFileTypes {
 static NSArray *types = nil;
 if (!types) types = [[NSArray allocWithZone:_NXAppZone()]
 initWithObjects:@"tiff", @"tif", nil];
 return types;
}

If your subclass supports the types supported by its superclass, you must
explicitly get the array of types from the superclass and put them in the array
returned by this method. See also imageUnfilteredPasteboardTypes .

imageUnfilteredPasteboardTypes

+ (NSArray *)imageUnfilteredPasteboardTypes

Returns an array of strings representing directly supported pasteboard types.
By default, the returned array is empty. When creating a subclass of
NSImageRep, override this method to return a list representing the pasteboard
types supported. For example, NSBitmapImageRep implements the following
code for this method:

+ (NSArray *)imageUnfilteredPasteboardTypes {

 static NSArray *types = nil;
 if (!types) types = [[NSArray allocWithZone:_NXAppZone()]
 initWithObjects:NSTIFFPboardType, nil];
 return types;

}

If your subclass supports the types supported by its superclass, you must
explicitly get the list of types from the superclass and add them to the array
returned by this method. See also imageUnfilteredFileTypes .

registerImageRepClass:

+ (void)registerImageRepClass:(Class)imageRepClass

Adds imageRepClass to the registry of available NSImageRep classes. This
method posts the NSImageRepRegistryDidChangeNotification
notification with the receiving object to the default notification center. See also
registeredImageRepClasses , unregisterImageRepClass: ,
imageRepClassForData: .

1-334 OpenStep Programming Reference—September 1996

1

registeredImageRepClasses

+ (NSArray *)registeredImageRepClasses

Returns an array containing the names of the registered NSImageRep classes.
See also registerImageRepClass: .

unregisterImageRepClass:

+ (void)unregisterImageRepClass:(Class)imageRepClass

Removes imageRepClass from the registry of available NSImageRep classes.
This method posts the NSImageRepRegistryDidChangeNotification
notification with the receiving object to the default notification center. See also
registerImageRepClass: .

Instance Methods

bitsPerSample

– (int)bitsPerSample

Returns the number of bits used to specify a single pixel in each component of
the data. If the image isn’t specified by pixel values, but is device-independent,
the return value will be NSImageRepMatchesDevice . See also
setBitsPerSample: .

colorSpaceName

– (NSString *)colorSpaceName

Returns the name of the image’s color space. The default is
NSCalibratedRGBColorSpace . See also NSColor , setColorSpaceName: .

draw

– (BOOL)draw

Implemented by subclasses to draw the image at location (0.0, 0.0) in the
current coordinate system. Subclass methods return YES if the image is
successfully drawn, and NO if it isn’t. This version of the method simply
returns YES. See also drawAtPoint: , drawInRect: .

NSImageRep 1-335

1

drawAtPoint:

– (BOOL)drawAtPoint:(NSPoint)aPoint

Translates the current coordinate system to the location specified by point and
has the receiver’s draw method draw the image at that point.This method
returns NO without translating or drawing if the size of the image has not been
set. Otherwise, it returns the value returned by the draw method, which
indicates whether the image is successfully drawn. The coordinate system is
not restored after it has been translated. See also draw , drawInRect: .

drawInRect:

– (BOOL)drawInRect:(NSRect)aRect

Draws the image so that it fits inside the rectangle referred to by aRect . The
current coordinate system is first translated to the point specified in the
rectangle and is then scaled so the image will fit within the rectangle. The
receiver’s draw method is then invoked to draw the image. See also draw ,
drawAtPoint: .

hasAlpha

– (BOOL)hasAlpha

Returns YES if the receiver has been informed that the image has a coverage
component (alpha), and NO if not. See also setAlpha: .

isOpaque

– (BOOL)isOpaque

Returns YES if the receiver is opaque; NO otherwise. Use this method to test
whether an NSImageRep completely covers the area within the rectangle
returned by getSize: . See also setOpaque: .

pixelsHigh

– (int)pixelsHigh

1-336 OpenStep Programming Reference—September 1996

1

Returns the height of the image in pixels, as specified in the image data. If the
image isn’t specified by pixel values, but is device-independent, the return
value will be NSImageRepMatchesDevice . See also setPixelsHigh: ,
pixelsWide , bitsPerSample .

pixelsWide

– (int)pixelsWide

Returns the width of the image in pixels, as specified in the image data. If the
image isn’t specified by pixel values, but is device-independent, the return
value will be NSImageRepMatchesDevice . See also setPixelsWide: ,
pixelsHigh , bitsPerSample .

setAlpha:

– (void)setAlpha:(BOOL)flag

Informs the NSImageRep whether the image has an alpha component. flag
should be YES if it does, and NO if it doesn’t. See also hasAlpha .

setBitsPerSample:

– (void)setBitsPerSample:(int)anInt

Informs the NSImageRep that the image has anInt bits of data for each pixel
in each component. If the image isn’t specified by pixel values, but is device-
independent, anInt should be NSImageRepMatchesDevice . See also
bitsPerSample .

setColorSpaceName:

– (void)setColorSpaceName:(NSString *)aString

Tells the receiver of the image’s color space. See also NSColor ,
colorSpaceName .

setOpaque:

– (void)setOpaque:(BOOL)flag

Tells the receiver of the image’s opacity. See also isOpaque .

NSImageRep 1-337

1

setPixelsHigh:

– (void)setPixelsHigh:(int)anInt

Informs the NSImageRep that the data specifies an image anInt pixels high. If
the image isn’t specified by pixel values, but is device-independent, anInt
should be NSImageRepMatchesDevice . See also pixelsHigh ,
setPixelsWide: .

setPixelsWide:

– (void)setPixelsWide:(int)anInt

Informs the NSImageRep that the data specifies an image anInt pixels wide. If
the image isn’t specified by pixel values, but is device-independent, anInt
should be NSImageRepMatchesDevice . See also pixelsWide ,
setPixelsHigh: .

setSize:

– (void)setSize:(NSSize)aSize

Sets the size of the image in units of the base coordinate system. This
determines the size of the image when it’s rendered; it’s not necessarily the
same as the width and height of the image in pixels as specified in the image
data. See also size .

size

– (NSSize)size

Returns the size of the image. The size is provided in units of the base
coordinate system. See also size .

1-338 OpenStep Programming Reference—September 1996

1

NSMatrix

Class Description

NSMatrix is a class used for creating groups of NSCell s that work together in
various ways. NSMatrix includes methods for arranging NSCell s in rows and
columns, either with or without space between them. NSCell s in an
NSMatrix are numbered by row and column, each starting with 0; for
example, the top left NSCell would be at (0, 0), and the NSCell that’s second
down and third across would be at (1, 2).

The cell objects that an NSMatrix contains are usually of a single subclass of
NSCell, but they can be of multiple subclasses of NSCell . The only restriction
is that all cell objects must be the same size. An NSMatrix can be set up to
create new NSCell s by copying a prototype object, or by allocating and
initializing instances of a specific NSCell class.

An NSMatrix adds to NSControl ’s target/action paradigm by allowing a
separate target and action for each of its NSCell s in addition to its own target
and action. It also allows for an action message that’s sent when the user
double-clicks an NSCell , and which is sent in addition to the single-click
action message. If an NSCell doesn’t have an action, the NSMatrix sends its
own action to its own target. If an NSCell doesn’t have a target, the NSMatrix
sends the NSCell ’s action to its own target. The double-click action of an
NSMatrix is always sent to the target of the NSMatrix .

Since the user might press the mouse button while the cursor is within the
NSMatrix and then drag the mouse around, NSMatrix offers four “selection
modes” that determine how NSCell s behave when the NSMatrix is tracking
the mouse:

• NSTrackModeMatrix is the most basic mode of operation. In this mode the
NSCell s are asked to track the mouse with
trackMouse:inRect:ofView:untilMouseUp: whenever the mouse is

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSMatrix.h

NSMatrix 1-339

1

inside their bounds. No highlighting is performed. An example of this mode
might be a “graphic equalizer” NSMatrix of sliders, where moving the
mouse around causes the sliders to move under the mouse.

• NSHighlightModeMatrix is a modification of NSTrackModeMatrix . In
this mode, an NSCell is highlighted before it’s asked to track the mouse,
then unhighlighted when it’s done tracking. This is useful for multiple
unconnected NSCell s that use highlighting to inform the user that they are
being tracked (like push-buttons and switches).

• NSRadioModeMatrix is used when you want no more than one NSCell to
be selected at a time. It can be used to create a set of buttons of which one
and only one is selected (there’s the option of allowing no button to be
selected). Any time an NSCell is selected, the previously selected NSCell is
deselected. The canonical example of this mode is a set of radio buttons.

• NSListModeMatrix is the opposite of NSTrackModeMatrix . NSCell s are
highlighted, but they don’t track the mouse. This mode can be used to select
a range of text values, for example. NSMatrix supports the standard
multiple-selection paradigms of dragging to select, using the shift key to
make discontinuous selections, and using the alternate key to extend
selections.

1-340 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Initializing the
NSMatrix class

+ cellClass
+ setCellClass:

Initializing an
NSMatrix object

– initWithFrame:
– initWithFrame:mode:cellClass:numberOfRows:
numberOfColumns:
– initWithFrame:mode:prototype:numberOfRows:
numberOfColumns:

Setting the selection
mode

– mode
– setMode:

Configuring the
NSMatrix

– allowsEmptySelection
– isSelectionByRect
– setAllowsEmptySelection:
– setSelectionByRect:

Setting the cell class – cellClass
– prototype
– setCellClass:
– setPrototype:

NSMatrix 1-341

1

Laying out the
NSMatrix

– addColumn
– addColumnWithCells:
– addRow
– addRowWithCells:
– cellFrameAtRow:column:
– cellSize
– getNumberOfRows:columns:
– insertColumn:
– insertColumn:withCells:
– insertRow:
– insertRow:withCells:
– intercellSpacing
– makeCellAtRow:column:
– numberOfColumns
– numberOfRows
– putCell:atRow:column:
– removeColumn:
– removeRow:
– renewRows:columns:
– setCellSize:
– setIntercellSpacing:
– sortUsingFunction:context:

Finding matrix
coordintes

– getRow:column:forPoint:
– getRow:column:ofCell:

Modifying individual
cells

– setState:atRow:column:

Selecting cells – deselectAllCells
– deselectSelectedCell
– selectAll:
– selectCellAtRow:column:
– selectCellWithTag:
– selectedCell
– selectedCells
– selectedColumn
– selectedRow
– setSelectionFrom:to:anchor:highlight:

Finding cells – cellAtRow:column:
– cellWithTag:
– cells

Activity Class Method

1-342 OpenStep Programming Reference—September 1996

1

Modifying graphic
attributes

– backgroundColor
– cellBackgroundColor
– drawsBackground
– drawsCellBackground
– setBackgroundColor:
– setCellBackgroundColor:
– setDrawsBackground:
– setDrawsCellBackground:

Editing text in cells – selectText:
– selectTextAtRow:column:
– textDidBeginEditing:
– textDidChange:
– textDidEndEditing:
– textShouldBeginEditing:
– textShouldEndEditing:

Setting tab key
behavior

– nextText
– previousText
– setNextText:
– setPreviousText:

Assigning a delegate – delegate
– setDelegate:

Resizing the matrix
and cells

– autosizesCells
– setAutosizesCells:
– setValidateSize:
– sizeToCells

Scrolling – isAutoscroll
– scrollCellToVisibleAtRow:column:
– setAutoscroll:
– setScrollable:

Displaying – drawCellAtRow:column:
– highlightCell:atRow:column:

Activity Class Method

NSMatrix 1-343

1

Class Methods

cellClass

+ (Class)cellClass

Returns the default class object used to fill the matrix cells. The default class is
NSActionCell . See also setCellClass: .

setCellClass:

+ (void)setCellClass:(Class)classId

Sets the default class used to fill the matrix cells. classId should be the id of
an NSCell subclass (usually NSActionCell), obtained by sending the class
message to either the NSCell subclass object or to an instance of that subclass.
The default NSCell class is NSActionCell . Your code should rarely need to
invoke this method, since each instance of NSMatrix can be configured to use
its own NSCell class (or a prototype that gets copied). The NSCell class set
with this method is simply a fallback for matrices initialized with
initWithFrame: . “Creating New NSControl s” in the NSControl class
specification has more information on how to safely set the NSCell class used
by a subclass of NSControl . See also cellClass .

Target and action – doubleAction
– setDoubleAction:
– errorAction
– sendAction
– sendAction:to:forAllCells:
– sendDoubleAction
– setErrorAction:

Handling event and
action messages

– acceptsFirstMouse:
– mouseDown:
– mouseDownFlags
– performKeyEquivalent:

Managing the cursor – resetCursorRects

Activity Class Method

1-344 OpenStep Programming Reference—September 1996

1

Instance Methods

acceptsFirstMouse:

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Returns NO only if receiver’s mode is NSListModeMatrix . Returns YES if the
matrix is in any other selection mode. NSMatrix does not accept first mouse in
NSListModeMatrix mode to prevent the loss of multiple selections. See the
NSMatrix “Class Description” for more information on selection modes. See
also mouseDown: , mouseDownFlags , performKeyEquivalent: .

addColumn

– (void)addColumn

Adds a new column of cells to the right of the last column, creating new NCell
objects if needed (with makeCellAtRow:column:). See also
addColumnWithCells: , addRow, addRowWithCells: ,
makeCellAtRow:column: .

addColumnWithCells:

– (void)addColumnWithCells:(NSArray *)cellArray

Adds a new matrix column (using makeCellAtRow:column:), using the cells
contained in cellArray . See also addColumn , makeCellAtRow:column: .

addRow

– (void)addRow

Adds a new row of cells below the last row, creating new cells if needed with
makeCellAtRow:column: . See also addColumn , makeCellAtRow:column: .

addRowWithCells:

– (void)addRowWithCells:(NSArray *)cellArray

Adds a new matrix row, using the cells contained in cellArray . See also
addColumn , makeCellAtRow:column: .

NSMatrix 1-345

1

allowsEmptySelection

– (BOOL)allowsEmptySelection

Returns YES if it is possible to have no cells selected in a radio-mode
NSMatrix , NO otherwise. See also setAllowsEmptySelection: .

autosizesCells

– (BOOL)autosizesCells

Returns YES if cells are resized proportionally to the NSMatrix when its size
changes; the intercell spacing is kept constant. Returns NO if the inter-cell
spacing changes when the NSMatrix is resized; the cell size remains constant.
See also setAutosizesCells: , sizeToCells .

backgroundColor

– (NSColor *)backgroundColor

Returns the color of the background between cells. See also
setBackgroundColor: , cellBackgroundColor , drawsBackground ,
setDrawsBackground: , drawsCellBackground ,
setDrawsCellBackground: , setCellBackgroundColor: .

cellAtRow:column:

– (id)cellAtRow:(int)row column:(int)column

Returns the cell at the given row and column , or nil if no cell exists at that
location. See also cellWithTag: , cells .

cellBackgroundColor

– (NSColor *)cellBackgroundColor

Returns the background color within the cells. See also
setCellBackgroundColor: , backgroundColor .

cellClass

– (Class)cellClass

1-346 OpenStep Programming Reference—September 1996

1

Returns the subclass of NSCell that is used by NSMatrix to make new cells.
See also setCellClass: , setPrototype: , prototype .

cellFrameAtRow:column:

– (NSRect)cellFrameAtRow:(int)row column:(int)column

Returns the frame rectangle of the cell at row and column . See also cellSize ,
makeCellAtRow:column: .

cellSize

– (NSSize)cellSize

Returns the width and height of cells in the matrix; all cells are the same size.
See also cellFrameAtRow:column: , makeCellAtRow:column: .

cellWithTag:

– (id)cellWithTag:(int)anInt

Returns the cell having anInt as its tag, or nil if none exists. See also
cellAtRow:column: , cells .

cells

– (NSArray *)cells

Returns the matrix’s array of cells. See also cellAtRow:column: ,
cellWithTag: .

delegate

– (id)delegate

Returns the delegate object that receives messages passed on by the NSMatrix
from the field editor. The field editor, as mentioned in the NSTextField class
specification, is the NSText object used to draw text in all cells in a window.
See also setDelegate: .

NSMatrix 1-347

1

deselectAllCells

– (void)deselectAllCells

Clears the receiver’s selection, assuming that the NSMatrix allows an empty
selection and is not an NSRadioModeMatrix . See also
deselectSelectedCell , selectAll: .

deselectSelectedCell

– (void)deselectSelectedCell

Deselects the selected cell. If the selection mode is NSRadioModeMatrix , and
an empty selection is not allowed, this method won’t deselect the selected
NSCell . This method doesn’t redisplay the NSMatrix . See also
deselectAllCells , selectedCell , selectAll: .

doubleAction

– (SEL)doubleAction

Returns the action sent by the NSMatrix to its target when the user double-
clicks an entry. Unlike NSBrowser , this method returns NULL if there is no
double-click action. The double-click action of an NSMatrix is sent after the
appropriate single-click action (for the NSCell clicked, or for the NSMatrix if
the NSCell doesn’t have its own action). If there is no double-click action and
the NSMatrix doesn’t ignore multiple clicks, the single-click action is sent
twice. See also setDoubleAction: , sendDoubleAction , sendAction .

drawCellAtRow:column:

– (void)drawCellAtRow:(int)row column:(int)column

Displays the cell at row and col if it’s within the NSMatrix . See also
highlightCell:atRow:column: .

drawsBackground

– (BOOL)drawsBackground

Returns YES if the receiver draws the background between cells. Returns NO
otherwise. See also drawsCellBackground , backgroundColor .

1-348 OpenStep Programming Reference—September 1996

1

drawsCellBackground

– (BOOL)drawsCellBackground

Returns YES if the receiver draws the background within cells. Returns NO
otherwise. See also setDrawsCellBackground: , cellBackgroundColor ,
backgroundColor .

errorAction

– (SEL)errorAction

Returns the action method sent to the target of the NSMatrix when the user
enters an illegal value for an NSCell ’s type (that is, user input errors), as set
by NSCell ’s setEntryType: method and checked by NSCell ’s
isEntryAcceptable: method. See also setErrorAction: .

getNumberOfRows:columns:

– (void)getNumberOfRows:(int *)rowCount
columns:(int *)columnCount

Returns the number of matrix rows and columns within rowCount and
columnCount . See also numberOfColumns , numberOfRows ,
makeCellAtRow:column: , getRow:column:forPoint: ,
getRow:column:ofCell: .

getRow:column:forPoint:

– (BOOL)getRow:(int *)row column:(int *)column
forPoint:(NSPoint)aPoint

Gets the row and column position corresponding to aPoint , or sets each to -1
if aPoint isn’t within the matrix. Returns YES if aPoint is within the matrix;
NO otherwise. See also getRow:column:ofCell: .

getRow:column:ofCell:

– (BOOL)getRow:(int *)row column:(int *)column
ofCell:(NSCell *)aCell

NSMatrix 1-349

1

Gets the row and column position of aCell , or sets each to -1 if aCell is not
found in the matrix. Returns YES if aCell is in the matrix; NO otherwise. See
also getRow:column:forPoint: .

highlightCell:atRow:column:

– (void)highlightCell:(BOOL)flag atRow:(int)row column:(int)column

Highlights (if flag is YES), or unhighlights (if flag is NO) the cell at row , column
within the NSMatrix by sending highlight:withFrame:inView:
(NSCell) to the cell. The PostScript focus must be locked on the NSMatrix
when this message is sent. See also drawCellAtRow:column: .

initWithFrame:

– (id)initWithFrame:(NSRect)frameRect

Initializes and returns the receiver, a new instance of NSMatrix , with default
parameters in the given frame rectangle. The default font is the user’s chosen
system font in 12.0 point, the default NSCell size is 100.0 by 17.0 points, the
default inter-cell spacing is 1.0 point by 1.0 point The new NSMatrix contains
no rows or columns. The default mode is NSRadioModeMatrix (see the Class
Description). See also initWithFrame:mode:cellClass:numberOfRows:
numberOfColumns: , initWithFrame:mode:prototype:numberOfRows:
numberOfColumns: , intercellSpacing .

initWithFrame:mode:cellClass:numberOfRows:
numberOfColumns:

– (id)initWithFrame:(NSRect)frameRect mode:(int)aMode
cellClass:(Class)classId numberOfRows:(int)rowsHigh
numberOfColumns:(int)colsWide

Initializes a new NSMatrix object in frameRect , with aMode as the selection
mode, classId as the class used to make new cells, and containing rowsHigh
rows and colsWide columns. aMode can be one of four values:

• NSTrackModeMatrix - only track mouse inside the cells.
• NSHighlightModeMatrix - highlight the cell, then track, then unhighlight.
• NSRadioModeMatrix - allow no more than one selected cell.
• NSListModeMatrix - allow multiple selected cells.

1-350 OpenStep Programming Reference—September 1996

1

The behavior for these values is more fully described in the “Class
Description”. The new NSMatrix creates and uses NSCell s of class classId ,
which should be the return value of a class message sent to a subclass of
NSCell . This method is the designated initializer for any NSMatrix that adds
NSCell s by creating instances of an NSCell subclass. See also
initWithFrame: , initWithFrame:mode:prototype:numberOfRows:
numberOfColumns: , intercellSpacing , setMode: .

initWithFrame:mode:prototype:numberOfRows:
numberOfColumns:

– (id)initWithFrame:(NSRect)frameRect mode:(int)aMode
prototype:(NSCell *)aCell numberOfRows:(int)rowsHigh
numberOfColumns:(int)colsWide

Initializes a new NSMatrix object with aMode as the selection mode, aCell as
the prototype copied to make new cells, and having rowsHigh rows and
colsWide columns. aMode can be one of four values:

• NSTrackModeMatrix - only track mouse inside the cells.
• NSHighlightModeMatrix - highlight the cell, then track, then unhighlight.
• NSRadioModeMatrix - allow no more than one selected cell.
• NSListModeMatrix - allow multiple selected cells.

The behavior for these constants is more fully described in the Class
Description. The new NSMatrix creates cells by copying aCell , which should
be a subclass instance NSCell . This method is the designated initializer for
any NSMatrix that adds cells by copying an instance of an NSCell subclass.
See also initWithFrame: ,
initWithFrame:mode:cellClass:numberOfRows: numberOfColumns: ,
setMode: .

insertColumn:

– (void)insertColumn:(int)column

Inserts a new column of cells before column , creating new cells with
makeCellAtRow:column: . If column is greater than the number of columns
in the matrix, then enough columns are created to expand the matrix to be
column columns wide. This method doesn’t redraw. Your code may need to
use the sizeToCells method after sending this method to resize the matrix to
fit the newly added cells.

NSMatrix 1-351

1

If the number of rows or columns in the matrix has been changed with
renewRows:columns: , then makeCellAtRow:column: is invoked only if
new cells are needed; since renewRows:columns: doesn’t free cells, it just
rearranges them. This allows you to grow and shrink a matrix without
repeatedly creating and freeing the cells. See also
insertColumn:withCells: , insertRow: , insertRow:withCells: ,
removeColumn: , removeRow: , intercellSpacing ,
makeCellAtRow:column: .

insertColumn:withCells:

– (void)insertColumn:(int)column withCells:(NSArray *)cellArray

Inserts a new column of cells at column , using those cells contained in
cellArray , and expanding the matrix as much as necessary to make the
matrix column columns wide. See also insertColumn: ,
makeCellAtRow:column: .

insertRow:

– (void)insertRow:(int)row

Inserts a new row of cells before row , creating new cells with
makeCellAtRow:column: . If row is greater than the number of rows in the
matrix, enough rows are created to expand matrix to be row rows high. This
method doesn’t redraw. Your code may need to use the sizeToCells method
after sending this method to resize the matrix to fit the newly added cells.

If the number of rows or columns in the matrix has been changed with
renewRows:columns: , then makeCellAtRow:column: is invoked only if
new cells are needed (since renewRows:columns: doesn’t free cells, it just
rearranges them). This allows you to grow and shrink a matrix without
repeatedly creating and freeing the cells. See also insertRow:withCells: ,
insertColumn: , makeCellAtRow:column: .

insertRow:withCells:

– (void)insertRow:(int)row withCells:(NSArray *)cellArray

Inserts a new row of cells at row , using those cells contained in cellArray ,
and expanding the matrix as much as necessary to make the matrix row rows
wide. See also insertRow: , makeCellAtRow:column: .

1-352 OpenStep Programming Reference—September 1996

1

intercellSpacing

– (NSSize)intercellSpacing

Returns the vertical and horizontal spacing between cells. See also
setIntercellSpacing: , makeCellAtRow:column: .

isAutoscroll

– (BOOL)isAutoscroll

Returns YES if the matrix automatically scrolls when mouse is dragged outside
the matrix after a mouse-down event inside the matrix. See also
setAutoscroll: , setScrollable: ,
scrollCellToVisibleAtRow:column: .

isSelectionByRect

– (BOOL)isSelectionByRect

Returns YES if a rectangle of cells in the matrix can be selected by dragging the
cursor. Returns NO otherwise.

makeCellAtRow:column:

– (NSCell *)makeCellAtRow:(int)row column:(int)column

Creates a new matrix cell. If the matrix has a prototype cell, it’s copied to create
the new cell; if the matrix has a cell class set, it allocates and initializes (with
init) an instance of that class; if the matrix has not had a cell class set, the
default class, NSActionCell , is used. The new cell’s font is set to the matrix
font. This method returns the newly created cell. Your code should never
invoke this method directly; it’s used by the add and insert row and column
methods of this class when a cell must be created. The default implementation
ignores it’s arguments, thereby providing the cell but not inserting it. It should
be overridden by subclasses to provide more specific initialization of cells. See
also putCell:atRow:column: , addColumn , cellFrameAtRow:column: ,
getNumberOfRows:columns: , setCellSize: ,
sortUsingFunction:context: , sortUsingSelector: .

NSMatrix 1-353

1

mode

– (NSMatrixMode)mode

Returns the selection mode of the matrix. For a description of the matrix
modes, see the NSMatrix “Class Description”. See also setMode: .

mouseDown:

– (void)mouseDown:(NSEvent *)theEvent

Your code should never invoke this method, but you may override it to
implement mouse tracking different than NSMatrix . The NSMatrix response
depends on its selection mode, as explained in the “Class Description”. In any
selection mode, a mouse-down in an editable text cell immediately enters text
editing mode. A double-click in any other kind of cell sends the double-click
action of the NSMatrix (if there is one) in addition to the single-click action.
See also acceptsFirstMouse: , mouseDownFlags .

mouseDownFlags

– (int)mouseDownFlags

Returns the modifier flags (for example, NSShiftKeyMask) that were in effect
at the mouse-down event that started the current tracking session. Use this
method if you want to access these flags, but don’t want the overhead of
having to use sendActionOn: (NSCell) to add mouse-down masks to every
cell to get them. This method is valid only during tracking; it’s not useful if the
target of the matrix initiates another tracking loop as part of its action method.
See the “Event Handling” section of the Application “Kit’s Types and
Constants” chapter for more information on event flags. See also mouseDown: .

numberOfColumns

- (int)numberOfColumns

Returns the number of matrix columns. See also numberOfRows ,
getNumberOfRows:columns: .

numberOfRows

- (int)numberOfRows

1-354 OpenStep Programming Reference—September 1996

1

Returns the number of matrix rows. See also numberOfColumns ,
getNumberOfRows:columns: .

nextText

– (id)nextText

Returns the object to be selected when the user presses Tab while editing the
last text cell. See also setNextText: , previousText , setPreviousText: .

performKeyEquivalent:

– (BOOL)performKeyEquivalent:(NSEvent *)theEvent

If there is a cell in the matrix that has a key equivalent equal to that in
theEvent , that cell is made to react as if the user had clicked it by
highlighting, changing its state as appropriate, sending its action if it has one,
and then unhighlighting. Returns YES if a cell in the matrix responds to the
key equivalent in theEvent , NO if no cell responds. Your code should never
send this message; it is sent when the matrix or one of its superviews is the
first responder and the user presses a key. You may want to override this
method to change the way key equivalents are performed or displayed, or to
disable them in your subclass. See also acceptsFirstMouse: .

previousText

– (id)previousText

Returns the object to be selected when the user presses Shift-Tab while editing
the first text cell. See also setPreviousText: , nextText , setNextText: .

prototype

– (id)prototype

Returns the prototype cell copied to make new cells, or nil if there is none.
See also setPrototype: ,
initWithFrame:mode:prototype:numberOfRows: numberOfColumns: ,
makeCellAtRow:column: .

NSMatrix 1-355

1

putCell:atRow:column:

– (void)putCell:(NSCell *)newCell atRow:(int)row column:(int)column

Replaces the cell at row and column with newCell , and redraws. See also
makeCellAtRow:column: .

removeColumn:

– (void)removeColumn:(int)column

Removes the column at position column and releases the cells. Doesn’t redraw.
Your code should normally send sizeToCells after invoking this method to
resize the matrix so it fits the reduced cell count. See also insertColumn: ,
removeRow: , makeCellAtRow:column: .

removeRow:

– (void)removeRow:(int)row

Removes the row at position row and releases the cells. Doesn’t redraw. Your
code should normally send sizeToCells after invoking this method to resize
the matrix so it fits the reduced cell count. See also insertRow: ,
removeColumn: , makeCellAtRow:column: .

renewRows:columns:

– (void)renewRows:(int)newRows columns:(int)newColumns

Rearranges the number of rows and columns in the matrix, using the existing
cells. This method uses the same cells as before the message is sent, creating
new cells only if the new size is larger; it never frees cells. This method doesn’t
display the matrix even if autodisplay is on. Your code should normally send
sizeToCells after invoking this method to resize the matrix so it fits the
changed cell arrangement. This method deselects all cells in the matrix. See
also makeCellAtRow:column: .

resetCursorRects

– (void)resetCursorRects

1-356 OpenStep Programming Reference—September 1996

1

Resets cursor rectangles so that the cursor becomes an I-beam over text cells.
Sends resetCursorRect:inView: (NSCell) to each cell in the matrix. (Any
cell that has a cursor rectangle to set up should send the message
addCursorRect:cursor: , inherited from NSView, back to the matrix). See
also resetCursorRects (NSView).

scrollCellToVisibleAtRow:column:

– (void)scrollCellToVisibleAtRow:(int)row column:(int)column

If the matrix is in a scrolling view, this method scrolls the matrix so that the cell
at row and column is visible. See also isAutoscroll , setAutoscroll: ,
setScrollable: .

selectAll:

– (void)selectAll:(id)sender

If the matrix mode is not NSRadioModeMatrix , then all the cells in the matrix
are selected and highlighted, and the matrix is redisplayed. The currently
selected cell is unaffected (it remains selected). Editable text cells are not
affected. See also deselectAllCells , deselectSelectedCell ,
selectCellAtRow:column: , selectCellWithTag: , selectedCell ,
selectedCells , selectedColumn , selectedRow .

selectCellAtRow:column:

– (void)selectCellAtRow:(int)row column:(int)column

Selects the cell at position (row , col) in the matrix. An editable text cell’s text
is selected. If either row or col is –1, then the current selection is cleared
unless the matrix is in NSRadioModeMatrix and does not allow empty
selection. Redraws the affected cells. See also selectAll: .

selectCellWithTag:

– (BOOL)selectCellWithTag:(int)anInt

Selects the cell with the tag anInt . An text cell’s text is selected. Returns nil if
no cell with the given tag exists. See also selectAll: .

NSMatrix 1-357

1

selectText:

– (void)selectText:(id)sender

If sender is the next NSText object of the matrix (as set with setNextText:),
the text in the last selectable text cell (the one lowest and furthest to the right)
is selected; otherwise, the text of the first selectable text cell is selected. See also
selectTextAtRow:column: , textDidChange: .

selectedCell

– (id)selectedCell

Returns the currently selected cell, or nil if no cell is selected. See also
selectedCells , selectedColumn , selectedRow , selectAll: .

selectedCells

– (NSArray *)selectedCells

Returns an array containing the selected cells. See also selectedCell ,
selectedColumn , selectedRow , selectAll: .

selectedColumn

– (int)selectedColumn

Returns the column of the selected cell or –1 if no column has been selected.
See also selectedRow, selectedCell , selectAll: .

selectedRow

– (int)selectedRow

Returns the row of the selected cell or –1 if no row has been selected. See also
selectedColumn , selectedCell , selectAll: .

selectTextAtRow:column:

– (id)selectTextAtRow:(int)row column:(int)column

1-358 OpenStep Programming Reference—September 1996

1

Select the text of the cell at (row , col) in the matrix, if there is such a cell and
its text is selectable. Returns the cell whose text was selected, the matrix if such
a cell wasn’t found, or nil if the cell was found but wasn’t enabled or wasn’t
selectable. See also selectText: , textDidChange: .

sendAction

– (BOOL)sendAction

Sends the selected cell’s action method, or the NSMatrix ’s action if the cell
doesn’t have one. Returns YES if a target receives the action; beeps and returns
NO otherwise. If the matrix has no selected and enabled cell, NO is returned. If
the selected cell has both an action method and a target, its action method is
sent to its target. If the cell doesn’t have a target (nil), the cell sends its action
method to the matrix target. If the cell doesn’t have an action method (nil),
the matrix sends its action method to its target. See also
sendAction:to:forAllCells: , sendDoubleAction ,
setDoubleAction: , errorAction , setErrorAction: .

sendAction:to:forAllCells:

– (void)sendAction:(SEL)aSelector to:(id)anObject
forAllCells:(BOOL)flag

Sends aSelector to anObject for all matrix cells if flag is YES. aSelector
must represent a method that takes a single argument: the id of the current
cell in the iteration. aSelector ’s return value must be a BOOL. Iteration
begins with the cell in the upper-left corner of the matrix, proceeding through
all entries in the first row, then on to the next. If aSelector returns NO for any
cell, this method terminates immediately without sending the message for
other cells. If it returns YES, this method keeps sending the message.

This method is not invoked to send action messages to target objects in
response to mouse-down events in the matrix. Instead, you can invoke it if you
want to have multiple cells in a matrix interact with an object. For example you
could use it to verify the titles in a list of items, or to enable a series of radio
buttons based on their purpose in relation to anObject . Returns YES if a
target receives the action; beeps and returns NO otherwise. See also
sendAction .

NSMatrix 1-359

1

sendDoubleAction

– (void)sendDoubleAction

Sends the action method corresponding to a double-click if it exists. If the
selected cell is not enabled, the method returns. If the matrix has a double-click
action, that message is sent to the matrix target. If not, then if the selected cell
(as returned by selectedCell) has an action, that message is sent to the
selected cell’s target. If the selected cell also has no action, then the action of
the matrix is sent to the target of the matrix. This method only sends an action
if the selected cell is enabled. Your code shouldn’t invoke this method; it’s sent
in response to a double-click event in the matrix. You may want to override it
to change the search order for an action to send. See also doubleAction ,
sendAction .

setAllowsEmptySelection:

– (void)setAllowsEmptySelection:(BOOL)flag

If flag is YES, then the matrix will allow zero cells to be selected. If flag is
NO, then the matrix disallows zero selected cells. This setting effects
NSRadioModeMatrix and NSListModeMatrix matrices only. See also
allowsEmptySelection .

setAutoscroll:

– (void)setAutoscroll:(BOOL)flag

If flag is YES and the matrix is in a scrolling view, it will be automatically
scrolled whenever a the mouse is dragged outside the matrix after a mouse-
down event within its bounds. See also isAutoscroll .

setAutosizesCells:

– (void)setAutosizesCells:(BOOL)flag

If flag is YES, then whenever the matrix is resized, the sizes of the cells
change in proportion, keeping the inter-cell space constant; further, this
method verifies that the cell sizes and inter-cell spacing add up to the exact
size of the matrix, adjusting the size of the cells and updating the matrix if they

1-360 OpenStep Programming Reference—September 1996

1

don’t. If flag is NO, then the inter-cell space changes when the matrix is
resized, with the cell size remaining constant. See also autosizesCells ,
intercellSpacing .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)aColor

Sets the background color for the matrix to aColor . This color is used to fill
the space between cells or the space behind any non-opaque cells. Marks the
matrix as needing redrawing. See also backgroundColor .

setCellBackgroundColor:

– (void)setCellBackgroundColor:(NSColor *)aColor

Sets the background color for the matrix cells to aColor . This color is used to
fill the space behind non-opaque cells. Marks the matrix as needing redrawing.
See also cellBackgroundColor , backgroundColor .

setCellClass:

– (void)setCellClass:(Class)classId

Configures a matrix to use instances of classId when creating new cells.
classId should be the id of a subclass of NSCell , obtained by sending the
class message (NSObject) to either the cell subclass object or to an instance
of that subclass. The cell class is the method set with the class method
setCellClass: ; the default cell class is NSActionCell . You only need to use
this method with matrices initialized with initFrame: , since the other
initializers allow you to specify an instance-specific cell class or cell prototype.
See also cellClass , initWithFrame:mode:cellClass:numberOfRows:
numberOfColumns: .

setCellSize:

– (void)setCellSize:(NSSize)aSize

Sets the width and the height of each cell in the matrix to aSize . This may
change the size of the matrix. Does not redraw the matrix. See also cellSize ,
makeCellAtRow:column: .

NSMatrix 1-361

1

setDelegate:

– (void)setDelegate:(id)anObject

Sets the object to which the matrix will forward messages from the field editor.
These messages include textDidBeginEditing: , textDidEndEditing: ,
textDidChange: , textShouldBeginEditing: , and
textShouldEndEditing: . See also delegate .

setDoubleAction:

– (void)setDoubleAction:(SEL)aSelector

Make aSelector the action method sent to the matrix target when the user
double-clicks a cell. A double-click action is always sent after the appropriate
single-click action: the cell’s single-click action method if it has one, otherwise
the single-click action method of the matrix. If a matrix has no double-click
action set, then by default a double-click is treated as a single-click. See also
doubleAction , sendAction .

setDrawsBackground:

– (void)setDrawsBackground:(BOOL)flag

Sets whether the receiver draws the background between cells. See also
drawsCellBackground , backgroundColor .

setDrawsCellBackground:

– (void)setDrawsCellBackground:(BOOL)flag

Sets whether the receiver draws the background within the cells. See also
cellBackgroundColor , backgroundColor .

setErrorAction:

– (void)setErrorAction:(SEL)aSelector

Sets the action method sent to the matrix target when the user enters an illegal
value in a text cell for that cell’s entry type as set by NSCell ’s
setEntryType: method and checked by NSCell ’s isEntryAcceptable:
method.

1-362 OpenStep Programming Reference—September 1996

1

setIntercellSpacing:

– (void)setIntercellSpacing:(NSSize)aSize

Sets the vertical and horizontal spacing between cells to aSize . Doesn’t
redraw the matrix. See also intercellSpacing , makeCellAtRow:column: .

setMode:

– (void)setMode:(NSMatrixMode)aMode

Sets the selection mode of the matrix to one of the following values:

• NSTrackModeMatrix - Track mouse only inside the cells
• NSHighlightModeMatrix - Highlight the cell, then track, then unhighlight
• NSRadioModeMatrix - Allow no more than one selected cell
• NSListModeMatrix - Allow multiple selected cells

See the Class Description for more information on these modes. See also mode.

setNextText:

– (void)setNextText:(id)anObject

Sets anObject as the object whose text is selected when the user presses Tab
while editing the last editable text cell. anObject should respond to the
selectText: message. If anObject also responds to both selectText: and
setPreviousText: , it is sent setPreviousText: with the receiving matrix
as the argument; this builds a two-way connection, so that pressing Tab in the
last text cell selects anObject ’s text, and pressing Shift-Tab in anObject
selects the last text cell of the matrix. See also nextText .

setPreviousText:

– (void)setPreviousText:(id)anObject

Sets anObject as the object whose text is selected when the user presses Shift-
Tab while editing the first editable text cell. anObject should respond to the
selectText: message. Your code shouldn’t need to use this method directly,
since it’s invoked automatically by setNextText: . In deference to
setNextText: , this method doesn’t build a two-way connection. See also
previousText .

NSMatrix 1-363

1

setPrototype:

– (void)setPrototype:(NSCell *)aCell

Sets the prototype cell that is copied whenever a new cell needs to be made.
aCell should be an instance of a subclass of cell. If a matrix has a prototype
cell, it doesn’t use its cell class object to create new cells; if you want your
matrix to use its cell class, invoke this method with nil as the argument. The
matrix is considered to own the prototype, and will free it when the matrix is
itself freed; be sure to make a copy of an instance that your code may use
elsewhere.

If you implement your own cell subclass for use as a prototype with a matrix,
make sure your cell does the right thing when it receives a copy message. For
example, NSObject ’s copy copies only pointers, not what they point
to—sometimes this is what it should do, sometimes not. The best way to
implement copy when you subclass cell is send copy to super , then copy
instance variable values (for example, title strings) into your subclass instance
individually. Also, be careful that freeing the prototype will not damage any of
the copies that were made and put into the matrix (due to shared pointers that
are freed, for example). See also prototype , cellClass ,
initWithFrame:mode:prototype:numberOfRows: numberOfColumns: .

setScrollable:

– (void)setScrollable:(BOOL)flag

If flag is YES, makes all the cells scrollable so that the text they contain scrolls
to remain in view if the user types past the edge of the cell. See also
isAutoscroll .

setSelectionByRect:

– (void)setSelectionByRect:(BOOL)flag

Sets whether a user can drag a rectangular selection (the default is YES). If
flag is NO, selection is on a row-by-row basis. See also isSelectionByRect .

setSelectionFrom:to:anchor:highlight:

– (void)setSelectionFrom:(int)startPos to:
(int)endPos anchor:(int)anchorPos highlight:(BOOL)flag

1-364 OpenStep Programming Reference—September 1996

1

Programmatically selects a range of cells. startPos , endPos , and anchorPos
are cell positions, counting from 0 in row order from the upper left cell of the
matrix. For example, the third cell in the top row would be number 2.
startPos and endPos are used to mark where the user would have pressed
the mouse button and released it. anchorPos locates the “last selected cell”
with regard to extending the selection by Shift- or Alternate-clicking. Finally,
flag determines whether cells selected by this method are highlighted. See
also selectAll: .

setState:atRow:column:

– (void)setState:(int)value atRow:(int)row column:(int)column

Sets the state of the cell at row row and column col to value . For radio-mode
matrices, this is identical to selectCellAtRow:column: except that the state
can be set to any arbitrary value . (If in radio-mode and empty selection is
allowed, and value is 0, then the cells are cleared). Affected cells are redrawn.

setValidateSize:

– (void)setValidateSize:(BOOL)flag

Sets whether the cell size needs to be recalculated.

If flag is YES, then the size information in the matrix is assumed correct. If
flag is NO, then cell size will be recalculated. See also autosizesCells .

sizeToCells

– (void)sizeToCells

Resizes the matrix to fit its cells exactly. Doesn’t redraw the matrix. See also
autosizesCells .

sortUsingFunction:context:

– (void)sortUsingFunction:(int (*)(id element1, id element2,
void *userData))comparator context:(void *)context

NSMatrix 1-365

1

Sorts the receiver’s cells in ascending order as defined by the comparison
function comparator . context is passed as the function’s third argument.
See also sortUsingSelector: , sortUsingFunction:context:
(NSMutableArray).

sortUsingSelector:

– (void)sortUsingSelector:(SEL)comparator

Sorts the receiver’s cells in ascending order as defined by the comparison
method comparator . See also sortUsingFunction:context: ,
sortUsingFunction:context: (NSMutableArray).

textDidBeginEditing:

– (void)textDidBeginEditing:(NSNotification *)notification

Invoked when there’s a change in the text after the receiver gains first
responder status. Default behavior is to pass this message on to the text
delegate. This method posts the
NSControlTextDidBeginEditingNotification notification with the
receiving object and, in the notification’s dictionary, the text object (with the
key NSFieldEditor) to the default notification center. See also
textDidEndEditing: , textDidChange: , setDelegate: .

textDidChange:

– (void)textDidChange:(NSNotification *)notification

Invoked upon a key-down event or paste operation that changes the receiver’s
contents. Default behavior is to pass this message on to the text delegate. This
method posts the NSControlTextDidChangeNotification notification
with the receiving object and, in the notification's dictionary, the text object
(key NSFieldEditor) to the default notification center. See also
textDidBeginEditing: , textDidEndEditing: ,
textShouldBeginEditing: , textShouldEndEditing: , setDelegate: .

textDidEndEditing:

– (void)textDidEndEditing:(NSNotification *)notification

1-366 OpenStep Programming Reference—September 1996

1

Invoked when text editing ends and then forwarded to the text delegate. This
method posts the notification
NSControlTextDidEndEditingNotification with the receiving object
and, in the notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center. See also
textDidBeginEditing: , textDidChange: , setDelegate: .

textShouldBeginEditing:

– (BOOL)textShouldBeginEditing:(NSText *)textObject

Invoked to let the NSTextField respond to impending changes to its text and
then forwarded to the text delegate. See also textShouldEndEditing: ,
textDidChange: , setDelegate: .

textShouldEndEditing:

– (BOOL)textShouldEndEditing:(NSText *)textObject

Invoked to let the NSTextField respond to impending loss of first responder
status and then forwarded to the text delegate. See also
textShouldBeginEditing: , textDidChange: , setDelegate: .

NSMenu

Class Description

This class defines an object that manages an application’s menus. An NSMenu
object displays a list of items that a user can choose from. When an item is
clicked, it may either issue a command directly or bring up another menu, a
submenu that offers further choices. An NSMenu object’s choices are
implemented as a column of NSMenuCell s in an NSMatrix .

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSMenu.h

NSMenu 1-367

1

Each NSMenuCell can be configured to send its action message to a target, or
to bring up a submenu. When the user clicks a submenu item, the submenu is
displayed on the screen and attached to its supermenu so that if the user drags
the supermenu, the submenu follows it. A submenu may also be torn away
from its supermenu, in which case it displays a close button.

Exactly one NSMenu created by the application is designated as the main menu
for the application (with NSApplication ’s setMainMenu: method). This
menu is displayed on top of all other windows whenever the application is
active, and should never display a close button (because the main menu
doesn’t have a supermenu). See the NSMenuCell and NSMatrix class
specificiations for more details.

1-368 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

menuZone

+ (NSZone *)menuZone

Returns the zone from which new NSMenus should be allocated. If there isn’t
one, creates and returns a zone named “Menus.” After invoking this method,
you should allocate all new NSMenus from this zone.

setMenuZone:

+ (void)setMenuZone:(NSZone *)zone

Activity Class Method

Controlling allocation
zones

+ menuZone
+ setMenuZone:

Initializing a new
NSMenu

– initWithTitle:

Setting up the menu
commands

– addItemWithTitle:action:keyEquivalent:
– insertItemWithTitle:action:keyEquivalent: atIndex:
– itemArray
– itemMatrix
– setItemMatrix:

Finding and removing
menu items

– itemWithTag:
– itemWithTitle:
– removeItem:

Building submenus – setSubmenu:forItem:
– submenuAction:

Managing NSMenu
windows

– attachedMenu
– isAttached
– isTornOff
– locationForSubmenu:
– sizeToFit
– supermenu

Displaying the menu – autoenablesItems
– setAutoenablesItems:

NSMenu 1-369

1

Sets the zone from which NSMenus should be allocated. See also menuZone.

Instance Methods

addItemWithTitle:action:keyEquivalent:

– (id <NSMenuItem>)addItemWithTitle:(NSString *)aString
action:(SEL)aSelector
keyEquivalent:(NSString *)charCode

Adds a new menu item (command) named aString to the end of the
receiving NSMenu and returns the the menu item created. The menu item’s
action method is set to aSelector . charCode is set as the menu item’s key
equivalent. The command name and key equivalent aren’t checked for
duplications within the same NSMenu (or any other NSMenu); be sure to assign
them uniquely. See also
insertItemWithTitle:action:keyEquivalent: atIndex: .

attachedMenu

– (NSMenu *)attachedMenu

Returns the NSMenu attached to the receiver or nil if there is no such object.
See also isAttached , isTornOff , locationForSubmenu: , sizeToFit ,
supermenu , setSubmenu:forItem: , submenuAction: .

autoenablesItems

– (BOOL)autoenablesItems

Returns YES if the receiver enables and disables its NSMenuCell s based on
user actions, and NO otherwise. The default is YES. (See the
NSMenuActionResponder informal protocol in the Application Kit’s
Protocols chapter). See also setAutoenablesItems: .

initWithTitle:

– (id)initWithTitle:(NSString *)aTitle

1-370 OpenStep Programming Reference—September 1996

1

Initializes and returns the receiver, a new instance of NSMenu, with the title
aTitle . The menu is positioned in the upper left corner of the screen, and has
no command items. A new menu must receive an orderFront: message to be
displayed on the screen; the NSApplication object takes care of this for
standard NSMenus. The NSMenu is created as a buffered, menu-style window.
All NSMenus have an event mask that excludes keyboard events, so they never
become the key window or main window. See also
addItemWithTitle:action:keyEquivalent: ,
insertItemWithTitle:action:keyEquivalent: atIndex: .

insertItemWithTitle:action:keyEquivalent:
atIndex:

– (id <NSMenuItem>)insertItemWithTitle:(NSString *)aString
action:(SEL)aSelector

keyEquivalent:(NSString *)charCode atIndex:(unsigned int)index

Adds a new item at index having the title aString , action method
aSelector , and key equivalent charCode . Returns the new menu item. See
also addItemWithTitle:action:keyEquivalent: , initWithTitle: .

isAttached

– (BOOL)isAttached

Returns YES if the receiving menu is attached to another menu and NO
otherwise. See also attachedMenu .

isTornOff

– (BOOL)isTornOff

Returns NO if the receiver is attached to another menu (or if it’s the main menu)
and YES otherwise. See also attachedMenu .

itemArray

- (NSArray *)itemArray

Returns an array of the receiver’s menu items. See also itemMatrix .

NSMenu 1-371

1

itemMatrix

– (NSMatrix *)itemMatrix

Returns the NSMatrix of NSMenuCell items, which your code can use to add
or rearrange command items directly. Be sure to send sizeToFit after altering
the NSMatrix , as the NSMenu won’t know that the NSMatrix has been altered.
Note that this method is not part of the OpenStep specification. See also
setItemMatrix: .

itemWithTag:

– (id)itemWithTag:(int)aTag

Returns the menu item that has aTag as its tag. If you use menu item tags,
each menu cell should have a unique tag. See also itemWithTitle: .

itemWithTitle:

- (id <NSMenuItem>)itemWithTitle:(NSString *)aTitle

Returns the the first menu item with title aTitle . See also itemWithTag: ,
removeItem: .

locationForSubmenu:

– (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu

Determines where to display an attached submenu when it’s brought up. The
returned NSPoint specifies where the lower-left corner of the submenu should
be drawn. NSMenu invokes this method whenever it brings up a submenu. By
default, the submenu is to the right of its supermenu, with its title bar aligned
with the supermenu’s. Your code need never directly use this method, but may
override it to cause the submenu to be attached at a different location. See also
attachedMenu .

removeItem:

- (void)removeItem:(id <NSMenuItem>)item

Removes the given menu item from the menu.

1-372 OpenStep Programming Reference—September 1996

1

setAutoenablesItems:

– (void)setAutoenablesItems:(BOOL)flag

Sets whether the receiver enables and disables its NSMenuCell s. (See the
NSMenuActionResponder informal protocol in the Application Kit’s
Protocols chapter). See also autoenablesItems .

setItemMatrix:

– (void)setItemMatrix:(NSMatrix *)aMatrix

Replaces the current matrix of items within the menu with aMatrix . Note that
this method is not part of the OpenStep specification. See also itemMatrix .

setSubmenu:forItem:

– (void)setSubmenu:(NSMenu *)aMenu
forItem:(Id <NSMenuItem>)item

Sets aMenu as the submenu of the receiving NSMenu, controlled by the item .
item ’s target is set to aMenu, its action method to submenuAction: , and its
icon to the arrow indicating that it brings up a submenu. This method doesn’t
remove item ’s key equivalent. If aMenu was on screen, it won’t be removed
from the screen or moved until it’s first brought up as a submenu. See also
submenuAction: .

sizeToFit

– (void)sizeToFit

Resizes the receiver to exactly fit the command items. First this method sizes
the menu’s NSMatrix to its NSMenuCell s, so that all items fit in as small a
rectangle as possible, and then fits the NSMenu to the resized NSMatrix . Use
this method after you’ve added or altered items by sending messages directly
to the NSMatrix . When the NSMenu is resized, its upper left corner remains
fixed. After performing any necessary resizing, this method redisplays the
menu. See also attachedMenu .

submenuAction:

– (void)submenuAction:(id)sender

NSMenuCell 1-373

1

This is the action method sent to a submenu associated with an entry in an
NSMenu. If sender ’s window is a visible NSMenu, the receiver attaches and
displays itself as a submenu of the sender’s NSMenu; otherwise, it does
nothing. sender should be the NSMatrix containing the NSMenuCell that
brings up the submenu. See also setSubmenu:forItem: .

supermenu

– (NSMenu *)supermenu

Returns the receiver’s supermenu. See also attachedMenu .

NSMenuCell

Class Description

NSMenuCell is a NSButtonCell subclass that defines objects that are used in
menus. NSMenuCell s draw their text left-justified and show an optional key
equivalent or submenu arrow on the right. See the NSMenu class specification
for more information.

Inherits From: NSButtonCell : NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSMenuCell.h

1-374 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

setUsesUserKeyEquivalents:

+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, NSMenuCell s conform to user preferences (user’s defaults) for
key equivalents; otherwise, the key equivalents originally assigned to the
NSMenuCell s are used. See also usesUserKeyEquivalents .

usesUserKeyEquivalents

+ (BOOL)usesUserKeyEquivalents

Returns YES if NSMenuCell s conform to user preferences for key equivalents;
otherwise, returns NO. See also setUsesUserKeyEquivalents: .

Instance Methods

hasSubmenu

– (BOOL)hasSubmenu

Returns YES if the receiving menu cell brings up a submenu, and NO otherwise.

userKeyEquivalent

– (NSString *)userKeyEquivalent

If the NSMenuCell class has been configured to use user key equivalents,
returns the user-assigned key equivalent for the NSMenuCell .

Activity Class Method

Checking for a submenu – hasSubmenu

Managing user key equivalents + setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

NSOpenPanel 1-375

1

NSOpenPanel

Class Description

NSOpenPanel provides the Open panel of the OpenStep user interface.
Applications use the Open panel as a convenient way to query the user for the
name of a file to open. The Open panel can only be run modally.

Most of this class’s behavior is defined by its superclass, NSSavePanel .
NSOpenPanel adds to this behavior by:

• Letting you specify the types (by file-name extension) of the items that will
appear in the panel

• Letting the user select files, directories, or both

• Letting the user select multiple items at a time

Typically, you access an NSOpenPanel by invoking the openPanel method.
When the class receives an openPanel message, it tries to reuse an existing
panel rather than create a new one. If a panel is reused, its attributes are reset
to the default values so that the effect is the same as receiving a new panel.
Because Open panels may be reused, you shouldn’t modify the instance
returned by openPanel except through the methods listed below (and those
inherited from its superclass, NSSavePanel). For example, you can set the
panel’s title and whether it allows multiple selection, but not the arrangement
of the buttons within the panel. If you must modify the Open panel
substantially, create and manage your own instance using the alloc... and
init... methods rather than the openPanel method.

Note that NSOpenPanel (and NSSavePanel) automatically “remembers” the
last directory the user traversed to. That is, anytime a Save or Open panel is
shown to the user, the default directory it displays is the directory the user was
at the last time they clicked "ok", or double-clicked a file. If no such previous
directory exists, the panels will go to the user's home directory.

Inherits From: NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSOpenPanel.h

1-376 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

openPanel

+ (NSOpenPanel *)openPanel

Returns an NSOpenPanel object having default initialization.

Instance Methods

allowsMultipleSelection

– (BOOL)allowsMultipleSelection

Returns YES if the user can select more than one file in the browser. If multiple
files are allowed, then the filename method—inherited from
NSSavePanel —returns a non-NULL value only if one and only one file is
selected. By contrast, NSOpenPanel ’s filenames method always returns the
selected files, even if only one file is selected. A further distinction between the
two methods is that the inherited filename method always returns a fully
specified path, while the filenames method doesn’t; the names it returns are
always relative to the path returned by directory (NSSavePanel). See also
setAllowsMultipleSelection: .

Activity Class Method

Accessing the NSOpen panel + openPanel

Filtering files – allowsMultipleSelection
– canChooseDirectories
– canChooseFiles
– setAllowsMultipleSelection:
– setCanChooseDirectories:
– setCanChooseFiles:

Querying the chosen files – filenames

Running the NSOpenPanel – runModalForTypes:
– runModalForDirectory:file:types:

NSOpenPanel 1-377

1

canChooseDirectories

– (BOOL)canChooseDirectories

Returns YES if the panel allows the user to choose directories. See also
setCanChooseDirectories: , canChooseFiles ,
allowsMultipleSelection .

canChooseFiles

– (BOOL)canChooseFiles

Returns YES if the panel allows the user to choose files. See also
setCanChooseFiles: , canChooseDirectories ,
allowsMultipleSelection .

filenames

– (NSArray *)filenames

Returns an array containing the full path names of the selected files and
directories. This list will be valid even if allowMultipleSelections is NO,
in which case this method returns a single entry. This is the preferred method
to get the name or names of any files that the user has chosen.

runModalForTypes:

– (int)runModalForTypes:(NSArray *)fileTypes

Invokes the runModalForDirectory:file:types: method, using the last
directory from which a file was chosen as the path argument. Returns the value
returned by that method. See also runModalForDirectory:file:types: .

runModalForDirectory:file:types:

– (int)runModalForDirectory:(NSString *)path
file:(NSString *)filename types:(NSArray *)fileTypes

Displays the panel and begins its event loop. The panel displays the files in
path that match the types in fileTypes (an array of NSString objects), with
filename selected. Returns NSOKButton (if the user clicks the OK button) or
NSCancelButton (if the user clicks the Cancel button). See also
runModalForTypes: .

1-378 OpenStep Programming Reference—September 1996

1

setAllowsMultipleSelection:

– (void)setAllowsMultipleSelection:(BOOL)flag

Sets multiple file (and directory) selection when flag is YES. See also
allowsMultipleSelection .

setCanChooseDirectories:

– (void)setCanChooseDirectories:(BOOL)flag

Sets whether the user can choose directories. See also
canChooseDirectories .

setCanChooseFiles:

– (void)setCanChooseFiles:(BOOL)flag

Sets whether the user can choose files. See also canChooseFiles .

NSPageLayout

Class Description

NSPageLayout is a type of NSPanel that queries the user for information
such as paper type and orientation. This information is stored in an
NSPrintInfo object, and is later used when printing. The NSPageLayout
panel is created, displayed, and run (in a modal loop) when a
runPageLayout: message is sent to the NSApplication object. By default,
this message is sent up the responder chain when the user clicks the Page
Layout menu item.

Typically, you access an NSPageLayout panel by invoking the pageLayout
method. When the class receives a pageLayout message, it tries to reuse an
existing panel rather than create a new one. If a panel is reused, its attributes

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPageLayout.h

NSPageLayout 1-379

1

are reset to the default values so that the effect is the same as receiving a new
panel. Because Page Layout panels may be reused, you shouldn’t modify the
instance returned by pageLayout , except through the methods listed below. If
you must modify the Page Layout panel in other ways than those allowed by
its methods, create and manage your own instance using the alloc... and
init... methods rather than the pageLayout method.

You can add your own controls to the Page Layout panel through the
setAccessoryView: method. The panel is automatically resized to
accommodate the NSView that you’ve added. Note that you can’t retrieve the
NSPageLayout ’s settings through messages to the page layout panel
object—NSPageLayout does not have accessor methods to obtain the state of
its controls. If controls you add through an accessory view require the values
of the existing controls in the page layout panel (or vice versa), access
NSPageLayout ’s controls using the tags defined in
AppKit/NSPageLayout.h as arguments to viewWithTag: messages to the
page layout panel object. Controls thus returned can then be queried for their
state.

1-380 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

pageLayout

+ (NSPageLayout *)pageLayout

Returns the default NSPageLayout object, creating it if necessary.

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the NSPageLayout ’s accessory view. See also setAccessoryView: .

convertOldFactor:newFactor:

– (void)convertOldFactor:(float *)old newFactor:(float *)new

Activity Class Method

Creating an NSPageLayout
instance

+ pageLayout

Running the panel – runModal
– runModalWithPrintInfo:

Customizing the panel – accessoryView
– setAccessoryView:

Updating the panel’s display – convertOldFactor:newFactor:
– pickedButton:
– pickedOrientation:
– pickedPaperSize:
– pickedUnits:

Communicating with the
NSPrintInfo object

– printInfo
– readPrintInfo
– writePrintInfo

NSPageLayout 1-381

1

The standard unit used to measure a paper’s dimensions is a point (for
example, the PrintInfo object defines a paper’s size in units of points). This
method returns, by reference, a value that expresses the ratio between a point
and the currently chosen unit of measurement. In general, both old and new
are set to this value. The only time the values returned in the arguments differ
is when the unit of measurement is being changed. Specifically, if you invoke
this method from within pickedUnits: , old gives the old ratio and new
gives the new ratio. Note that this method is implementation-dependent, and
not part of the OpenStep specification.

pickedButton:

– (void)pickedButton:(id)sender

The action of the OK and Cancel buttons, this method ends the Page Layout
panel’s modal run. If the OK button inspired this method, the height, width,
and scale entries must be acceptable (they must hold positive numbers),
otherwise the unacceptable entry is selected and the panel isn’t stopped. If the
panel is being cancelled, then it’s stopped regardless of the entries’
acceptability. Note that this method is implementation-dependent, and not part
of the OpenStep specification.

pickedOrientation:

– (void)pickedOrientation:(id)sender

Updates the panel with the selected orientation. This method is performed
when the user selects a page orientation from the Portrait/Landscape matrix.
This method updates the width and height, and redraws the paper view. You
can get the new orientation by sending the message

int orientation = [sender selectedColumn]

and comparing the returned value to NSLandscapeOrientation and
NSPortraitOrientation . Note that this method is implementation-
dependent, and not part of the OpenStep specification.

pickedPaperSize:

– (void)pickedPaperSize:(id)sender

1-382 OpenStep Programming Reference—September 1996

1

Performed when the user selects a paper size from the Paper Size list. This
method updates the page-layout width and height, redraws the paper view,
and may switch the Portrait/Landscape orientation. Note that this method is
implementation-dependent, and not part of the OpenStep specification.

pickedUnits:

– (void)pickedUnits:(id)sender

Performed when the user selects a new unit of measurement from the Units
list. The height and width are updated. Controls in the accessory view that
express dimensions on the page must be converted to the new unit of
measurement. The ratios returned by convertOldFactor:newFactor:
method should be used to calculate the new values, as shown below. In the
example, a hypothetical NSPageLayout subclass uses an NSTextField
(myField) to display a value measured in the chosen units:

- pickedUnits:sender
{
 float old, new;

 /* At this point the units have been selected */
 /* but not set. Get the conversion factors. */
 [self convertOldFactor:&old newFactor:&new];

 /* Set myField based on the conversion factors. */
 [myField setFloatValue:([myField floatValue] * new / old)];

 /* Set the selected units. */
 return [super pickedUnits:sender];
}

The NSTextField object inherits floatValue from NSControl . Note that
this method is implementation-dependent, and not part of the OpenStep
specification. See also convertOldFactor:newFactor: .

printInfo

– (NSPrintInfo *)printInfo

Returns the NSPrintInfo object used when the Print panel is run.

NSPageLayout 1-383

1

readPrintInfo

– (void)readPrintInfo

Reads the NSPageLayout ’s values from the NSPrintInfo object. This method
is invoked from the runModal method; you shouldn’t need to invoke it.

runModal

– (int)runModal

Reads the pertinent data from the associated NSPrintInfo object into the
NSPageLayout object, and then runs the Page Layout panel in a modal loop.
When the user clicks the Cancel or OK button the loop is broken from within
the pickedButton: method, the panel is hidden, and, if the button was OK,
the new NSPageLayout values are written to the NSPrintInfo object. This
method returns the tag of the button that the user clicked to dismiss the panel
(either NSOKButton or NSCancelButton).

This method is invoked by NSApplication ’s runPageLayout method; an
application is best served by running the Page Layout panel from that method
rather than invoking this one directly. See also runModalWithPrintInfo: .

runModalWithPrintInfo:

– (int)runModalWithPrintInfo:(NSPrintInfo *)pInfo

Displays the panel and begins its event loop. The panel’s values are recorded
in the pInfo . This method returns the tag of the button that the user clicked to
dismiss the panel (either NSOKButton or NSCancelButton). See also
runModal .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Adds aView to the page-layout’s view hierarchy. Applications can invoke this
method to add a view that contains their own controls. The panel is
automatically resized to accommodate aView . This method can be invoked
repeatedly to change the accessory view depending on the situation. If aView
is nil , the panel’s current accessory view, if any, is removed. See also
accessoryView .

1-384 OpenStep Programming Reference—September 1996

1

writePrintInfo

– (void)writePrintInfo

Writes the settings of the Page Layout panel to the NSApplication object’s
global NSPrintInfo object. This method is invoked when the user quits the
Page Layout panel by clicking the OK button. See also readPrintInfo .

NSPanel

Class Description

The NSPanel class defines objects that manage the panels of the OpenStep
user interface. A panel is a window that serves an auxiliary function within an
application. It generally displays controls that the user can act on to give
instructions to the application or to modify the contents of a standard window.

Panels behave differently from standard windows in only a small number of
ways, but the ways are important to the user interface:

• Panels can assume key window—but not main window—status. The key
window receives keyboard events. The main window is the primary focus of
user actions; it might contain the document the user is working on, for
example.

• On-screen panels are normally removed from the screen list when the user
begins to work in another application, and are restored to the screen when
the user returns to the panel’s application.

To aid in their auxiliary role, panels can be assigned special behaviors:

• A panel can be precluded from becoming the key window until the user
makes a selection (makes some view in the panel the first responder)
indicating an intention to begin typing. This prevents key window status
from shifting to the panel unnecessarily.

Inherits From: NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPanel.h

NSPanel 1-385

1

• Palettes and similar panels can be made to float above standard windows
and other panels. This prevents them from being covered and keeps them
readily available to the user.

• A panel can be made to work—to receive mouse and keyboard
events—even when there’s an attention panel on-screen. This permits
actions within the panel to affect the attention panel.

Method Types

Instance Methods

becomesKeyOnlyIfNeeded

– (BOOL)becomesKeyOnlyIfNeeded

Returns whether the receiver waits until the user clicks within a view that can
become the first responder to become the key window. See also
setBecomesKeyOnlyIfNeeded: .

isFloatingPanel

– (BOOL)isFloatingPanel

Returns YES if the receiving panel floats above other windows, and NO
otherwise. See also setFloatingPanel: .

setBecomesKeyOnlyIfNeeded:

– (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag

Activity Class Method

Determining the Panel Behavior – becomesKeyOnlyIfNeeded
– isFloatingPanel
– setBecomesKeyOnlyIfNeeded:
– setFloatingPanel:
– setWorksWhenModal:
– worksWhenModal

1-386 OpenStep Programming Reference—September 1996

1

Sets whether the NSPanel becomes the key window only when the user makes
a selection (causing one of its NSViews to become the first responder). Since
this requires the user to perform an extra action (clicking in the NSView) before
being able to type within the window, it’s appropriate only for NSPanel s that
don’t normally require text entry. You should consider setting this attribute
only if (1) most of the controls within the NSPanel are not text fields, and (2)
the choices that can be made by entering text can also be made in another way,
or are only incidental to the way the panel is normally used. See also
becomesKeyOnlyIfNeeded .

setFloatingPanel:

– (void)setFloatingPanel:(BOOL)flag

Sets whether the receiving panel floats above other windows (that is, assigned
to a window tier above standard windows). The default is NO. It’s appropriate
for an NSPanel to float above other windows only if:

• It’s oriented to the mouse rather than the keyboard—that is, it doesn’t
become the key window or becomes the key window only if needed.

• It needs to remain visible while the user works in the application’s standard
windows—for example, if the user must frequently move the cursor back
and forth between a standard window and the panel (such as a tool palette)
or the panel gives information relevant to the user’s actions within a
standard window.

• It’s small enough not to obscure much of what’s behind it.

• It doesn’t remain on-screen when the application is deactivated.

All four of these conditions should be true for flag to be set to YES. See also
isFloatingPanel .

setWorksWhenModal:

– (void)setWorksWhenModal:(BOOL)flag

Sets whether the NSPanel remains enabled to receive events, and possibly
become the key window, even when a modal panel (attention panel) is on-
screen. This is appropriate only for an NSPanel that needs to operate on
attention panels. The default is NO. See worksWhenModal .

NSPasteboard 1-387

1

worksWhenModal

– (BOOL)worksWhenModal

Returns whether the NSPanel can receive keyboard and mouse events and
possibly become the key window, even when a modal panel (attention panel) is
on-screen. The default is NO. See also setWorksWhenModal: .

NSPasteboard

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The
server is shared by all running applications. It contains data that the user has
cut or copied and may paste, as well as other data that one application wants
to transfer to another. NSPasteboard objects are an application’s sole interface
to the server and to all pasteboard operations.

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPasteboard.h

1-388 OpenStep Programming Reference—September 1996

1

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it’s
to be used. Each set of data and its associated name is, in effect, a separate
pasteboard, distinct from the others. An application keeps a separate
NSPasteboard object for each named pasteboard that it uses. There are five
standard pasteboards in common use:

Each standard pasteboard is identified by a unique name (stored in global
string objects):

• NSGeneralPboard
• NSFontPboard
• NSRulerPboard
• NSFindPboard
• NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object
with any name other than those listed above. The name of a private pasteboard
can be passed to other applications to allow them to share the data it holds.

Table 1-15 Standard Pasteboards

Pasteboard Type Description

General pasteboard Pasteboard that’s used for ordinary cut, copy, and paste
operations. It holds the contents of the last selection that’s
been cut or copied.

Font pasteboard Pasteboard that holds font and character information and
supports the Copy Font and Paste Font commands.

Ruler pasteboard Pasteboard that holds information about paragraph
formats in support of the Copy Ruler and Paste Ruler
commands.

Find pasteboard Pasteboard that holds information about the current state
of the active application’s Find panel. This information
permits users to enter a search string into the Find panel,
then switch to another application to conduct the search.

Drag pasteboard Pasteboard that stores data to be manipulated as the result
of a drag operation.

NSPasteboard 1-389

1

The NSPasteboard class makes sure there’s never more than one object for
each named pasteboard. If you ask for a new object when one has already been
created for the pasteboard with that name, the existing object will be returned
to you.

Data Types

Data can be placed in the pasteboard server in more than one representation.
For example, an image might be provided both in Tag Image File Format (TIFF)
and as encapsulated PostScript (EPS) code. Multiple representations give
pasting applications the option of choosing which data type to use. In general,
an application taking data from the pasteboard should choose the richest
representation it can handle—rich text over plain ASCII, for example. An
application putting data in the pasteboard should promise to supply it in as
many data types as possible, so that as many applications as possible can make
use of it.

Data types are identified by string objects containing the full type name. These
global variables identify the string objects for the standard pasteboard types:

Table 1-16 Pasteboard Data Types

Data Type Description

NSStringPboardType NSString data

NSPostScriptPboardType Encapsulated PostScript (EPS) code

NSTIFFPboardType Tag Image File Format (TIFF)

NSRTFPboardType Rich Text Format (RTF)

NSFilenamesPboardType NSArray containing NSString filenames

NSTabularTextPboardType Tab-separated fields of ASCII text

NSFontPboardType Font and character information

NSRulerPboardType Paragraph formatting information

NSFileContentsPboardType A representation of a file’s contents

NSColorPboardType NSColor data

NSSelectionPboardType Describes a selection

NSDataLinkPboardType Defines a link between documents

1-390 OpenStep Programming Reference—September 1996

1

Types other than those listed can also be used. For example, your application
may keep data in a private format that’s richer than any of the types listed
above. That format can also be used as a pasteboard type.

Reading and Writing Data

Typically, data is written to the pasteboard using setData:forType: and
read using dataForType: . However, data of the type
NSFileContentsPboardType , representing the contents of a named file,
must be written to the NSPasteboard object using writeFileContents:
and copied from the object to a file using readFileContentsType:toFile: .

Errors

Except where errors are specifically mentioned in the method descriptions, any
communications error with the pasteboard server raises
NSPasteboardCommunicationException .

NSPasteboard 1-391

1

Method Types

Class Methods

generalPasteboard

+ (NSPasteboard *)generalPasteboard

Returns the general NSPasteboard . See also pasteboardWithName: ,
pasteboardWithUniqueName , releaseGlobally .

Activity Class Method

Creating and releasing an
NSPasteboard object

+ generalPasteboard
+ pasteboardWithName:
+ pasteboardWithUniqueName
– releaseGlobally

Getting data in different formats + pasteboardByFilteringData:ofType:
+ pasteboardByFilteringFile:
+ pasteboardByFilteringTypesInPasteboard:
+ typesFilterableTo:

Referring to a pasteboard by name – name

Writing data
– addTypes:owner:
– declareTypes:owner:
– setData:forType:
– setPropertyList:forType:
– setString:forType:
– writeFileContents:

Determining types – availableTypeFromArray:
– types

Reading data – changeCount
– dataForType:
– propertyListForType:
– readFileContentsType:toFile:
– stringForType:

Methods implemented by the
owner

– pasteboard:provideDataForType:
– pasteboardChangedOwner:

1-392 OpenStep Programming Reference—September 1996

1

pasteboardByFilteringData:ofType:

+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data
ofType:(NSString *)type

Creates and returns a new NSPasteboard with a unique name that has,
declared within it, data of every type that can be provided by the available
filter services from data . The returned pasteboard also declares data of the
supplied type . No filter service is invoked until the data is actually requested,
so invoking this method is reasonably inexpensive. See also
pasteboardByFilteringFile:,
pasteboardByFilteringTypesInPasteboard: .

pasteboardByFilteringFile:

+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename

Creates and returns a new NSPasteboard with a unique name that has,
declared within it, data of every type that can be provided by the available
filter services from the file filename . No filter service is invoked until the
data is actually requested, so invoking this method is reasonably inexpensive.
See also pasteboardByFilteringData:ofType: ,
pasteboardByFilteringTypesInPasteboard: .

pasteboardByFilteringTypesInPasteboard:

+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:
(NSPasteboard *)pboard

Creates and returns a new NSPasteboard with a unique name that has,
declared within it, data of every type that can be provided by the available
filter services from the data on pasteboard pboard . This process can be
thought of as expanding the pasteboard, since the new pasteboard generally
will contain more representations of the data on pboard .

This method returns pboard if it is a pasteboard returned by one of the
pasteboardByFiltering... methods, so a pasteboard can’t be expanded
multiple times. This method only returns the original types and the types that
can be created as a result of a single filter; the pasteboard will not have defined
types that are the result of translation by multiple filters. No filter service is

NSPasteboard 1-393

1

invoked until the data is actually requested, so invoking this method is
reasonably inexpensive. See also pasteboardByFilteringData:ofType: ,
pasteboardByFilteringFile: .

pasteboardWithName:

+ (NSPasteboard *)pasteboardWithName:(NSString *)name

Returns the NSPasteboard object for the name pasteboard. A new object is
created only if the application doesn’t yet have an NSPasteboard object for
the specified name; otherwise, the existing NSPasteboard is returned. To get a
standard pasteboard, name should be one of the following variables:

• NSGeneralPboard
• NSFontPboard
• NSRulerPboard
• NSFindPboard
• NSDragPboard

Other names can be assigned to create private pasteboards. See also the
“Pasteboard” section of the “Types and Constants” chapter.

pasteboardWithUniqueName

+ (NSPasteboard *)pasteboardWithUniqueName

Creates and returns a new NSPasteboard with a name that is guaranteed to
be unique with respect to other NSPasteboard s on the system. This method is
useful for applications that implement their own interprocess communication
using pasteboards. See also generalPasteboard , pasteboardWithName: .

typesFilterableTo:

+ (NSArray *)typesFilterableTo:(NSString *)type

Returns an array indicating the types that type can be converted to by
available filters. The array contains the original type. The caller is responsible
for freeing the returned array.

1-394 OpenStep Programming Reference—September 1996

1

Instance Methods

addTypes:owner:

– (int)addTypes:(NSArray *)newTypes owner:(id)newOwner

Adds newTypes to the NSPasteboard and declares a newOwner. Returns the
new change count or 0 in case of error. This method can be useful when
multiple entities (such as a combination of application and library methods)
contribute data for a single copy command. It should only be invoked after a
declareTypes:owner: message has been sent for the same data. The owner
for the new types may be different from the owner(s) of the previously
declared data.

availableTypeFromArray:

– (NSString *)availableTypeFromArray:(NSArray *)types

Scans the array of types and returns the first type that matches a type
declared on the pasteboard. A types or availableTypeFromArray:
message should be sent before reading any data from the pasteboard.

changeCount

– (int)changeCount

Returns the NSPasteboard ’s current change count. The change count is a
system-wide variable that increments every time the contents of the pasteboard
changes (a new owner is declared). By examining the change count, an
application can determine whether the current data in the pasteboard is the
same as the data the application last received. An independent change count is
maintained for each named pasteboard.

dataForType:

– (NSData *)dataForType:(NSString *)dataType

Returns NSPasteboard data using the type specified by dataType .
dataType should be one of the types returned by the types method. This
method returns nil if the contents of the pasteboard have changed since last

NSPasteboard 1-395

1

checked with the types method, or the pasteboard server cannot supply the
data. If nil is returned, the application should display a panel informing the
user that it was unable to carry out a paste operation.

declareTypes:owner:

– (int)declareTypes:(NSArray *)newTypes owner:(id)newOwner

Prepares the pasteboard for a change in its contents by declaring the newTypes
of data it will contain, and a newOwner. This is the first step in responding to a
user’s copy or cut command, and must precede the messages that actually
write the data. A declareTypes:owner: message is tantamount to changing
the contents of the pasteboard. This method invalidates the current contents of
the pasteboard, and increments and returns the pasteboard’s change count.

newTypes contains an array of strings that name the new types any new
contents of the pasteboard may assume. The types should be ordered
according to the preference of the source application, with the most preferred
type coming first (typically, the richest representation is first).

The newOwner is the object responsible for writing data to the pasteboard in all
the types listed in newTypes . Data is written using the setData:forType:
method. You can write the data immediately after declaring the types, or wait
until it’s required for a paste operation. If you wait, the owner will receive a
pasteboard:provideDataForType: message requesting the data in a
particular type when it’s needed. You might choose to write data immediately
for the most preferred type, but wait for the others to see whether they’ll be
requested.

The newOwner can be NULL if data is provided for all types immediately.
Otherwise, the owner should be an object that won’t be freed. It should not, for
example, be the NSView that displays the data if that NSView is in a window
that might be closed.

name

– (NSString *)name

Returns the pasteboard’s name.

1-396 OpenStep Programming Reference—September 1996

1

pasteboard:provideDataForType:

– (void)pasteboard:(NSPasteboard *)sender
provideDataForType:(NSString *)type

Implemented by the owner (previously declared in a declareTypes:owner:
message) to provide promised data. The owner receives a
pasteboard:provideDataForType: message from the sender pasteboard
when the data is required for a paste operation. type gives the type of data
being requested. The requested data should be written to sender using the
setData:forType: method.

pasteboard:provideDataForType: messages may also be sent to the
owner when the application is shut down through NSApplication ’s
terminate: method. This method is invoked in response to a Quit command.
Thus the user can copy something to the pasteboard, quit the application, and
still paste the data that was copied.

A pasteboard:provideDataForType: message is sent only if type data
hasn’t already been supplied. Instead of writing all data types when the cut or
copy operation is done, an application can choose to implement this method to
provide the data for certain types only when they’re requested.

If an application writes data to the pasteboard in the richest, and therefore
most preferred, type at the time of a cut or copy operation, its
pasteboard:provideDataForType: method can read the pasteboard data ,
convert it to the requested type, and write it back to the pasteboard as the new
type.

pasteboardChangedOwner:

– (void)pasteboardChangedOwner:(NSPasteboard *)sender

Notifies a prior owner of the sender pasteboard (and owners of
representations on the pasteboard) that the pasteboard has changed owners.
This method is optional and need only be implemented by pasteboard owners
that need to know when they have lost ownership. The owner is not able to
read the contents of the pasteboard when responding to this method. The
owner should be prepared to receive this method at any time, even from
within the declareTypes:owner: used to declare ownership.

NSPasteboard 1-397

1

propertyListForType:

– (id)propertyListForType:(NSString *)dataType

Returns a property list object using the type specified by dataType . See also
setPropertyList:forType: .

readFileContentsType:toFile:

– (NSString *)readFileContentsType:(NSString *)type
toFile:(NSString *)filename

Reads data representing a file’s contents from the pasteboard, and writes it to
the file filename . Data of any file contents type should only be read using this
method. type should generally be specified; if type is NULL, a type based on
filename ’s extension (as returned by
NSCreateFileContentsPboardType()) is substituted. If data matching
type isn’t found on the pasteboard, data of type
NSFileContentsPboardType is requested. Returns an allocated string with
the name of the file that the data was actually written to. You should send the
types or availableTypeFromArray: message before reading any data from
the pasteboard. See also writeFileContents: .

releaseGlobally

– (void)releaseGlobally

Causes all server resources to be freed when the receiving pasteboard object is
deallocated.

setData:forType:

– (BOOL)setData:(NSData *)data forType:(NSString *)dataType

Writes data of type dataType to the pasteboard server from data . Returns
YES if the data is successfully written; otherwise returns NO.

setPropertyList:forType:

– (BOOL)setPropertyList:(id)propertyList
forType:(NSString *)dataType

1-398 OpenStep Programming Reference—September 1996

1

Writes data of type dataType to the pasteboard server from propertyList
(see NSSerializer in the Foundation Kit). Returns YES if the data is
successfully written; otherwise returns NO.

setString:forType:

– (BOOL)setString:(NSString *)string forType:(NSString *)dataType

Writes data of type dataType to the pasteboard server from string . Returns
YES if the data is successfully written; otherwise returns NO. See also
stringForType: .

stringForType:

– (NSString *)stringForType:(NSString *)dataType

Returns an NSString using the type specified by dataType . See also
setString:forType: .

types

– (NSArray *)types

Returns an array containing the NSPasteboard ’s data types. Types are listed
in the same order that they were declared. A types or
availableTypeFromArray: message should be sent before reading any data
from the pasteboard. See the Class Description for a list of pasteboard types.

writeFileContents:

– (BOOL)writeFileContents:(NSString *)filename

Writes data from filename to the pasteboard server, and declares the data to
be of type NSFileContentsPboardType and also of a type appropriate for
the file’s extension (as returned by NSCreateFileContentsPboardType()
when passed the files extention) if it has an extension. Returns YES if the data
from filename was successfully written to the pasteboard, and NO otherwise.

NSPopUpButton 1-399

1

NSPopUpButton

Class Description

The NSPopUpButton class defines objects that implement the pop-up and
pull-down lists of the OpenStep graphical user interface. When configured to
display a pop-up list, an NSPopUpButton contains a number of options and
displays as its title the option that was last selected. A pop-up list is often used
for selecting items from a small to medium-sized set of options (like the zoom
factor for a document window). It’s a useful alternative to a matrix of radio
buttons or an NSBrowser when screen space is at a premium; a zoom factor
pop-up can easily fit next to a scroll bar at the bottom of a window, for
example.

When configured to display a pull-down list, an NSPopUpButton is generally
used for selecting commands in a very specific context. You can think of a pull-
down list as a compact form of menu. A pull-down list’s title isn’t affected by
the user’s actions, and a pull-down list always displays a title that identifies
the type of commands it contains. When the commands only make sense in the
context of a particular display, a pull-down list can be used in that display to
keep the related actions nearby, and to keep them out of the way when that
display isn’t visible.

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject

Conforms To:
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPopUpButton.h

1-400 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Initializing an NSPopUpButton – initWithFrame:pullsDown:

Target and action – action
– setAction:
– setTarget:
– target

Adding items – addItemWithTitle:
– addItemsWithTitles:
– insertItemWithTitle:atIndex:

Removing items – removeAllItems
– removeItemWithTitle:
– removeItemAtIndex:

Querying the NSPopUpButton
about its items

– indexOfItemWithTitle:
– indexOfSelectedItem
– numberOfItems
– itemArray
– itemAtIndex:
– itemMatrix
– itemTitleAtIndex:
– itemTitles
– itemWithTitle:
– lastItem
– selectedItem
– titleOfSelectedItem

Manipulating the NSPopUpButton – font
– pullsDown
– selectItemAtIndex:
– selectItemWithTitle:
– setFont:
– setPullsDown:
– setTitle:
– stringValue
– synchronizeTitleAndSelectedItem

Displaying the NSPopUpButton’s
items

– autoenablesItems
– setAutoenablesItems:

NSPopUpButton 1-401

1

Instance Methods

action

– (SEL)action

Returns the NSPopUpButton’s action method. See also setAction: .

addItemWithTitle:

– (void)addItemWithTitle:(NSString *)title

Adds an item with the name title to the bottom of the item list. See also
addItemsWithTitles: , insertItemWithTitle:atIndex: ,
removeItemWithTitle: .

addItemsWithTitles:

– (void)addItemsWithTitles:(NSArray *)itemTitles

Adds multiple items to the end of the item list. The titles for the new items are
taken from the itemTitles array. See also addItemWithTitle: .

autoenablesItems

– (BOOL)autoenablesItems

Returns whether the NSPopUpButton enables and disables its items. See the
NSMenuActionResponder informal protocol for more information. See also
setAutoenablesItems: .

font

– (NSFont *)font

Returns the font used to draw the items. See also setFont: .

indexOfItemWithTitle:

– (int)indexOfItemWithTitle:(NSString *)title

1-402 OpenStep Programming Reference—September 1996

1

Returns the index of the item whose title matches title , or –1 if no match is
found. See also indexOfSelectedItem , itemAtIndex: , itemTitles ,
itemWithTitle: , titleOfSelectedItem .

indexOfSelectedItem

– (int)indexOfSelectedItem

Returns the index of the item last selected by the user, or –1 if there’s no
selected item. See also indexOfItemWithTitle: .

initWithFrame:pullsDown:

– (id)initWithFrame:(NSRect)frameRect pullsDown:(BOOL)flag

Initializes and returns a newly allocated NSPopUpButton , giving it the frame
specified by frameRect . If flag is YES, the receiver is initialized to operate as
a pull-down list; otherwise, it operates as a pop-up list. This method is the
designated initializer for NSPopUpButton . If you create an NSPopUpButton
subclass that performs its own initialization, you must override this method.

insertItemWithTitle:atIndex:

– (void)insertItemWithTitle:(NSString *)title
atIndex:(unsigned int)index

Inserts an item, with title as its title, at position index . The item at the top
has an index of 0. If an item with a title of title already exists in the item list,
it is removed and the new one is added at index . This essentially moves
title to a new position, though if the item removed was at a position before
index , the new item will actually be inserted at index - 1. If you want to
move an item, it’s better to invoke removeItemWithTitle: or
removeItemAtIndex: explicitly, and then send this message.

itemArray

- (NSArray *)itemArray

Returns the NSArray that holds the receiver’s menu items. See also
itemTitles , itemAtIndex: .

NSPopUpButton 1-403

1

itemAtIndex:

– (id <NSMenuItem>)itemAtIndex:(int)index

Returns the NSMenuItem for the item at index , or nil if no such item exists.
See also itemTitleAtIndex: , indexOfItemWithTitle: .

itemMatrix

– (NSMatrix *)itemMatrix

Returns the NSMatrix that holds the receiver’s items. Note that this method is
not part of the OpenStep specification. See also itemArray .

itemTitleAtIndex:

– (NSString *)itemTitleAtIndex:(int)index

Returns the title of the item at index , or the empty string if no such item
exists. See also itemTitles , indexOfItemWithTitle: .

itemTitles

– (NSArray *)itemTitles

Returns an NSArray that holds the titles of the receiver’s items. See also
numberOfItems , lastItem , selectedItem .

itemWithTitle:

– (id <NSMenuItem>)itemWithTitle:(NSString *)title

Returns the NSMenuItem for the item whose title is title , or nil if no such
item exists. See also indexOfItemWithTitle: .

lastItem

– (id <NSMenuItem>)lastItem

Returns the NSMenuItem corresponding to the last item in the list. See also
numberOfItems , selectedItem .

1-404 OpenStep Programming Reference—September 1996

1

numberOfItems

– (int)numberOfItems

Returns the number of items in the receiver’s item list. See also lastItem ,
selectedItem , indexOfItemWithTitle: .

pullsDown

– (BOOL)pullsDown

Returns YES if the receiver is configured as a pull-down list, and NO if it’s
configured as a pop-up list. See also setPullsDown: .

removeAllItems

– (void)removeAllItems

Removes all items in the receiver’s item list. See also
removeItemWithTitle: , removeItemAtIndex: .

removeItemWithTitle:

– (void)removeItemWithTitle:(NSString *)title

Removes the item whose title matches title . See also removeAllItems ,
removeItemAtIndex: .

removeItemAtIndex:

– (void)removeItemAtIndex:(int)index

Removes the item at the specified index. See also removeAllItems ,
removeItemWithTitle: .

selectItemAtIndex:

– (void)selectItemAtIndex:(int)index

Selects the item at index and invokes
synchronizeTitleAndSelectedItem . See also selectItemWithTitle: .

NSPopUpButton 1-405

1

selectItemWithTitle:

– (void)selectItemWithTitle:(NSString *)title

Selects the item whose title is title and invokes
synchronizeTitleAndSelectedItem . See also selectItemAtIndex: .

selectedItem

– (id <NSMenuItem>)selectedItem

Returns the NSMenuItem for the selected item. See also
selectItemAtIndex: , selectItemWithTitle: , titleOfSelectedItem ,
indexOfSelectedItem .

setAction:

– (void)setAction:(SEL)aSelector

Sets the NSPopUpButton ’s action method to aSelector . The action message
is actually sent by the NSMatrix containing the NSMenuCell s that make up
the list items. See also action .

setAutoenablesItems:

– (void)setAutoenablesItems:(BOOL)flag

Sets whether the NSPopUpButton enables and disables its items. See the
NSMenuActionResponder informal protocol for more information. See also
autoenablesItems .

setFont:

– (void)setFont:(NSFont *)fontObject

Sets the font used to draw the items. See also font .

setPullsDown:

– (void)setPullsDown:(BOOL)flag

If flag is YES, the receiver is configured as a pull-down list. If flag is NO, the
receiver is configured as a pop-up list. See also pullsDown .

1-406 OpenStep Programming Reference—September 1996

1

setTarget:

– (void)setTarget:(id)anObject

Sets the object to which an action will be sent when an item is selected from the
NSPopUpButton ’s item list. The action is actually sent by the NSMatrix
containing the NSMenuCell s that make up the PopUpList. See also target .

setTitle:

– (void)setTitle:(NSString *)aString

Adds a new item (if the receiver doesn’t already have an item titled aString),
makes it the selected item, and invokes
synchronizeTitleAndSelectedItem .

stringValue

– (NSString *)stringValue

Returns the title of the selected item. See also indexOfItemWithTitle: .

synchronizeTitleAndSelectedItem

– (void)synchronizeTitleAndSelectedItem

Ensures that the receiver’s title agrees with the title of the selected item (see
indexOfSelectedItem). If there’s no selected item, this method selects the
first item in the item list and sets the receiver’s title to match. This method is
useful in subclasses that directly select items in the item matrix or that override
setTitle: .

target

– (id)target

Returns the object to which the action will be sent when an item is selected
from the item list. The default value is nil , which causes the action message to
be sent up the responder chain. The target is actually sent the action by the
list’s NSMatrix . See also setTarget: , action .

NSPrinter 1-407

1

titleOfSelectedItem

– (NSString *)titleOfSelectedItem

Returns the title of the item last selected by the user, or the empty string if
there’s no such item. See also selectedItem .

NSPrinter

Class Description

An NSPrinter object describes a printer’s capabilities, such as whether the
printer can print in color and whether it provides a particular font. An
NSPrinter object represents either a particular make or type of printer, or an
actual printer available to the computer.

There are two ways to create an NSPrinter :

• To create an abstract object that provides information about a type of printer
rather than an object that represents an actual printer device, use the
printerWithType: class method, passing a printer type (an NSString) as
the argument. The printerTypes class method provides a list of the
printer types recognized by the computer. Printer types are described in files
written in PostScript Printer Description (PPD) format. The location of these
files is platform dependent.

• To create or find an NSPrinter that corresponds to an actual printer device,
use the printerWithName: class method, passing the name of a printer.
The way you find out what the available printer names are depends on the
platforms you are using.

Once you have an NSPrinter , there’s only one thing you can do with it:
Retrieve information regarding the type of printer or regarding the actual
printer the object represents. You can’t change the information in an
NSPrinter , nor can you use an NSPrinter to initiate or control a printing
job.

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrinter.h

1-408 OpenStep Programming Reference—September 1996

1

When you create an NSPrinter object, the object reads the file that
corresponds to the type of printer you specified and stores the data it finds
there in named tables. Printer types are described in files written in the
PostScript Printer Description (PPD) format. Any piece of information in the
PPD tables can be retrieved through the methods stringForKey:inTable:
and stringListForKey:inTable: , as explained later. Commonly needed
items, such as whether a printer uses color or what is the size of the page on
which it prints, are available through more direct methods (methods such as
isColor and pageSizeForPaper:).

Note – To understand what the NSPrinter tables contain, you need to be
acquainted with the PPD file format. This is described in PostScript Printer
Description File Format Specification, version 4.0, available from Adobe Systems
Incorporated. The rest of this class description assumes a familiarity with the
concepts and terminology presented in the Adobe manual. A brief summary of
the PPD format is given in the following section; PPD terms defined in the
Adobe manual are shown in italic.

PPD Format

A PPD file statement, or entry, associates a value with a main keyword:

*mainKeyword: value

The asterisk is literal; it indicates the beginning of a new entry.

For example:

*ModelName: "MMimeo Machine"
*3dDevice: False

A main keyword can be qualified by an option keyword:

*mainKeyword optionKeyword: value

For example:

*PaperDensity Letter: "0.1"
*PaperDensity Legal: "0.2"
*PaperDensity A4: "0.3"
*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no
option keyword yet give different values:

NSPrinter 1-409

1

*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow

Option keywords and values can sport translation strings. A translation string is
a textual description, appropriate for display in a user interface, of the option
or value. An option or value is separated from its translation string by a slash:

*Resolution 300dpi/300 dpi: " ... "
*InkName: ProcessBlack/Process Black

In the first example, the 300dpi option would be presented in a user interface
as “300 dpi.” The second example assigns the string “Process Black” as the
translation string for the ProcessBlack value.

NSPrinter treats entries that have an *OrderDependency or
*UIConstraint main keyword specially. Such entries take the following
forms (the bracketed elements are optional):

*OrderDependency: real section mainKeyword [optionKeyword]
*UIConstraint: mainKeyword1 [optionKeyword1]

mainKeyword2 [optionKeyword2]

There may be more than one UIConstraint entry with the same
mainKeyword1 or mainKeyword1 /optionKeyword1 value. Following are
some examples of *OrderDependency and *UIConstraint entries:

*OrderDependency: 10 AnySetup *Resolution
*UIConstraint: *Option3 None *PageSize Legal
*UIConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however,
it’s important to note their forms in order to understand how they’re
represented in the NSPrinter tables.

1-410 OpenStep Programming Reference—September 1996

1

NSPrinter Tables

NSPrinter defines five key-value tables to store PPD information. The tables
are identified by the names given below:

There are two principle methods for retrieving data from the NSPrinter
tables:

• stringForKey:inTable: returns the value for the first occurrence of a
given key in the given table.

• stringListForKey:inTable: returns an array of values, one for each
occurrence of the key.

For both methods, the first argument is an NSString that names a key. Which
part of a PPD file entry the key corresponds to depends on the table as
explained in the following sections. The second argument names the table that
you want to look in. The values that are returned by these methods, whether
singular or in an array, are always NSString s, even if the value wasn’t a
quoted string in the PPD file.

The NSPrinter tables store data as ASCII text; thus the two methods
described above are sufficient for retrieving any value from any table.
NSPrinter provides a number of other methods, such as
booleanForKey:inTable: and intForKey:inTable: , that retrieve single
values and coerce them, if possible, into particular data types. The coercion
doesn’t affect the data that’s stored in the table (it remains in ASCII format).

Table 1-17 NSPrinter Key-Value Tables

Table Name Contents

PPD General information about a printer type. This
table contains the values for all entries in a PPD
file except those with the *OrderDependency and
*UIConstraint main keywords. The values in this
table don’t include the translation strings.

PPDOptionTranslation Option keyword translation strings.

PPDArgumentTranslation Value translation strings.

PPDOrderDependency *OrderDependency values.

PPDUIConstraints *UIConstraint values.

NSPrinter 1-411

1

To check the integrity of a table, use the isKey:forTable: and
statusForTable: methods. The former returns a Boolean that indicates
whether the given key is valid for the given table; the latter returns an error
code that describes the general state of a table (in particular, whether it actually
exists).

Retrieving Values from the PPD Table

Keys for the PPD table are strings that name a main keyword or main
keyword/option keyword pairing (formatted as
“mainKeyword/optionKeyword”). In both cases, you exclude the main keyword
asterisk. The following example creates an NSPrinter and invokes
stringForKey:inTable: to retrieve the value for an un-optioned main
keyword:

/* Create an NSPrinter object for a printer type. */
NSPrinter *prType = [NSPrinter
 printerWithType:@"My_Mimeo_Machine"]

 NSString *sValue = [prType stringForKey:@"3dDevice"
inTable:@"PPD"];

/* sValue is "False". */

To retrieve the value for a main keyword/option keyword pair, pass the
keywords formatted as “mainKeyword/optionKeyword”:

NSString *sValue = [prType stringForKey:@"PaperDensity/A4"
 inTable:@"PPD"];
/* sValue is "0.3". */

stringForKey:inTable: can determine if a main keyword has options. If
you pass a main keyword (only) as the first argument to the method, and if
that keyword has options in the PPD file, the method returns the empty string.
If it doesn’t have options, it returns the value of the first occurrence of the main
keyword:

NSString *sValue = [prType stringForKey:@"PaperDensity"
inTable:@"PPD"];
/* sValue is empty string*/

NSString *sValue = [prType stringForKey:@"InkName" inTable:@"PPD"];
/* sValue is "ProcessBlack" */

To retrieve the values for all occurrences of an un-optioned main keyword, use
the stringListForKey:inTable: method:

1-412 OpenStep Programming Reference—September 1996

1

NSArray *sList = [prType stringListForKey:@"InkName"
inTable:@"PPD"];

/* [slist objectAtIndex:0] is "ProcessBlack",
 [slist objectAtIndex:1] is "CustomColor",
 [slist objectAtIndex:2] is "ProcessCyan", and so on. */

In addition, stringListForKey:inTable: can be used to retrieve all the
options for a main keyword given that the main keyword has options:

NSArray *sList = [prType stringListForKey:@"PaperDensity"
 inTable:@"PPD"];
/* [slist objectAtIndex:0] is "Letter",
 [slist objectAtIndex:1] is "Legal",
 [slist objectAtIndex:2] is "A4", and so on. */

Retrieving Values from the Option and Argument Translation
Tables

A key to a translation table is like that to the PPD table: It’s a main keyword or
main/option keyword pair (again excluding the asterisk). However, the values
that are returned from the translation tables are the translation strings for the
option or argument (value) portions of the PPD file entry. For example:

NSString *sValue = [prType stringForKey:@"Resolution/300dpi"
 inTable:@"PPDOptionTranslation"];
/* sValue is "300 dpi". */

NSArray *sList = [prType stringListForKey:@"InkName"
 inTable:@"PPDArgumentTranslation"];
/* [slist objectAtIndex:0] is "Process Black",
 [slist objectAtIndex:1] is "Custom Color",
 [slist objectAtIndex:2] is "Process Cyan", and so on. */

As with the PPD table, requesting an NSArray of NSString s for an un-
optioned main keyword returns the keyword’s options (if it has any).

Retrieving Values from the Order Dependency Table

As mentioned earlier, an order dependency entry takes this form:

*OrderDependency: real section mainKeyword [optionKeyword]

These entries are stored in the PPDOrderDependency table. To retrieve a
value from this table, always use stringListForKey:inTable: . The value
passed as the key is, again, a main keyword or main keyword/option keyword

NSPrinter 1-413

1

pair; however, these values correspond to the mainKeyword and
optionKeyword parts of an order dependency entry’s value. As with the
other tables, the main keyword’s asterisk is excluded. The method returns an
NSArray of two NSString s that correspond to the real and section values
for the entry. For example:

NSArray *sList = [prType stringListForKey:@"Resolution"
 inTable:@"PPDOrderDependency"]
/* [slist objectAtIndex:0] = "10",
 [slist objectAtIndex:1] = "AnySetup" */

Retrieving Values from the UIConstraints Table

Retrieving a value from the PPDUIConstraints table is similar to retrieving a
value from the PPDOrderDependency table: always use
stringListForKey:inTable: and the key corresponds to elements in the
entry’s value. Given the following form (as described earlier), the key
corresponds to mainKeyword1 /optionKeyword1 :

*UIConstraint: mainKeyword1 [optionKeyword1] mainKeyword2
[optionKeyword2]

The NSArray that’s returned by stringListForKey:inTable: contains the
mainKeyword2 and optionKeyword2 values (with the keywords stored as
separate elements in the NSArray) for every *UIConstraints entry that has
the given mainKeyword1 /optionKeyword1 value. For example:

NSArray *sList = [prType stringListForKey:@"Option3/None"
 inTable:@"PPDUIConstraints"]
/* [slist objectAtIndex:0] = "PageSize",
 [slist objectAtIndex:1] = "Legal",
 [slist objectAtIndex:2] = "PageRegion",
 [slist objectAtIndex:3] = "Legal" */

Note that the main keywords that are returned in the NSArray don’t have
asterisks. Also, the NSArray that’s returned always alternates main and option
keywords. If a particular main keyword doesn’t have an option associated with
it, the string for the option will be empty but the entry in the NSArray for the
option will exist.

1-414 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

printerNames

+ (NSArray *)printerNames

Returns the printer names (configured printers) that are available. See also
printerWithName: , printerTypes .

Activity Class Method

Finding an NSPrinter + printerWithName:
+ printerWithType:
+ printerNames
+ printerTypes

Printer attributes – host
– name
– note
– type

Retrieving specific information – acceptsBinary
– imageRectForPaper:
– pageSizeForPaper:
– isColor
– isFontAvailable:
– languageLevel
– isOutputStackInReverseOrder

Querying the NSPrinter tables – booleanForKey:inTable:
– deviceDescription
– floatForKey:inTable:
– intForKey:inTable:
– rectForKey:inTable:
– sizeForKey:inTable:
– stringForKey:inTable:
– stringListForKey:inTable:
– statusForTable:
– isKey:inTable:

NSPrinter 1-415

1

printerTypes

+ (NSArray *)printerTypes

Returns strings containing the names of the recognized printer types. A printer
type is represented by a PPD file (extension .ppd). This method searches for
normal PPD files directly, or in bundles, in the following directories:

/SunLibrary/PrinterTypes
~/Library/PrinterTypes
/HostLibrary/PrinterTypes
/LocalLibrary/PrinterTypes

Custom PPD files are searched for in the CustomPrinters subdirectory (or
bundles therein) in each of the above. See also printerWithType: ,
printerNames .

printerWithName:

+ (NSPrinter *)printerWithName:(NSString *)name

Returns the printer with the given name. See also printerNames ,
printerWithType: .

printerWithType:

+ (NSPrinter *)printerWithType:(NSString *)type

Returns an NSPrinter object for the given printer type ; the returned object
doesn’t correspond to an actual printer. The type argument should be an
element in the array returned by printerTypes: . See also
printerWithName: , printerTypes .

Instance Methods

acceptsBinary

– (BOOL)acceptsBinary

Returns YES if the printer accepts binary PostScript data, otherwise returns NO.

1-416 OpenStep Programming Reference—September 1996

1

booleanForKey:inTable:

– (BOOL)booleanForKey:(NSString *)key inTable:(NSString *)table

Returns a boolean value for the given key in the given table : YES is returned
if the value, which is stored as ASCII text, is “YES”, “TRUE”, or names a non-
negative integer. Otherwise, this method returns NO. key should be formed as
described in the NSPrinter class description, given previously. See also
stringForKey:inTable: .

deviceDescription

– (NSDictionary *)deviceDescription

Returns a dictionary of keys and values describing the device. See
NSGraphics.h for possible keys. See also NSDictionary .

floatForKey:inTable:

– (float)floatForKey:(NSString *)key inTable:(NSString *)table

Returns a floating-point value for the given key in the given table . Returns
0.0 if the value, which is stored as ASCII text, can’t be coerced to a float . key
should be formed as described in the NSPrinter Class Description, given
previously. See also sizeForKey:inTable: , floatForKey:inTable: .

host

– (NSString *)host

Returns the name of the printer’s host computer.

imageRectForPaper:

– (NSRect)imageRectForPaper:(NSString *)paperName

Returns the printing rectangle (the area of the page that’s available for
printing) for the named paper type. Possible values for paperName are
contained in the printer’s PPD file. Typical values are Letter and Legal.

NSPrinter 1-417

1

intForKey:inTable:

– (int)intForKey:(NSString *)key inTable:(NSString *)table

Returns an integer value for the given key in the given table . Returns 0 if the
value, which is stored as ASCII text, and can’t be coerced to an int . key
should be formed as described in the NSPrinter Class Description, above. See
also floatForKey:inTable: , stringForKey:inTable: .

isColor

– (BOOL)isColor

Returns YES if this NSPrinter can print in color. Otherwise returns NO.

isFontAvailable:

– (BOOL)isFontAvailable:(NSString *)fontName

Returns YES if the named font is available to the NSPrinter . Otherwise
returns NO. Font names are formed as in an invocation of NSFont ’s useFont:
method; examples include “Helvetica-Bold”, “Times-Roman”, and “Courier-
BoldOblique”.

isKey:inTable:

– (BOOL)isKey:(NSString *)key inTable:(NSString *)table

Returns YES if key is a key in table which must name one of the printer
tables listed in the NSPrinter “Class Description”.

isOutputStackInReverseOrder

– (BOOL)isOutputStackInReverseOrder

Returns YES if the printer prints pages in reverse page order, otherwise returns
NO. By being printed in reverse order, the pages in the resulting output stack
will be in the correct (first-to-last) order (assuming that the printer produces
pages face-up).

1-418 OpenStep Programming Reference—September 1996

1

languageLevel

– (int)languageLevel

Returns the PostScript language level (either 1 or 2) recognized by the printer.

name

– (NSString *)name

Returns the NSPrinter ’s name. If an actual printer isn’t represented, a pointer
to NULL is returned. See also printerWithName: .

note

– (NSString *)note

Returns the comment that’s associated with the NSPrinter . If the object
doesn’t represent an actual printer, this method returns a pointer to NULL.

pageSizeForPaper:

– (NSSize)pageSizeForPaper:(NSString *)paperName

Returns the size of the page for the named paper type. The selection of paper
type names depends on the NSPrinter ’s type; typical names include “Legal”,
“Letter”, “A4”, and “B5”. See also imageRectForPaper: .

rectForKey:inTable:

– (NSRect)rectForKey:(NSString *)key inTable:(NSString *)table

Returns an NSRect for the given key in the given table . The individual fields
are set to 0.0 if the value, which is stored as ASCII text, can’t be fit into an
NSRect structure. key should be formed as described in the NSPrinter
“Class Description”. See also stringForKey:inTable: ,
floatForKey:inTable: , intForKey:inTable: ,
booleanForKey:inTable: , sizeForKey:inTable: .

sizeForKey:inTable:

– (NSSize)sizeForKey:(NSString *)key inTable:(NSString *)table

NSPrinter 1-419

1

Returns an NSSize for the given key in the given table . The individual fields
are set to 0.0 if the value, which is stored as ASCII text, can’t be fit into an
NSSize structure. key should be formed as described in the NSPrinter
“Class Description”. See also stringForKey:inTable: ,
floatForKey:inTable: , intForKey:inTable: ,
booleanForKey:inTable: , rectForKey:inTable: .

stringForKey:inTable:

– (NSString *)stringForKey:(NSString *)key inTable:(NSString
*)table

Returns a string associated with key in table . If the table contains more than
one entry with this key , the value of the first entry is returned. A pointer to
NULL is returned if the table doesn’t contain a key that precisely matches key .
See the NSPrinter “Class Description” for more information on this method.
See also stringListForKey:inTable: , floatForKey:inTable: ,
intForKey:inTable: , booleanForKey:inTable: ,
rectForKey:inTable: , sizeForKey:inTable: .

stringListForKey:inTable:

– (NSArray *)stringListForKey:(NSString *)key inTable:(NSString
*)table

Returns an array of strings that contain the ASCII text that corresponds to an
entry that has the given key in the given table . If key names a main keyword
for which there are (in the table) option keywords, the returned array contains
the option keywords. See the NSPrinter Class Description, above, for more
information on this method. See also stringForKey:inTable: ,
floatForKey:inTable: , intForKey:inTable: ,
booleanForKey:inTable: , rectForKey:inTable: ,
sizeForKey:inTable: .

statusForTable:

– (NSPrinterTableStatus)statusForTable:(NSString *)table

Returns the status (NSPrinterTableOK , NSPrinterTableNotFound ,
NSPrinterTableError) of the given table.

1-420 OpenStep Programming Reference—September 1996

1

type

– (NSString *)type

Returns the string that names the printer’s type. See also printerWithType: .

NSPrintInfo

Class Description

An NSPrintInfo object stores information that’s used during printing. A
shared NSPrintInfo object is automatically created for an application and is
used by default for all printing jobs for that application. You can create any
number of additional NSPrintInfo objects; however, only one can be “active”
at a time, as set through the setSharedPrintInfo: class method. The shared
NSPrintInfo object is returned through the sharedPrintInfo class
method.

An NSPrintInfo object is used by the NSPrintOperation class to control
printing. If you create special instances of NSPrintInfo objects for a specific
printing task, you must ensure that either the application’s shared
NSPrintInfo object is current, or you must instantiate an
NSPrintOperation object using one of its methods that explicitly designate
an NSPrintInfo object.

Although you can set an NSPrintInfo ’s attributes through the methods it
provides, this is usually the task of other objects, notably NSPageLayout
objects. The NSView or NSWindow that’s being printed may also supercede
some NSPrintInfo settings. In particular, a NSView or NSWindow can supply
the range of pages in the document and can provide its own pagination
mechanism through the knowsPagesFirst:last: and rect:forPage:
methods (see the documentation of these methods in the NSView class for
details).

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrintInfo.h

NSPrintInfo 1-421

1

If the printed NSView or NSWindow doesn’t supply pagination, the
NSPrintInfo ’s vertical and horizontal pagination constants are used to
trigger built-in pagination mechanisms:

Vertical and horizontal pagination needn’t be the same. However, if either
dimension is scaled (NSFitPagination), the other dimension is scaled by the
same amount to avoid stretching the image. If both dimensions are scaled, the
scaling factor that produces the smallest image is used. Note that
NSPrintInfo ’s scaling factor is independent of the scaling that’s imposed by
pagination and is applied after the document has been paginated.

NSPrintInfo uses points as the unit of measurement for paper size and
margin width in the methods below. See the NSFont specification for a
discussion of points.

Table 1-18 Pagination Constants

Constant Meaning

NSAutoPagination Image is diced into equal-sized rectangles and placed in
one column of pages.

NSFitPagination Image is scaled to produce one column or one row of
pages.

NSClipPagination Image is clipped to produce one column or row of pages.

1-422 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Creating and initializing an
NSPrintInfo instance

– initWithDictionary:

Managing the shared NSPrintInfo
object

+ setSharedPrintInfo:
+ sharedPrintInfo

Managing the printing rectangle + sizeForPaperName:
– bottomMargin
– leftMargin
– orientation
– paperName
– paperSize
– rightMargin
– setBottomMargin:
– setLeftMargin:
– setOrientation:
– setPaperName:
– setPaperSize:
– setRightMargin:
– setTopMargin:
– topMargin

Pagination – horizontalPagination
– setHorizontalPagination:
– setVerticalPagination:
– verticalPagination

Positioning the image on the page – isHorizontallyCentered
– isVerticallyCentered
– setHorizontallyCentered:
– setVerticallyCentered:

Specifying the printer + defaultPrinter
+ setDefaultPrinter:
– printer
– setPrinter:

Controlling printing – jobDisposition
– setJobDisposition:
– setUpPrintOperationDefaultValues

Accessing the NSPrintInfo object’s
dictionary

– dictionary

NSPrintInfo 1-423

1

Class Methods

defaultPrinter

+ (NSPrinter *)defaultPrinter

Returns an NSPrinter object that corresponds to the user’s default printer, as
declared in the defaults database. If the printer can’t be found, nil is returned.
See also setDefaultPrinter: , printer , setPrinter: , NSUserDefaults
(Foundation Kit).

setDefaultPrinter:

+ (void)setDefaultPrinter:(NSPrinter *)printer

Sets the user’s default printer by writing the name and host of printer to the
defaults database. Unless a NSPrintInfo ’s printer is otherwise set (through
setPrinter:) the default printer is used for printing. See also
defaultPrinter , printer .

setSharedPrintInfo:

+ (void)setSharedPrintInfo:(NSPrintInfo *)printInfo

Sets the shared NSPrintInfo object to printInfo .

sharedPrintInfo

+ (NSPrintInfo *)sharedPrintInfo

Returns the shared NSPrintInfo object, creating it if necessary. See also
setSharedPrintInfo: .

sizeForPaperName:

+ (NSSize)sizeForPaperName:(NSString *)name

Returns the size for the specified type of paper. name identifies the type of
paper. Paper names are implementation specific. Default page names are
Letter, Tabloid, Ledger, Legal, Executive, A3, A4, A5, B4, B5.

1-424 OpenStep Programming Reference—September 1996

1

Instance Methods

bottomMargin

– (float)bottomMargin

Returns the height of the bottom margin. See also setBottomMargin: ,
leftMargin , rightMargin , topMargin .

dictionary

 (NSMutableDictionary *)dictionary

Returns the NSPrintInfo object’s dictionary. See the “Printing” section of the
Application Kit’s “Types and Constants” chapter for a list of printing
information dictionary keys. See also initWithDictionary: .

horizontalPagination

– (NSPrintingPaginationMode)horizontalPagination

Returns the horizontal pagination mode, which can be one of the following
values:

• NSAutoPagination
• NSFitPagination
• NSClipPagination

See the “Class Description” for more information on pagination modes. See
also setHorizontalPagination: , verticalPagination .

initWithDictionary:

– (id)initWithDictionary:(NSDictionary *)aDict

Initializes a newly allocated NSPrintInfo object by assigning it the
parameters specified in aDict . This is the designated initializer for the class.
See also dictionary .

isHorizontallyCentered

– (BOOL)isHorizontallyCentered

NSPrintInfo 1-425

1

Returns YES if the image is centered horizontally on a page; if this returns NO,
the image is flush against the left margin. If the image spills over more than
one page horizontally, the image is always set against the left margin. See also
setHorizontallyCentered: , isVerticallyCentered .

isVerticallyCentered

– (BOOL)isVerticallyCentered

Returns YES if the image is centered vertically on a page; if this returns NO, the
image is flush against the top margin. If the image spills over more than one
page vertically, the image is always set against the top margin. See also
setVerticallyCentered: , isHorizontallyCentered .

jobDisposition

– (NSString *)jobDisposition

Returns the action specified for the job: printing, faxing, previewing, and so on.
See also setJobDisposition: .

leftMargin

– (float)leftMargin

Returns the width of the left margin. See also setLeftMargin: ,
rightMargin .

orientation

– (NSPrintingOrientation)orientation

Returns the print job orientation, which can be one of the following values:

• NSPortraitOrientation
• NSLandscapeOrientation

See also setOrientation: .

paperName

– (NSString *)paperName

1-426 OpenStep Programming Reference—September 1996

1

Returns the paper type, such as “Letter” or “Legal”. Paper names are
implementation specific. See also setPaperName: , paperSize ,
sizeForPaperName: .

paperSize

– (NSSize)paperSize

Returns the size of the paper. See also setPaperSize: , paperName ,
sizeForPaperName: .

printer

– (NSPrinter *)printer

Returns the NSPrinter that’s used for printing. See also setPrinter: ,
defaultPrinter .

rightMargin

– (float)rightMargin

Returns the width of the right margin. See also setRightMargin: ,
leftMargin , bottomMargin , topMargin .

setBottomMargin:

– (void)setBottomMargin:(float)value

Sets the bottom margin to value . See also bottomMargin , setLeftMargin: ,
setTopMargin: .

setHorizontalPagination:

– (void)setHorizontalPagination:(NSPrintingPaginationMode)mode

Sets the horizontal pagination mode, which can be one of the following values:

• NSAutoPagination
• NSFitPagination
• NSClipPagination

NSPrintInfo 1-427

1

See the Class Description for more information on pagination modes. See also
horizontalPagination , setVerticalPagination: .

setHorizontallyCentered:

– (void)setHorizontallyCentered:(BOOL)flag

Sets whether the image is centered horizontally on a page; if flag is NO, the
image is flush against the left margin. If the image spills over more than one
page horizontally, then flag is ignored and the image is always against the left
margin. See also isHorizontallyCentered , setVerticallyCentered: .

setJobDisposition:

– (void)setJobDisposition:(NSString *)disposition

Sets the action specified for the job. disposition can be one of the following
values:

• NSPrintSpoolJob
• NSPrintFaxJob
• NSPrintPreviewJob
• NSPrintSaveJob
• NSPrintCancelJob

See also jobDisposition .

setLeftMargin:

– (void)setLeftMargin:(float)value

Sets the left margin to value . See also leftMargin , setRightMargin: ,
setBottomMargin: , setTopMargin: .

setOrientation:

– (void)setOrientation:(NSPrintingOrientation)mode

Sets the orientation as Portrait or Landscape. mode can be one of the following
values:

• NSPortraitOrientation
• NSLandscapeOrientation

1-428 OpenStep Programming Reference—September 1996

1

See also orientation .

setPaperName:

– (void)setPaperName:(NSString *)name

Sets the paper type. name identifies the type of paper, such as “Letter” or
“Legal”. Paper names are implementation specific. See also paperName ,
paperSize , sizeForPaperName: .

setPaperSize:

– (void)setPaperSize:(NSSize)size

Sets the width and height of the paper. See also paperSize , setPaperName: ,
sizeForPaperName: .

setPrinter:

– (void)setPrinter:(NSPrinter *)aPrinter

Sets the printer that’s used in subsequent printing jobs. See also printer ,
defaultPrinter .

setRightMargin:

– (void)setRightMargin:(float)value

Sets the right margin to value . See also rightMargin , setLeftMargin: ,
setTopMargin: , setBottomMargin: .

setTopMargin:

– (void)setTopMargin:(float)value

Sets the top margin to value . See also topMargin , setBottomMargin: ,
setLeftMargin: .

setUpPrintOperationDefaultValues

– (void)setUpPrintOperationDefaultValues

NSPrintInfo 1-429

1

Sets any likely to change attributes to default values before a print job. All
information that’s likely to change between operations is set to a default value
in the NSPrintInfo before the operation begins. In this way, even though an
NSPrintOperation updates the NSPrintInfo with information from the
Print panel for print jobs, that information is reset back to the default values
for each print job. The default values set are as follows:

setVerticalPagination:

– (void)setVerticalPagination:(NSPrintingPaginationMode)mode

Sets the vertical pagination mode, which can be one of the following values:

• NSAutoPagination
• NSFitPagination
• NSClipPagination

See the “Class Description” for more information on pagination modes. See
also verticalPagination , setHorizontalPagination: .

setVerticallyCentered:

– (void)setVerticallyCentered:(BOOL)flag

Sets whether the image is centered vertically on a page; if flag is NO, the
image is flush against the top margin. If the image spills over more than one
page vertically, then flag is ignored and the image is always against the top
margin. See also isVerticallyCentered , setHorizontallyCentered: .

Attribute Value

First page INT_MIN

Last page INT_MAX

Copies 1

Page order First-to-last

Printer The user’s default printer

Paper feed The default paper feed slot

1-430 OpenStep Programming Reference—September 1996

1

topMargin

– (float)topMargin

Returns the height of the top margin. See also setTopMargin: ,
bottomMargin , leftMargin , rightMargin .

verticalPagination

– (NSPrintingPaginationMode)verticalPagination

Returns the vertical pagination mode, which can be one of the following
values:

• NSAutoPagination
• NSFitPagination
• NSClipPagination

See the Class Description for more information on pagination modes. See also
setVerticalPagination: , horizontalPagination .

NSPrintOperation

Class Description

NSPrintOperation controls operations that generate Encapsulated PostScript
(EPS) code or PostScript print jobs. Generally, EPS code is used to transfer
images between applications, which happens when the user copies and pastes
graphics, uses a Service, or uses ObjectLinks. PostScript print jobs are
generated when the user prints and faxes documents. An NSPrintOperation
does not generate PostScript code itself; it just controls the overall process,
relying on an NSView object to generate the actual code.

NSPrintOperation relies mainly on two other objects: an NSPrintInfo
object, which specifies how the code should be generated, and an NSView
object, which performs the actual code generation. You specify these two
objects in the method you use to create the NSPrintOperation . If no

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPrintOperation.h

NSPrintOperation 1-431

1

NSPrintInfo is specified, NSPrintOperation uses the shared
NSPrintInfo , which contains default values. The shared NSPrintInfo
works well for applications that are not document-based. Document-based
applications should create an NSPrintInfo for each document that might be
printed or copied and use that object instead.

You should create an NSPrintOperation in any method that is invoked
when a user executes a Print command or a Copy command. That method
also must send NSPrintOperation a runOperation message to start the
operation. A print: method for a document-based application might look like
this:

- (void)print:sender {
[[NSPrintOperation printOperationWithView:[self myView]

printInfo:[document docPrintInfo]] runOperation];
}

This method creates an NSPrintOperation for a print job that uses the
document’s NSPrintInfo . Because this is a print job, a Print panel is
displayed to allow the user to select printing options. The NSPrintOperation
copies the NSPrintInfo , updates this copy with information from the Print
panel, and uses the specified NSView to perform the operation.

The information stored in an NSPrintInfo that’s retained between operations
is information that’s likely to remain constant for a document, such as its page
size. All information that’s likely to change between operations is set to a
default value in the NSPrintInfo before the operation begins. In this way,
even though NSPrintOperation updates the NSPrintInfo with information
from the Print panel for print jobs, that information is reset back to the default
values for each print job. Because NSPrintOperation keeps a copy of the
NSPrintInfo it uses, you could duplicate a specific print job by storing that
copy and reusing it.

You can augment a Print panel display by adding a custom NSView through
the setAccessoryView: method. The panel is automatically resized to
accommodate the NSView that you add. Note, however, that you don’t have to
create controls for special printer features. If a printer includes features in the
“OpenUI” field of its PostScript Printer Description (PPD) table, these features
will be displayed in a separate panel that’s brought up when the user clicks the
Print panel’s Options button. For more information on a printer’s PPD table,
see the NSPrinter “Class Description”.

1-432 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

currentOperation

+ (NSPrintOperation *)currentOperation

Activity Class Method

Creating and
initializing an
NSPrintOperation
object

+ EPSOperationWithView:insideRect:toData:
+ EPSOperationWithView:insideRect:toData: printInfo:
+ EPSOperationWithView:insideRect:toPath: printInfo:
+ printOperationWithView:
+ printOperationWithView:printInfo:
– initEPSOperationWithView:insideRect:toData: printInfo:

Setting the print
operation

+ currentOperation
+ setCurrentOperation:

Determining the
type of operation

– isEPSOperation

Controlling the
user interface

– showPanels
– setAccessoryView:
– setShowPanels:

Managing the DPS
context

– createContext
– context
– destroyContext

Page information – currentPage
– pageOrder
– setPageOrder:

Running a print
operation

– cleanUpOperation
– deliverResult
– runOperation

Getting the
NSPrintInfo object

– printInfo
– setPrintInfo:

Getting the
NSView object

– view

Methods
Implemented by
the Delegate

– finalWritePrintInfo
– updateFromPrintInfo

NSPrintOperation 1-433

1

Returns the NSPrintOperation that represents the current operation or nil
if there is no such operation. See also setCurrentOperation: .

EPSOperationWithView:insideRect:toData:

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect toData:(NSMutableData *)data

Returns a new NSPrintOperation that controls the copying of EPS graphics
from the area specified by rect in aView , using the parameters in the default
NSPrintInfo . The code is written to data . This method raises
NSPrintOperationExistsException if there is already a print operation in
progress. See also EPSOperationWithView:insideRect:toData:
printInfo: , EPSOperationWithView:insideRect:toPath:
printInfo: , printOperationWithView: .

EPSOperationWithView:insideRect:toData:
printInfo:

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect toData:(NSMutableData *)data
printInfo:(NSPrintInfo *)aPrintInfo

Returns a new NSPrintOperation that controls the copying of EPS graphics
from the area specified by rect in aView , using the parameters in
aPrintInfo . The code is written to data . Raises
NSPrintOperationExistsException if there is already a print operation in
progress. See also EPSOperationWithView:insideRect:toData: .

EPSOperationWithView:insideRect:toPath:
printInfo:

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect toPath:(NSString *)path
printInfo:(NSPrintInfo *)aPrintInfo

Returns a new NSPrintOperation that controls the copying of EPS graphics
from the area specified by rect in aView , using the parameters in
aPrintInfo . The code is written to path . Raises
NSPrintOperationExistsException if there is already a print operation in
progress. See also EPSOperationWithView:insideRect:toData: .

1-434 OpenStep Programming Reference—September 1996

1

printOperationWithView:

+ (NSPrintOperation *)printOperationWithView:(NSView *)aView

Returns a new NSPrintOperation that controls the printing of aView , using
the parameters in the shared NSPrintInfo object. Raises
NSPrintOperationExistsException if there is already a print operation in
progress. See also printOperationWithView:printInfo: .

printOperationWithView:printInfo:

+ (NSPrintOperation *)printOperationWithView:(NSView *)aView
printInfo:(NSPrintInfo *)aPrintInfo

Returns a new NSPrintOperation that controls the printing of aView , using
the parameters in aPrintInfo . Raises
NSPrintOperationExistsException if there is already a print operation in
progress. See also printOperationWithView: .

setCurrentOperation:

+ (void)setCurrentOperation:(NSPrintOperation *)operation

Sets the NSPrintOperation that represents the current operation. See also
currentOperation .

Instance Methods

cleanUpOperation

– (void)cleanUpOperation

Invoked at the end of an operation’s run to set the current operation to nil .
See also runOperation .

context

– (NSDPSContext *)context

Returns the DPS context used for the receiver’s operation. See also
createContext , destroyContext .

NSPrintOperation 1-435

1

createContext

– (NSDPSContext *)createContext

Used by the NSPrintOperation object to create the DPS context for output
generation, using the current NSPrintInfo settings.

currentPage

– (int)currentPage

Returns the page number of the page being printed. See also pageOrder ,
setPageOrder: .

deliverResult

– (BOOL)deliverResult

Delivers the results generated by runOperation to the intended destination:
the print spooler, preview application, and so on. Returns YES upon successful
delivery and NO otherwise.

destroyContext

– (void)destroyContext

Used by the NSPrintOperation object to destroy the DPS context at the end
of the operation. See also createContext , context .

initEPSOperationWithView:insideRect:toData:
printInfo:

– (id)initEPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect
toData:(NSMutableData *)data
printInfo:(NSPrintInfo *)aPrintInfo

 Initializes a newly allocated NSPrintOperation to control the copying of
EPS graphics from the area specified by rect in aView , using the parameters
in aPrintInfo . The code is written to data . See also
initWithView:printInfo: .

1-436 OpenStep Programming Reference—September 1996

1

initWithView:printInfo:

– (id)initWithView:(NSView *)aView
printInfo:(NSPrintInfo *)aPrintInfo

Initializes a newly allocated NSPrintOperation to control the printing of
aView , using the parameters in aPrintInfo . See also
initEPSOperationWithView:insideRect:toData: printInfo: .

isEPSOperation

– (BOOL)isEPSOperation

Returns YES if the receiver controls an EPS operation and NO if the receiver
controls a printing operation.

pageOrder

– (NSPrintingPageOrder)pageOrder

Returns the order in which pages will be printed, represented by one of the
following values:

• NSDescendingPageOrder
• NSSpecialPageOrder
• NSAscendingPageOrder
• NSUnknownPageOrder

See the Printing section of the Application Kit’s Types and Constants chapter
for more information. See also setPageOrder: .

printInfo

– (NSPrintInfo *)printInfo

Returns the receiver’s NSPrintInfo object. See also setPrintInfo: .

runOperation

– (BOOL)runOperation

NSPrintOperation 1-437

1

Causes the operation (copying EPS graphics or printing) to take place. Returns
YES upon successful completion and NO otherwise. See also
cleanUpOperation , deliverResult .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Adds aView to the printing panel’s view hierarchy. Applications can invoke
this method to add an NSView that contains its own controls. The panel is
automatically resized to accommodate aView . This method can be invoked
repeatedly to change the accessory view depending on the situation. If aView
is nil, then the panel’s current accessory view, if any, is removed.

setPageOrder:

– (void)setPageOrder:(NSPrintingPageOrder)order

Sets the order in which pages will be printed. See also pageOrder ,
currentPage .

setPrintInfo:

– (void)setPrintInfo:(NSPrintInfo *)aPrintInfo

Sets the receiver’s NSPrintInfo object to aPrintInfo . See also printInfo .

setShowPanels:

– (void)setShowPanels:(BOOL)flag

Sets whether the Print panel appears when the operation is run. See also
showPanels .

showPanels

– (BOOL)showPanels

Returns whether the Print panel will appear when the operation is run. See
also setShowPanels: .

1-438 OpenStep Programming Reference—September 1996

1

view

– (NSView *)view

Returns the NSView object that performs the operation controlled by the
receiving object.

Methods Implemented by the Delegate

finalWritePrintInfo

– (void)finalWritePrintInfo

Writes NSPrintOperation ’s values to the application’s NSPrintInfo object
if the user changes information on the Print panel. See also
updateFromPrintInfo .

updateFromPrintInfo

– (void)updateFromPrintInfo

Reads the application’s NSPrintInfo object, setting the initial values of the
Print panel. This method is invoked automatically.

NSResponder

Class Description

NSResponder is an abstract class that forms the basis of command and event
processing in the Application Kit. Most Application Kit classes inherit from
NSResponder . When an NSResponder receives an event or action message
that it can’t respond to—that it doesn’t have a method for—the message is sent
to its next responder. For an NSView, the next responder is usually its

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSResponder.h

NSResponder 1-439

1

superview; the content view’s next responder is the NSWindow. Each
NSWindow, therefore, has its own responder chain. Messages are passed up the
chain until they reach an object that can respond.

Action messages and keyboard event messages are sent first to the first
responder, the object that displays the current selection and is expected to
handle most user actions within a window. Each NSWindow has its own first
responder. Messages the first responder can’t handle work their way up the
responder chain. This class defines the methods that pass event and action
messages along the responder chain.

1-440 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

acceptsFirstResponder

– (BOOL)acceptsFirstResponder

Subclasses override to accept or reject first responder status. NSResponder ’s
implementation simply returns NO. Before making any object the first
responder, the Application Kit gives it an opportunity to refuse by sending it
an acceptsFirstResponder message. Objects that can display a selection
should override this default to return YES. Objects that respond with this
default version of the method will receive mouse event messages, but no
others. See also becomeFirstResponder , resignFirstResponder ,
nextResponder , setNextResponder: .

Activity Class Method

Managing the next responder – nextResponder
– setNextResponder:

Determining the first responder – acceptsFirstResponder
– becomeFirstResponder
– resignFirstResponder

Aiding event processing – performKeyEquivalent:
– tryToPerform:with:

Forwarding event messages – flagsChanged:
– helpRequested:
– keyDown:
– keyUp:
– mouseDown:
– mouseDragged:
– mouseEntered:
– mouseExited:
– mouseMoved:
– mouseUp:
– noResponderFor:
– rightMouseDown:
– rightMouseDragged:
– rightMouseUp:

Services menu support – validRequestorForSendType:returnType:

NSResponder 1-441

1

becomeFirstResponder

– (BOOL)becomeFirstResponder

Notifies the receiver that it has become the first responder for its NSWindow.
This default version of the method simply returns YES. NSResponder
subclasses can implement their own versions to take whatever action may be
necessary, such as highlighting the selection.

By returning YES, the receiver accepts being made the first responder. A
NSResponder can refuse to become the first responder by returning NO.
becomeFirstResponder messages are initiated by the NSWindow object
through NSWindow’s makeFirstResponder: method in response to mouse-
down events. See also becomeFirstResponder , acceptsFirstResponder .

flagsChanged:

– (void)flagsChanged:(NSEvent *)theEvent

Subclasses override this method to handle flags-changed events.
NSResponder ’s implementation passes the message to the receiver’s next
responder, or sounds a beep via noReponderFor: if there is no next
responder.

helpRequested:

– (void)helpRequested:(NSEvent *)theEvent

Causes the Help panel to display the help attached to the receiver. If there’s no
attached help, passes the message to the receiver’s next responder. This
method is invoked by an NSWindow instance when the user has clicked for
help. Your application should never invoke this method directly. The
NSWindow instance sends this message to the first responder. The receiver
shows its Help panel if it has one, or sounds a beep (via noReponderFor:) if
there is no next responder.

keyDown:

– (void)keyDown:(NSEvent *)theEvent

1-442 OpenStep Programming Reference—September 1996

1

Subclasses override this method to handle key-down events. NSResponder ’s
implementation passes the message to the receiver’s next responder. If the first
responder changes, this method posts the notification
NSTextDidEndEditingNotification with the current object and, in the
notification’s dictionary, and the key NSTextMovement to the default
notification center.

keyUp:

– (void)keyUp:(NSEvent *)theEvent

Subclasses override to handle key-up events. NSResponder ’s implementation
passes the message to the receiver’s next responder. See also mouseDown: .

mouseDown:

– (void)mouseDown:(NSEvent *)theEvent

Subclasses override to handle mouse-down events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDragged: , mouseEntered: , mouseExited: , mouseMoved: ,
mouseUp: , noResponderFor: , rightMouseDown: , rightMouseUp: .

mouseDragged:

– (void)mouseDragged:(NSEvent *)theEvent

Subclasses override to handle mouse-dragged events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

mouseEntered:

– (void)mouseEntered:(NSEvent *)theEvent

Subclasses override to handle mouse-entered events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

mouseExited:

– (void)mouseExited:(NSEvent *)theEvent

NSResponder 1-443

1

Subclasses override to handle mouse-exited events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

mouseMoved:

– (void)mouseMoved:(NSEvent *)theEvent

Subclasses override to handle mouse-moved events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

mouseUp:

– (void)mouseUp:(NSEvent *)theEvent

Subclasses override to handle mouse-up events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

nextResponder

– (NSResponder *)nextResponder

Returns the receiver’s next responder. See also mouseDown: .

noResponderFor:

– (void)noResponderFor:(SEL)eventSelector

Responds to an event message that has reached the end of the responder chain
without finding an object that can respond. When the event is a key down, this
default method generates a beep. See also mouseDown: .

performKeyEquivalent:

– (BOOL)performKeyEquivalent:(NSEvent *)theEvent

1-444 OpenStep Programming Reference—September 1996

1

Subclasses override this method to respond to keyboard input passed as
theEvent . NSResponder ’s implementation returns NO to indicate that, by
default, the NSResponder -based object doesn’t have a key equivalent, and
can’t respond to key-down events as keyboard alternatives. See also
mouseDown: .

resignFirstResponder

– (BOOL)resignFirstResponder

Notifies the receiver that it’s not the first responder. See also mouseDown: .

rightMouseDown:

– (void)rightMouseDown:(NSEvent *)theEvent

Subclasses override to handle right mouse-down events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

rightMouseDragged:

– (void)rightMouseDragged:(NSEvent *)theEvent

Subclasses override to handle right mouse-dragged events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

rightMouseUp:

– (void)rightMouseUp:(NSEvent *)theEvent

Subclasses override to handle right mouse-up events. NSResponder ’s
implementation passes the message to the receiver’s next responder. See also
mouseDown: .

setNextResponder:

– (void)setNextResponder:(NSResponder *)aResponder

Makes aResponder the receiver’s next responder. See also mouseDown: .

NSSavePanel 1-445

1

tryToPerform:with:

– (BOOL)tryToPerform:(SEL)anAction with:(id)anObject

Aids in dispatching action messages. Returns YES if a responder in the
responder chain can perform the anAction method, which takes the single
argument anObject . See also performKeyEquivalent: .

validRequestorForSendType:returnType:

– (id)validRequestorForSendType:(NSString *)typeSent
returnType:(NSString *)typeReturned

Subclasses override to determine which Services menu items are enabled at a
given time. Returning self enables services that can receive typeSent
pasteboard types and can return typeReturned pasteboard types. Returning
nil disables them. NSResponder ’s implementation passes the message to the
receiver’s next responder.

NSSavePanel

Class Description

NSSavePanel creates a Save panel. The Save panel provides a simple way for
a user to specify a file to use when saving a document or other data. It can
restrict the user to files of a certain type, as specified by a file name extension.

When the user decides on a file name, the message
panel:isValidFilename: is sent to the NSSavePanel ’s delegate (if it
responds to that message). The delegate can then determine whether that file
name can be used; it returns YES if the file name is valid, or NO if the Save
panel should stay up and wait for the user to type in a different file name.

Typically, you access an NSSavePanel by invoking the savePanel method.
When the class receives a savePanel message, it tries to reuse an existing
panel rather than create a new one. When a panel is reused, its attributes are

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSavePanel.h

1-446 OpenStep Programming Reference—September 1996

1

reset to the default values so that the effect is the same as receiving a new
panel. Because a Save panel may be reused, you shouldn't modify the instance
returned by savePanel , except through the methods listed in the following.
For example, you can set the panel’s title and required file type, but not the
arrangement of the buttons within the panel. If you must modify the Save
panel substantially, create and manage your own instance using the alloc...
and init... methods rather than the savePanel method.

Note that Save and Open panels remember the last directory to which the user
traversed. That is, anytime a Save or Open panel is shown to the user, the
default directory it displays is the directory the user was at the last time they
clicked "ok", or double-clicked a file. If no such previous directory exists, the
panels will go to the user's home directory. Because of this default behavior, it
is not necessary to send the setDirectory: method unless behavior different
from this is desired.

See also NSOpenPanel .

NSSavePanel 1-447

1

Method Types

Class Methods

savePanel

+(NSSavePanel *)savePanel

Returns an NSSavePanel object, creating it if necessary. Each application
shares just one instance of NSSavePanel ; this method returns the shared
instance if it exists.

Activity Class Method

Creating an NSSavePanel + savePanel

Customizing the NSSavePanel – accessoryView
– prompt
– title
– setAccessoryView:
– setPrompt:
– setTitle:

Setting directory and file type – requiredFileType
– setDirectory:
– setRequiredFileType:
– setTreatsFilePackagesAsDirectories:
– treatsFilePackagesAsDirectories

Running the NSSavePanel – runModalForDirectory:file:
– runModal

Reading save information – directory
– filename

Target and action methods – ok:
– cancel:

Responding to user input – selectText:

Manipulating columns – validateVisibleColumns

Setting the delegate – setDelegate:

Methods Implemented by
theDelegate

– panel:compareFilename:with:caseSensitive:
– panel:isValidFilename:
– panel:shouldShowFilename:

1-448 OpenStep Programming Reference—September 1996

1

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the application-customized view object. See also
setAccessoryView: .

cancel:

– (void)cancel:(id)sender

This is the method invoked by the Cancel button. See also ok: .

directory

– (NSString *)directory

Returns the path of the directory that the Save panel is currently showing. See
also filename , setDirectory: .

filename

– (NSString *)filename

Returns the absolute path name of the file to be saved. See also directory .

ok:

– (void)ok:(id)sender

Method invoked by the OK button. See also cancel: .

prompt

– (NSString *)prompt

Returns the title of the form field for the path. See also setPrompt: .

NSSavePanel 1-449

1

requiredFileType

– (NSString *)requiredFileType

Gets the required file type (if any). See also setRequiredFileType: .

runModal

– (int)runModal

Displays the save panel and begins its event loop. Invokes NSApplication ’s
runModalFor: method with self as the argument. Returns NSOKButton if
the user clicks the OK button, or NSCancelButton if the user clicks the Cancel
button. See also runModalForDirectory:file: .

runModalForDirectory:file:

– (int)runModalForDirectory:(NSString *)path
file:(NSString *)filename

Displays the save panel and begins its event loop, showing path in the
browser and selecting filename . See also runModal .

selectText:

– (void)selectText:(id)sender

Invoked when users press Tab, Shift-Tab, or an arrow key.

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Adds an application-customized view to the save panel. aView should be the
top view in a view hierarchy, and will be added just above the OK and Cancel
buttons at the bottom of the panel. The panel is automatically resized to
accommodate aView . This method can be called repeatedly to change the
accessory view depending on the situation. If aView is nil , any accessory
view in the panel will be removed.

1-450 OpenStep Programming Reference—September 1996

1

setDelegate:

– (void)setDelegate:(id)anObject

Makes anObject the save panel’s delegate.

setDirectory:

– (void)setDirectory:(NSString *)path

Sets the current path in the Save panel browser. Since the Save and Open
panels remember the last directory the user traversed to, provided that the
user doesn’t press the Cancel button, it is only necessary to send this method if
you want to change this behavior. See also directory .

setPrompt:

– (void)setPrompt:(NSString *)prompt

Sets the title for the form field in which users type their entries into the panel.
This title will appear on all NSSavePanel s (or all NSOpenPanel s if the
receiver of this message is an NSOpenPanel) in your application. “File:” is the
default prompt string. See also prompt .

setRequiredFileType:

– (void)setRequiredFileType:(NSString *)type

Specifies the required file type , a file name extension to be appended to any
selected files that don’t already have that extension; for example, “nib”. type
should not include the period that begins the extension. Be careful to invoke
this method each time the save panel is used for another file type within the
application. See also requiredFileType .

setTitle:

– (void)setTitle:(NSString *)title

Sets the title of the save panel to title . By default, “Save” is the title string. If
a save panel is adapted to other uses, its title should reflect the user action that
brings it to the screen. See also title .

NSSavePanel 1-451

1

setTreatsFilePackagesAsDirectories:

– (void)setTreatsFilePackagesAsDirectories:(BOOL)flag

Sets whether the NSSavePanel object treats file packages as directories by
showing their contents in the browser.

title

– (NSString *)title

Returns the save panel title. See also setTitle: .

treatsFilePackagesAsDirectories

– (BOOL)treatsFilePackagesAsDirectories

Returns YES if the save panel treats file packages as directories, thereby
allowing users to browse the contents of file packages. See also
setTreatsFilePackagesAsDirectories: .

validateVisibleColumns

- (void)validateVisibleColumns

Validates the columns visible in the Save panel. Use this method to confirm that
the entries displayed in each visible column are valid before redrawing. See also
validateVisibleColumns (NSBrowser).

Methods Implemented by the Delegate

panel:compareFilename:with:caseSensitive:

– (NSComparisonResult)panel:(id)sender
compareFilename:(NSString *)filename1
with:(NSString *)filename2
caseSensitive:(BOOL)caseSensitive

Returns NSOrderedDescending if filename1 precedes filename2 ,
NSOrderedAscending in the opposite case, NSOrderedSame if the two are
equivalent. Use caution when reordering save panel file names, since it may
confuse the user to have files in one Save panel or Open panel ordered

1-452 OpenStep Programming Reference—September 1996

1

differently than those in other such panels or in the Workspace Manager.
NSSavePanel and NSOpenPanel ’s default behavior is to order files as they
are in the Workspace Manager file viewer. Note also that implementing this
method will reduce the operating performance of the panel.

panel:isValidFilename:

– (BOOL)panel:(id)sender isValidFilename:(NSString*)filename

Returns YES if filename is acceptable to the delegate.

panel:shouldShowFilename:

– (BOOL)panel:(id)sender shouldShowFilename:(NSString *)filename

Returns YES if filename should be displayed in the browser. A Save panel
sends this message to the panel’s delegate for each file or directory it is about
to display in the browser. The delegate can then determine whether the
filename should be displayed in the panel, giving it the ability to filter out
items that it doesn’t want the user to see or choose.

NSScreen

Class Description

An NSScreen object describes the attributes of a computer’s monitor, or
screen. An application may use an NSScreen object to retrieve information
about a screen and use this information to decide what to display upon that
screen. For example, an application may use the deepestScreen method to
find out which of the available screens can best represent color and then may
choose to display all of its windows on that screen.

The two main attributes of a screen are its depth and its dimensions. The
depth method describes the screen depth (such as two-bit, eight-bit, or twelve-
bit) and tells you if the screen can display color. The frame method gives the
screen’s dimensions and location as an NSRect .

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSScreen.h

NSScreen 1-453

1

The device description dictionary contains more complete information about
the screen. Use NSScreen ’s deviceDescription method to access the
dictionary, and use these keys to retrieve information about a screen:

The device description dictionary contains information about not only screens,
but all other system devices such as printers and windows. There are other
keys into the dictionary that you would use to obtain information about these
other devices. For a complete list of device dictionary keys, see
NSGraphics.h .

Method Types

Class Methods

deepestScreen

+ (NSScreen *)deepestScreen

Table 1-19 Device-Description Dictionary Keys

Dictionary Key Returns

NSDeviceResolution NSValue describing the screen’s resolution in dots
per inch (dpi).

NSDeviceColorSpaceName Screen’s color space name. See NSGraphics.h for a
list of possible values.

NSDeviceBitsPerSample Bit depth of screen images (2-bit, 8-bit, and so on).

NSDeviceIsScreen YES, indicating the device is a screen.

NSDeviceSize NSValue describing the screen’s size in points.

Activity Class Method

Creating NSScreen instances + deepestScreen
+ mainScreen
+ screens

Reading screen information – depth
– deviceDescription
– frame
– supportedWindowDepths

1-454 OpenStep Programming Reference—September 1996

1

Returns an NSscreen object representing the screen that can best represent
color. This method always returns an object, even if there is only one screen
and it is not a color screen.

mainScreen

+ (NSScreen *)mainScreen

Returns an NSScreen object representing the main screen. The main screen is
the screen with the key window.

screens

+ (NSArray *)screens

Returns an array of NSScreen objects representing all of the screens available
on the system. Raises NSWindowServerCommunicationException if the
screen’s information can’t be obtained from the window system.

Instance Methods

depth

– (NSWindowDepth)depth

Returns the screen’s depth, including whether the screen can display color.

deviceDescription

– (NSDictionary *)deviceDescription

Returns the device dictionary as described in the class description, above.

frame

– (NSRect)frame

Returns the dimensions and location of the screen in an NSRect .

NSScroller 1-455

1

supportedWindowDepths

– (const NSWindowDepth *const)supportedWindowDepths

Returns a 0-terminated list of supported window depths.

NSScroller

Class Description

The NSScroller class defines a control that’s used by an NSScrollView
object to position a document that’s too large to be displayed in its entirety
within an NSView. An NSScroller is typically represented on the screen by a
bar, a knob, and two scroll buttons, although it may contain only some of
these. The knob indicates both the position within the document and the
amount displayed relative to the size of the document. The bar is the
rectangular region that the knob slides within. The scroll buttons allow the
user to scroll in small increments by clicking, or in large increments by
Alternate-clicking. In discussions of the NSScroller class, a small increment
is referred to as a “line increment” (even if the NSScroller is oriented
horizontally), and a large increment is referred to as a “page increment,”
although a page increment actually advances the document by one windowful.
When you create an NSScroller , you can specify either a vertical or a
horizontal orientation.

As an NSControl , an NSScroller handles mouse events and sends action
messages to its target (usually its parent NSScrollView) to implement user-
controlled scrolling. The NSScroller must also respond to messages from an
NSScrollView to represent changes in document positioning.

NSScroller is a public class primarily for programmers who decide not to
use an NSScrollView but want to present a consistent user interface. Its use is
not encouraged except in cases where the porting of an existing application is
made more straightforward. In these situations, you initialize a newly created
NSScroller by calling initWithFrame: . Then, you use setTarget:

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScroller.h

1-456 OpenStep Programming Reference—September 1996

1

(NSControl) to set the object that will receive messages from the
NSScroller , and you use setAction: (NSControl) to specify the message
that will be sent to the target by the NSScroller . When your target receives a
message from the NSScroller , it will probably need to query the
NSScroller using the hitPart and floatValue (NSControl) methods to
determine what action to take.

The NSScroller class has several constants referring to the parts of an
NSScroller . A scroll button with an up arrow (or left arrow, if the
NSScroller is oriented horizontally) is known as a “decrement line” button if
it receives a normal click, and as a “decrement page” button if it receives an
Alternate-click. Similarly, a scroll button with a down or right arrow functions
as both an “increment line” button and an “increment page” button. See the
hitPart method for a list of NSScroller part values.

An NSScroller can be made too small for all its parts to be displayed. See the
usableParts method for information on when parts are no longer usable due
to size constraints.

NSScroller 1-457

1

Method Types

Class Methods

scrollerWidth

+ (float)scrollerWidth

Returns the width of the scroller, a constant value. See also arrowsPosition ,
checkSpaceForParts , rectForPart: , setArrowsPosition: ,
usableParts .

Instance Methods

arrowsPosition

– (NSScrollArrowPosition)arrowsPosition

Activity Class Method

Laying out the NSScroller + scrollerWidth
– arrowsPosition
– checkSpaceForParts
– rectForPart:
– setArrowsPosition:
– usableParts

Setting the NSScroller’s values – knobProportion
– setFloatValue:knobProportion:

Displaying – drawArrow:highlight:
– drawKnob
– drawParts
– highlight:

Handling events – hitPart
– testPart:
– trackKnob:
– trackScrollButtons:

1-458 OpenStep Programming Reference—September 1996

1

Returns the scroll arrows position within the NSScroller . The following
constants are used to set the position of the scroll-arrow buttons within the
scroller:

See also setArrowsPosition: , drawArrow:highlight: .

checkSpaceForParts

– (void)checkSpaceForParts

Checks for room for knob and scroll buttons, based on the NSScroller size.
This method is used by other NSScroller methods. You should not invoke it
yourself. See also usableParts .

drawArrow:highlight:

– (void)drawArrow:(NSScrollerArrow)whichButton highlight:(BOOL)flag

Draws highlighted and unhighlighted arrows. The following constants are
used as values for the first argument to indicate which scroll button is to be
drawn:

Table 1-20 Constants Affecting the Position of Scroll Buttons

Constant Meaning

NSScrollerArrowsMaxEnd Scroll buttons are placed at the bottom or right
end of the scroller.

NSScrollerArrowsMinEnd Scroll buttons are placed at the top or left part of
the scroller.

NSScrollerArrowsNone Scroller doesn’t have scroll buttons.

Table 1-21 Constants Indicating Which Scroll Button Is to Be Drawn

Constant Meaning

NSScrollerIncrementArrow Scroll button that scrolls forward.

NSScrollerDecrementArrow Scroll button that scrolls backward.

NSScroller 1-459

1

 If highlight is YES, the button is drawn highlighted, otherwise it’s drawn
normally. This method is invoked by other NSScroller methods; it’s a public
method so that you can override it, but you should not invoke it directly. See
also drawKnob , drawParts , highlight: , setArrowsPosition: .

drawKnob

– (void)drawKnob

Draws the knob. Don’t send this message directly. See also knobProportion ,
setFloatValue:knobProportion: , drawParts ,
drawArrow:highlight: .

drawParts

– (void)drawParts

This method caches images for the graphic entities (knob and scroll arrows)
composing the NSScroller . It’s invoked only once by initWithFrame: . You
may want to override this method if you alter the look of the NSScroller , but
you should not invoke it directly. See also drawArrow:highlight: .

highlight:

– (void)highlight:(BOOL)flag

This method highlights or unhighlights the scroll button that the user clicked.
The scroller invokes this method while tracking the mouse, and you should not
invoke it directly. If flag is YES, the button is drawn highlighted, otherwise
it’s drawn normally. See also drawArrow:highlight: .

hitPart

– (NSScrollerPart)hitPart

1-460 OpenStep Programming Reference—September 1996

1

Returns the part of the NSScroller that is causing the current action,
typically the part that received a mouse-down event. The constants defining
the parts of an NSScroller , and which describe this method’s possible return
values, are as follows:

This method is typically invoked by the NSScrollView to determine what
action to take when the NSScrollView receives an action message from the
NSScroller . See also checkSpaceForParts , rectForPart: ,
usableParts , testPart: .

knobProportion

– (float)knobProportion

Returns the ratio of the knob’s length to the NSScroller ’s length. See also
setFloatValue:knobProportion: .

rectForPart:

– (NSRect)rectForPart:(NSScrollerPart)partCode

Gets the rectangle that encloses partCode . See the hitPart method
description for a list of the NSScroller parts constants. See also
checkSpaceForParts , usableParts , testPart: .

Table 1-22 Constants Defining Parts of an NSScroller

Constant Refers To

NSScrollerNoPart No part of the NSScroller

NSScrollerKnob Knob

NSScrollerDecrementPage Button that decrements a windowful (up or left
arrow)

NSScrollerIncrementPage Button that increments a windowful (down or
right arrow)

NSScrollerDecrementLine Button that decrements a line (up or left arrow)

NSScrollerIncrementLine Button that increments a line (down or right
arrow)

NSScrollerKnobSlot Bar

NSScroller 1-461

1

setArrowsPosition:

– (void)setArrowsPosition:(NSScrollArrowPosition)where

Sets position of scroll arrows in the NSScroller . See the arrowPostion
method description for a description of the NSScroller button position
constants. See also arrowsPosition , drawArrow:highlight: .

setFloatValue:knobProportion:

– (void)setFloatValue:(float)aFloat knobProportion:(float)ratio

Sets the NSScroller ’s position and size of the knob, repositioning the knob
according to aFloat and resizing it according to ratio . Both arguments are
clipped to the range from 0.0 to 1.0, inclusive. aFloat value of 0.0 positions
and displays the knob at the top or left of the bar, depending on the orientation
of the NSScroller . The size of the knob is determined by ratio , which is a
value between 0.0 and 1.0. A value of 0.0 sets the knob to a predefined
minimum size, and a value of 1.0 makes the knob fill the bar. See also
drawKnob , trackKnob: .

testPart:

– (NSScrollerPart)testPart:(NSPoint)thePoint

Returns the NSScroller part that’s under thePoint . See hitPart for a list
and description of NSScrollerPart values.

trackKnob:

– (void)trackKnob:(NSEvent *)theEvent

Tracks the knob and sends action messages to the NSScroller ’s target. This
method is invoked when the NSScroller receives a mouse-down event in the
knob. You should not invoke this method directly. See also drawKnob ,
trackScrollButtons: .

trackScrollButtons:

– (void)trackScrollButtons:(NSEvent *)theEvent

1-462 OpenStep Programming Reference—September 1996

1

Invoked in response to mouse-down events on buttons. Tracks the scroll
buttons and sends action messages to the NSScroller ’s target. This method is
invoked when the NSScroller receives a mouse-down event in a scroll
button. You should not invoke this method directly. See also trackKnob: .

usableParts

– (NSUsableScrollerParts)usableParts

Indicates which parts of the scroller can be displayed, given the NSScroller ’s
current size. An NSScroller can be made too small for all its parts to be
displayed. The usableParts method returns one of the following constants to
indicate whether such a condition is present:

NSScrollView

Class Description

An NSScrollView object lets the user interact with a document that’s too
large to be shown in its entirety within an NSView and must therefore be
scrolled. The responsibility of an NSScrollView is to coordinate scrolling
behavior between NSScroller objects and a NSClipView object. The user can
drag the knob of an NSScroller and the NSScrollView will send a message
to its NSClipView to ensure that the viewed portion of the document reflects

Table 1-23 Constants Indicating Which Parts of a Scroller Are Usable

Constant Meaning

NSNoScrollerParts Sroller has no usable parts, only the bar.

NSOnlyScrollerArrows Scroller has only scroll buttons.

NSAllScrollerParts Scroller has all parts.

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScrollView.h

NSScrollView 1-463

1

the position of the knob. Similarly, the application can change the viewed
position within a document and the NSScrollView will send a message to the
NSScroller s advising them of this change.

The NSScrollView has at least one subview (an NSClipView object), which
is called the content view. The content view in turn has a subview called the
document view, which is the view to be scrolled. When an NSScrollView is
created, it has neither a vertical nor a horizontal scroller. If NSScroller s are
required, the application must send setHasHorizontalScroller:YES and
setHasVerticalScroller:YES messages to the NSScrollView ; the
content view is resized to fill the area of the NSScrollView not occupied by
the NSScroller s.

When the application modifies the scroll position within the document, it
should send a reflectScrolledClipView: message to the NSScrollView ,
which will then query the content view and set the NSScroller (s)
accordingly. The reflectScrolledClipView: message may also cause the
NSScrollView to enable or disable the NSScroller s as required.

1-464 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Determining component
sizes

– contentSize
– documentVisibleRect

Laying out the
NSScrollView

+ contentSizeForFrameSize:hasHorizontalScroller:
hasVerticalScroller:borderType:
+ frameSizeForContentSize:hasHorizontalScroller:
hasVerticalScroller:borderType:
– hasHorizontalScroller
– hasVerticalScroller
– isRulerVisible
– setHasHorizontalScroller:
– setHasVerticalScroller:
– tile
– toggleRuler:

Managing component
views

– contentView
– documentView
– horizontalScroller
– reflectScrolledClipView:
– setContentView:
– setDocumentView:
– setHorizontalScroller:
– setVerticalScroller:
– verticalScroller

Modifying graphic
attributes

– backgroundColor
– borderType
– setBackgroundColor:
– setBorderType:

Setting scrolling behavior – lineScroll
– pageScroll
– scrollsDynamically
– setLineScroll:
– setPageScroll:
– setScrollsDynamically:

Managing the cursor – documentCursor
– setDocumentCursor:

NSScrollView 1-465

1

Class Methods

contentSizeForFrameSize:hasHorizontalScroller:
hasVerticalScroller:borderType:

+ (NSSize)contentSizeForFrameSize:(NSSize)size
hasHorizontalScroller:(BOOL)horizFlag
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderType)aType

Calculates and returns the size of a content view for an NSScrollView with
frame size size . horizFlag is YES if the NSScrollView has a horizontal
scroller, and vertFlag is YES if it has a vertical scroller. aType indicates
whether there’s a line, a bezel, groove, or no border around the frame of the
NSScrollView , and is either NSLineBorder , NSBezelBorder (the default),
NSGrooveBorder , or NSNoBorder . If the NSScrollView object already
exists, you can send it a contentSize: message to get the size of its content
view. See also frameSizeForContentSize:hasHorizontalScroller:
hasVerticalScroller:borderType: .

frameSizeForContentSize:hasHorizontalScroller:
hasVerticalScroller:borderType:

+ (NSSize)frameSizeForContentSize:(NSSize)size
hasHorizontalScroller:(BOOL)horizFlag
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderType)aType

Calculates and returns the frame size required for an NSScrollView with a
content view size size . horizFlag is YES if the NSScrollView has a
horizontal scroller, and vertFlag is YES if it has a vertical scroller. aType
indicates whether there’s a line, a bezel, groove, or no border around the frame
of the NSScrollView , and is either NSLineBorder , NSBezelBorder ,
NSGrooveBorder , or NSNoBorder . See also
contentSizeForFrameSize:hasHorizontalScroller:
hasVerticalScroller:borderType: .

1-466 OpenStep Programming Reference—September 1996

1

Instance Methods

backgroundColor

– (NSColor *)backgroundColor

Returns the content view background color.

borderType

– (NSBorderType)borderType

Returns the NSScrollView border type. Border types are:

• NSLineBorder
• NSBezelBorder
• NSGrooveBorder
• NSNoBorder

See also setBorderType: .

contentSize

– (NSSize)contentSize

Returns the content view’s size, in the NSScollView ’s superview coordinates.
See also documentVisibleRect .

contentView

- (NSClipView *)contentView

Returns the scroll view’s content view. See the NSScrollView class description
for a brief description of content views. See also setContentView: .

documentCursor

– (NSCursor)documentCursor

Returns the cursor object used inside the document view. See also
setDocumentCursor: .

NSScrollView 1-467

1

documentView

– (id)documentView

Returns the current document view. See also setDocumentView: .

documentVisibleRect

– (NSRect)documentVisibleRect

Gets the visible portion of the document view. See also contentSize .

hasHorizontalScroller

– (BOOL)hasHorizontalScroller

Returns YES if the NSScrollView object has a horizontal scroller. See also
setHasHorizontalScroller: , horizontalScroller ,
setHorizontalScroller: , hasVerticalScroller .

hasVerticalScroller

– (BOOL)hasVerticalScroller

Returns YES if the NSScrollView object has a vertical scroller. See also
setHasVerticalScroller: , verticalScroller ,
setVerticalScroller: , hasHorizontalScroller .

horizontalScroller

– (NSScroller *)horizontalScroller

Returns the horizontal NSScroller object. See also
setHorizontalScroller: , verticalScroller ,
hasHorizontalScroller .

isRulerVisible

– (BOOL)isRulerVisible

Returns YES if the NSScrollView ruler is visible. See also toggleRuler: .

1-468 OpenStep Programming Reference—September 1996

1

lineScroll

– (float)lineScroll

Returns the amount scrolled when scrolling a line. The return value is
expressed in the NSScrollView ’s coordinate system units. See also
setLineScroll: , pageScroll , scrollsDynamically .

pageScroll

– (float)pageScroll

Returns the amount scrolled when scrolling a page. The return value is
expressed in the NSScrollView ’s coordinate system units. See also
setPageScroll: , lineScroll , scrollsDynamically .

reflectScrolledClipView:

– (void)reflectScrolledClipView:(NSClipView *)cView

Moves the scrollers to reflect change in the coordinates of the clip view.

scrollsDynamically

– (BOOL)scrollsDynamically

Returns whether the NSScrollView scrolls dynamically. See also
setScrollsDynamically: , lineScroll , pageScroll .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)color

Sets the content view’s background color. See also backgroundColor .

setBorderType:

– (void)setBorderType:(NSBorderType)aType

Sets the NSScrollView border type. Border types are:

• NSLineBorder
• NSBezelBorder

NSScrollView 1-469

1

• NSGrooveBorder
• NSNoBorder

See also borderType .

setContentView:

- (void)setContentView:(NSClipView *)contentView

Sets the scroll view’s content view. See the NSScrollView class description for
a brief description of content views. See also contentView .

setDocumentCursor:

– (void)setDocumentCursor:(NSCursor *)anObject

Sets the cursor object to be used inside the document view. See also
documentCursor .

setDocumentView:

– (void)setDocumentView:(NSView *)aView

Makes aView the NSScrollView ’s document view. See also documentView .

setHasHorizontalScroller:

– (void)setHasHorizontalScroller:(BOOL)flag

Adds or removes a horizontal scroller for the NSScrollView . If flag is YES,
the NSScrollView creates a new NSScroller , and shrinks its other subviews
to accommodate it. If flag is NO, the NSScroller is removed from the
NSScrollView and the other subviews are resized to fill the NSScrollView .
When an NSScrollView is created, it doesn’t have a horizontal scroller. Once
an NSScroller is added, it will be enabled and disabled automatically by the
NSScrollView . This method retiles and redisplays the NSScrollView . See
also setHasVerticalScroller: .

setHasVerticalScroller:

– (void)setHasVerticalScroller:(BOOL)flag

1-470 OpenStep Programming Reference—September 1996

1

Adds or removes a vertical scroller to the NSScrollView . If flag is YES, the
NSScrollView creates a new NSScroller , and shrinks its other subviews to
accommodate it. If flag is NO, the NSScroller is removed from the
NSScrollView and the other subviews are resized to fill the NSScrollView .
When an NSScrollView is created, it doesn’t have a vertical scroller. Once an
NSScroller is added, it will be enabled and disabled automatically by the
NSScrollView . This method retiles and redisplays the NSScrollView . See
also setHasHorizontalScroller: .

setHorizontalScroller:

– (void)setHorizontalScroller:(NSScroller *)anObject

Sets the horizontal scroller to anObject which should be an NSScroller
subclass instance. This method sets anObject ’s target to the NSScrollView
and sets anObject ’s action method to the NSScrollView ’s private method
that responds to the NSScroller s and invokes the appropriate scrolling
behavior. To make the scroller visible, you must send a
setHasHorizontalScroller:YES message to the NSScrollView .

setLineScroll:

– (void)setLineScroll:(float)value

Sets the amount to scroll the document view when the NSScrollView receives
a message to scroll one line. value is expressed in the content view’s
coordinates. See also lineScroll , setPageScroll: ,
setScrollsDynamically: .

setPageScroll:

– (void)setPageScroll:(float)value

Sets the amount to scroll the document view when the NSScrollView receives
a message to scroll one page. value is the amount of text common to the
content view before and after the page scroll and is expressed in the content
view’s coordinates. Therefore, setting value to 0.0 implies that the entire
content view is replaced when a page scroll occurs. See also pageScroll ,
setLineScroll: , setScrollsDynamically: .

NSScrollView 1-471

1

setScrollsDynamically:

– (void)setScrollsDynamically:(BOOL)flag

Determines whether dragging a scroller’s knob will result in dynamic
redisplay of the document. If flag is YES, scrolling will occur as the knob is
dragged. If flag is NO, scrolling will occur only after the knob is released. By
default, scrolling occurs as the knob is dragged. See also
scrollsDynamically , setLineScroll: , setPageScroll: .

setVerticalScroller:

– (void)setVerticalScroller:(NSScroller *)anObject

Sets the vertical scroller to anObject (which should be an NSScroller
subclass instance). This method sets anObject ’s target to the NSScrollView
and sets anObject ’s action method to the NSScrollView ’s private method
that responds to the NSScroller s and invokes the appropriate scrolling
behavior. To make the scroller visible, you must send a
setHasVerticalScroller:YES message to the NSScrollView . See also
verticalScroller , setHorizontalScroller: .

tile

– (void)tile

Determines NSScrollView layout by setting the sizes and locations of the
object’s subviews. You rarely send a tile message directly; you may override
it if you need to have the NSScrollView manage additional views. A tile
message is sent whenever the NSScrollView is resized, or a vertical or
horizontal scroller is added or removed. This method doesn’t redisplay the
NSScrollView .

toggleRuler:

– (void)toggleRuler:(id)sender

Makes the ruler visible or invisible, whichever is the opposite of its current
state. See also isRulerVisible .

1-472 OpenStep Programming Reference—September 1996

1

verticalScroller

– (NSScroller *)verticalScroller

Returns the vertical NSScroller object. See also setVerticalScroller: ,
horizontalScroller .

NSSelection

Class Description

The NSSelection class defines an object that describes a selection within a
document. An NSSelection , or simply, selection, is an immutable
description; it may be held by the system or other documents, and it cannot
change over time. Selections are typically used by NSDataLink objects to
represent the source and destination of a link.

Because a selection description can’t be changed once it’s been exported, it’s a
good idea to construct general descriptions that can survive changes to a
document and don’t require selection-specific information to be stored in the
document. This description may be simple or complex, depending upon the
application. For example, a painting application might describe a selection in
an image as a simple rectangle. This description doesn’t require that any
information be stored in the image’s file, and the description can be expected
to remain valid through the life of the image. An object-based drawing
application might describe a selection as a list of object identifiers (though not
id s), where an object identifier is unique throughout the life of the document.
Based on this list, a selection could be meaningfully reconstructed, even if new
objects are added to the document or selected objects are deleted. Such a
scheme doesn’t require that any selection-specific information be stored in the
document’s file, with the benefit that links can be made to read-only
documents.

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSSelection.h

NSSelection 1-473

1

Maintaining a character-range selection in a text document is more
problematic. A possible solution is to insert selection-begin and selection-end
markers that define a specific selection into the text stream. A selection
description would then refer to a specific selection marker. This solution
requires that selection state information be stored and maintained within the
document. Furthermore, this information generally shouldn’t be purged from
the document because the document can’t know how many references to the
selection exist. (References to the selection could be stored with documents on
removable media, like floppy disks.) This selection-state information should be
maintained as long as it refers to any meaningful data. For this reason, it is
desirable whenever possible to describe selection in a manner that doesn’t
require that selection-state information be maintained in the document.

Three well-known selection descriptions can apply to any document: the
empty selection, the entire document, and the abstract concept of the current
selection. NSSelection objects for these selections are returned by the
emptySelection , allSelection , and currentSelection class methods.

Since an NSSelection may be used in a document that is read by machines
with different architectures, care should be taken to write machine-
independent descriptions. For example, using a binary structure as a selection
description will fail on a machine where an identically defined structure has a
different size or is kept in memory with different byte ordering. Exporting (and
then parsing) ASCII descriptions is often a good solution. If binary
descriptions must be used, it’s prudent to preface the description with a token
specifying the description’s byte ordering.

It may also be prudent to version-stamp selection descriptions, so that old
selections can be accurately read by updated versions of an application.

Note – NSSelection is not part of the OpenStep specification.

1-474 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

allSelection

+ (NSSelection *)allSelection

Returns the shared instance of the well-known selection representing the entire
document. See also currentSelection , emptySelection .

currentSelection

+ (NSSelection *)currentSelection

Returns the shared instance of the well-known selection representing the
abstract concept of the current selection. The current selection never describes
a specific selection; it describes a selection that may change frequently. See also
allSelection , emptySelection .

emptySelection

+ (NSSelection *)emptySelection

Returns the shared instance of the well-known selection representing no data.
See also allSelection , currentSelection .

Instance Methods

descriptionData

– (NSData *)descriptionData

Activity Class Method

Returning special selection shared
instances

+ allSelection
+ currentSelection
+ emptySelection

Describing a selection – descriptionData
– isWellKnownSelection

NSSlider 1-475

1

Returns the data that describes the selection as set by
selectionWithDescriptionData: or initWithDescriptionData: .

isWellKnownSelection

– (BOOL)isWellKnownSelection

Returns YES if the receiver is one of the well-known selection types (those
representing the entire document, current selection, or empty selection) and
returns NO otherwise. See also allSelection , currentSelection ,
emptySelection .

NSSlider

Class Description

NSSlider is a type of NSControl with a sliding knob that can be moved to
represent a value between a minimum and a maximum setting. A slider may
be either horizontal or vertical, but its minimum value is always at the left or
bottom end of the bar, and the maximum at the right or top. By default, an
NSSlider is a continuous NSControl : It sends its action message to its target
continuously while the user drags its knob. To configure an NSSlider to send
its action only when the mouse is released, send setContinuous: (an
NSControl method) with an argument of NO.

An NSSlider can be configured to display an image, a title, or both, in the
area behind its knob. An NSSlider 's title can be drawn in any gray level or
color, and in any font available. An NSSlider 's value can be set
programmatically with any of the standard NSControl value-setting methods,
such as setFloatValue: . For more information, see the method descriptions
in the NSSliderCell class specification.

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSlider.h

1-476 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

cellClass

+ (Class)cellClass

Returns the class last set in a setCellClass: message, or the NSSliderCell
class if setCellClass: has never been called.

setCellClass:

+ (void)setCellClass:(Class)classId

Activity Class Method

Setting the cell class + cellClass
+ setCellClass:

Modifying an NSSlider’s
appearance

– image
– isVertical
– knobThickness
– setImage:
– setKnobThickness:
– setTitle:
– setTitleCell:
– setTitleColor:
– setTitleFont:
– title
– titleCell
– titleColor
– titleFont

Setting and getting value limits – maxValue
– minValue
– setMaxValue:
– setMinValue:

Handling events – acceptsFirstMouse:

NSSlider 1-477

1

Configures the NSSlider class to use instances of classId for its cells.
classId should be an NSSliderCell subclass id , obtained by sending the
class message (NSObject) to either the NSSliderCell subclass object or to
an instance of that subclass. The default NSCell class is NSSliderCell .

If this method isn’t overridden by a NSSlider subclass, then when it’s sent to
that subclass, NSSlider and any other subclasses of NSSlider that don’t
override the methods mentioned the “Instance Methods” section will use the
new NSCell subclass as well. To safely set an NSCell class for your subclass
of NSSlider , override this method to store the NSCell class in a static id .
Also, override the designated initializer to replace the NSSlider subclass
instance’s NSCell with an instance of the NSCell subclass stored in that static
id . See “Creating New NSControls” in the NSControl class specification for
more information.

Instance Methods

acceptsFirstMouse:

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Returns YES by default, since NSSlider s always accept a mouse-down event
that activates a window, whether or not the NSSlider is enabled. Override
this if you want different behavior.

image

– (NSImage *)image

Returns the NSImage displayed within the NSSlider bar. See also
setImage: .

isVertical

– (int)isVertical

Returns 1 if the NSSlider is vertical, 0 if horizontal, and -1 if unknown
(because the slider hasn’t been initialized). A slider is vertical if its height is
greater than its width.

1-478 OpenStep Programming Reference—September 1996

1

knobThickness

– (float)knobThickness

Returns the knob’s thickness as a float value (width if horizontal slider, height
if vertical slider) in the slider’s coordinate system. See also
setKnobThickness: .

maxValue

– (double)maxValue

Returns the NSSlider ’s maximum value. See also setMaxValue: , minValue .

minValue

– (double)minValue

Returns the NSSlider ’s minimum value. See also setMinValue: , maxValue .

setImage:

– (void)setImage:(NSImage *)backgroundImage

Sets the image used as the slider’s bar to backgroundImage . See also image .

setKnobThickness:

– (void)setKnobThickness:(float)aFloat

Sets the knob’s thickness (its width if the slider is horizontal, height if vertical)
to aFloat , expressed in units of the NSSlider ’s coordinate system. See also
knobThickness .

setMaxValue:

– (void)setMaxValue:(double)aDouble

Sets the NSSlider ’s maximum value to aDouble . See also maxValue ,
minValue .

NSSlider 1-479

1

setMinValue:

– (void)setMinValue:(double)aDouble

Sets the NSSlider ’s minimum value to aDouble . See also minValue ,
maxValue .

setTitle:

– (void)setTitle:(NSString *)aString

Sets the title within the NSSlider to a copy of aString . See also title ,
setTitleCell: , setTitleColor: , setTitleFont: .

setTitleCell:

– (void)setTitleCell:(NSCell *)aCell

Sets the NSCell (or subclass) object used to draw the NSSlider ’s title. The
cell object should ideally be an instance of NSTextFieldCell or one of its
subclasses. Doesn’t redraw the slider; a setTitle: message is required to
display a title, even if aCell already has a string value. See also titleCell ,
setTitleColor: , setTitleFont: .

setTitleColor:

– (void)setTitleColor:(NSColor *)aColor

Sets the color of text in the title to aColor . See also titleColor ,
setTitleFont: , setTitleCell: .

setTitleFont:

– (void)setTitleFont:(NSFont *)fontObject

Sets the NSFont object used for the slider title. See also titleFont ,
setTitleColor: , setTitleCell: .

title

– (NSString *)title

Returns the NSSlider title. See also titleFont , titleCell , titleColor .

1-480 OpenStep Programming Reference—September 1996

1

titleCell

– (id)titleCell

Returns the NSCell (or subclass thereof) object used to draw the title within
the NSSlider . If the slider doesn’t have a title, an new NSTextFieldCell is
created and returned. See title , titleFont , titleColor .

titleColor

– (NSColor *)titleColor

Returns the color of text in the title. See also title , titleCell , titleFont .

titleFont

– (NSFont *)titleFont

Returns the NSFont object used in drawing the title within the NSSlider . See
also title , titleCell , titleColor .

NSSliderCell

Class Description

NSSliderCell is a type of NSCell used to assist the NSSlider class, and to
build matrices of sliders. The NSSliderCell encompasses all the visible
portions of the NSSlider —the knob, the area along which the knob slides,
and the optional title within this area. See the NSSlider class specification for
an overview of how NSSliderCell s work.

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSSliderCell.h

NSSliderCell 1-481

1

Method Types

Class Methods

prefersTrackingUntilMouseUp

+ (BOOL)prefersTrackingUntilMouseUp

Returns YES to allow NSSliderCell objects to track even when the mouse
leaves the cell bounds. This ensures that an NSSliderCell in a NSMatrix
doesn’t stop responding to user input (and its neighbor start responding) just
because the knob isn’t dragged in a perfectly straight line. Override this
method to return NO if you want the NSSliderCell to stop tracking once the
mouse leaves its bounds.

Activity Class Method

Determining component sizes – cellSizeForBounds:
– knobRectFlipped:

Setting value limits – maxValue
– minValue
– setMaxValue:
– setMinValue:

Modifying graphic attributes – isVertical
– knobThickness
– setKnobThickness:
– setTitle:
– setTitleCell:
– setTitleColor:
– setTitleFont:
– title
– titleCell
– titleColor
– titleFont

Displaying the NSSliderCell – drawBarInside:flipped:
– drawKnob
– drawKnob:

Modifying behavior – altIncrementValue
– setAltIncrementValue:

Tracking the mouse + prefersTrackingUntilMouseUp
– trackRect

1-482 OpenStep Programming Reference—September 1996

1

.Instance Methods

altIncrementValue

– (double)altIncrementValue

Returns the amount that the NSSliderCell will alter its value when the user
drags the knob one pixel with the Alternate key held down. If the Alternate-
dragging feature isn’t enabled, this method returns –1.0. See also
setAltIncrementValue: .

cellSizeForBounds:

– (NSSize)cellSizeForBounds:(NSRect)aRect

Returns the minimum width and height needed to draw the NSSliderCell in
aRect . If aRect is too small to fit the knob and bezel, aRect ’s dimensions are
set to 0.0. If the NSSliderCell hasn’t had its tracking rectangle set, this
method will set it. If you draw your own knob on the NSSliderCell and that
knob is not the same size as a standard NSSliderCell knob, or if you draw
the NSSliderCell itself differently, you should override this method to take
your knob’s dimensions into account. You must also override
knobRectflipped: and drawKnob: .

drawBarInside:flipped:

– (void)drawBarInside:(NSRect)aRect flipped:(BOOL)flipped

Draws the NSSliderCell ’s background bar (but not the bezel around it or the
knob) in aRect . flipped indicates whether the NSView’s coordinate system is
flipped. Override this method if you want to draw your own slider bar. See
also drawKnob , drawKnob: .

drawKnob

– (void)drawKnob

Calculates the knobs drawing rectangle, and invokes drawKnob: to actually
draw the knob. The PostScript focus must be locked on the NSSliderCell ’s
NSView when this message is sent. Do not override this method; override
drawKnob: instead. See also drawBarInside:flipped: .

NSSliderCell 1-483

1

drawKnob:

– (void)drawKnob:(NSRect)knobRect

Draws the knob in knobRect . The PostScript focus must be locked on the
NSSliderCell ’s NSView when this message is sent. Override this method
and knobRectFlipped: if you want to draw your own knob. You should also
override cellSizeForBounds: if your knob is of a different size from the
standard NSSliderCell knob.

isVertical

– (int)isVertical

Returns 1 if the NSSliderCell is vertical, 0 if horizontal. Returns -1 if the
orientation can’t be determined (for example, if the NSSliderCell hasn’t
been drawn in an NSView). An NSSliderCell is vertical if its height is
greater than its width.

knobRectFlipped:

– (NSRect)knobRectFlipped:(BOOL)flipped

Gets the rectangle the knob will be drawn in. flipped indicates whether the
NSSliderCell 's view has a flipped coordinate system. This rectangle is
determined from the NSSliderCell ’s value in relation to its tracking
rectangle and its minimum and maximum values. Override this method and
drawKnob: if you want to draw your own knob. You should also override
cellSizeForBounds: if your knob is of a different size from the standard
NSSliderCell knob (and be careful of setting the knob’s width). Remember
to take into account the flipping of the NSView in vertical NSSliderCell s;
otherwise, your knob might appear the correct distance from the wrong end.
See also knobThickness .

knobThickness

– (float)knobThickness

Returns the NSSliderCell ’s knob thickness (that is, its extent along the bar’s
length) in the NSSliderCell ’s coordinate system. See also
setKnobThickness: , knobRectFlipped: , drawKnob , drawKnob: .

1-484 OpenStep Programming Reference—September 1996

1

maxValue

– (double)maxValue

Returns the NSSliderCell ’s maximum value. See also setMaxValue: ,
minValue .

minValue

– (double)minValue

Returns the NSSliderCell ’s minimum value. See also setMinValue: .

setAltIncrementValue:

– (void)setAltIncrementValue:(double)incValue

Sets the amount by which the NSSliderCell modifies its value when the
knob is dragged one pixel with the Alternate key held down. incValue
should be greater than 0.0, and less than the NSSliderCell ’s maximum value
(maxValue); it can also be –1, in which case this feature is disabled. Normally,
you’ll want to use this method with incValue less than 1.0, so the knob will
move more slowly than the mouse. See also altIncrementValue .

setKnobThickness:

– (void)setKnobThickness:(float)aFloat

Sets the NSSliderCell ’s knob thickness (width if a horizontal slider, height if
vertical) in its own coordinate system. aFloat must be greater than 0.0, and
shouldn’t be greater than the slider’s length. If the knob thickness changes, the
NSSliderCell ’s inside is redrawn. See also knobThickness .

setMaxValue:

– (void)setMaxValue:(double)aDouble

Sets the slider cell’s maximum value to aDouble . If the maximum value
changes, the slider cell’s inside is redrawn to reposition the knob relative to the
new maximum. See also maxValue , setMinValue: .

NSSliderCell 1-485

1

setMinValue:

– (void)setMinValue:(double)aDouble

Sets the slider cell’s minimum value to aDouble . If the minimum value
changes, the slider cell’s inside is redrawn to reposition the knob relative to the
new minimum. See also minValue , setMinValue: .

setTitle:

– (void)setTitle:(NSString *)aString

Sets the title within the slider cell to a copy of aString . See also title ,
setTitleColor: , titleColor , setTitleFont: , titleFont ,
setTitleCell: , titleCell .

setTitleCell:

– (void)setTitleCell:(NSCell *)aCell

Sets the NSCell (or subclass thereof) object used to draw the title within the
NSSliderCell . The cell object should ideally be an instance of
NSTextFieldCell or one of its subclasses. See also titleCell , setTitle: .

setTitleColor:

– (void)setTitleColor:(NSColor *)aColor

Sets the color of text in the title to aColor , and redraws the slider cell’s inside.
See also titleColor , setTitle: .

setTitleFont:

– (void)setTitleFont:(NSFont *)fontObject

Sets the NSFont object used to draw the title within the slider cell, and
redraws the slider cell’s inside. The default font is the default system font as
set by the user with the Preferences application, and its size is 12.0 point. See
also titleFont , setTitle: .

1-486 OpenStep Programming Reference—September 1996

1

title

– (NSString *)title

Returns the title within the slider cell. See also setTitle: .

titleCell

– (id)titleCell

Returns the NSCell (or subclass thereof) object used to draw the title within
the slider cell. If the slider cell doesn’t have a title, a new NSTextFieldCell is
created and returned. This doesn’t result in a title getting set. See also
setTitleCell: , setTitle: .

titleColor

– (NSColor *)titleColor

Returns the color of text in the title. See also setTitleColor: , setTitle: .

titleFont

– (NSFont *)titleFont

Returns the NSFont object used in drawing the title within the slider cell. See
also setTitleFont: , setTitle: .

trackRect

– (NSRect)trackRect

Returns the rectangle used in tracking the mouse (only valid while tracking).
See also prefersTrackingUntilMouseUp .

NSSpellChecker 1-487

1

NSSpellChecker

Class Description

The NSSpellChecker class gives any application an interface to the OpenStep
spell-checking service. To handle all its spell checking, an application needs
only one instance of NSSpellChecker . It provides a panel in which the user
can specify decisions about words that are suspect. To check the spelling of a
piece of text, the application:

• Includes in its user interface a menu item (or a button or command) by
which the user will request spell checking.

• Makes the text available by way of an NSString object.

• Creates an instance of the NSSpellChecker class and sends it a
checkSpellingOfString:startingAt: message.

For example, you might use the following statement to create an
NSSpellChecker :

range = [[NSSpellChecker sharedSpellChecker]
 checkSpellingOfString:aString startingAt:0];

The checkSpellingOfString:startingAt: method checks the spelling of
the words in the specified string beginning at the specified offset until it finds
a word that is misspelled (this example uses 0 to start at the beginning of the
string) . Then it returns an NSRange to indicate the location of the misspelled
word.

In a graphical application, whenever a misspelled word is found, you’ll
probably want to highlight the word in the document, using the NSRange that
checkSpellingOfString:startingAt: returned to determine the text to
highlight. Then you should show the misspelled word in the Spelling panel’s
misspelled-word field by calling
updateSpellingPanelWithMisspelledWord: . If
checkSpellingOfString:startingAt: does not find a misspelled word,
you should call updateSpellingPanelWithMisspelledWord: with the

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellChecker.h

1-488 OpenStep Programming Reference—September 1996

1

empty string. This causes the system to beep, letting the user know that the
spell check is complete and no misspelled words were found. None of these
steps is required, but if you do one, you should do them all.

The object that provides the string being checked should adopt the following
protocols.

The application may choose to split a document’s text into segments and check
them separately. This will be necessary when the text has segments in different
languages. Spell checking is invoked for one language at a time, so a document
that contains portions in three languages will require at least three checks.

Dictionaries and Word Lists

The process of checking spelling makes use of three references:

• A dictionary registered with the system’s spell-checking service. When the
Spelling panel first appears, by default it shows the dictionary for the user’s
preferred language. The user may select a different dictionary from the list
in the Spelling panel.

• The user’s “learn” list of correctly-spelled words in the current language.
The NSSpellChecker updates the list when the user presses the Learn or
Forget buttons in the Spelling panel.

• The document’s list of words to be ignored while checking it (if the first
responder conforms to the NSIgnoreMisspelledWords protocol). The
NSSpellChecker updates its copy of this list when the user presses the
Ignore button in the Spelling panel.

Protocol Meaning

NSChangeSpelling A message in this protocol
(changeSpelling:) is sent down the
responder chain when the user
presses the Correct button.

NSIgnoreMisspelledWords When the object being checked
responds to this protocol, the spell
server keeps a list of words that are
acceptable in the document and
enables the Ignore button in the
Spelling panel.

NSSpellChecker 1-489

1

A word is considered to be misspelled if none of these three accepts it.

Matching a List of Ignored Words to the Document It Belongs To

The NSString being checked isn’t the same as the document. In the course
of processing a document, an application might run several checks based on
different parts or different versions of the text. But they’d all belong to the
same document. The NSSpellChecker keeps a separate “ignored words” list
for each document that it checks. To help match “ignored words” lists to
documents, you should call uniqueSpellDocumentTag once for each
document. This method returns a unique arbitrary integer that will serve to
distinguish one document from the others being checked and to match each
“ignored words” list to a document. When searching for misspelled words,
pass the tag as the fourth argument of checkSpellingOfString:
startingAt:
language:wrap:inSpellDocumentWithTag:wordCount: . The
convenience method checkSpellingOfString:startingAt: takes no tag.
This method is suitable when the first responder does not conform to the
NSIgnoreMisspelledWords protocol.

When the application saves a document, it may choose to retrieve the “ignored
words” list and save it along with the document. To get back the right list, it
must send the NSSpellChecker an
ignoredWordsInSpellDocumentWithTag: message. When the application
has closed a document, it should notify the NSSpellChecker that the
document’s “ignored words” list can now be discarded, by sending it a
closeSpellDocumentWithTag: message. When the application reopens the
document, it should restore the “ignored words” list with the message
setIgnoredWords:inSpellDocumentWithTag: .

1-490 OpenStep Programming Reference—September 1996

1

Method Types

Class Methods

sharedSpellChecker

+ (NSSpellChecker *)sharedSpellChecker

Returns the NSSpellChecker (one per application). If the application has not
yet asked for an NSSpellChecker object, this method allocates and initializes
a new instance. See also sharedSpellCheckerExists .

sharedSpellCheckerExists

+ (BOOL)sharedSpellCheckerExists

Returns YES if the application’s NSSpellChecker has already been created.
See also sharedSpellChecker .

Activity Class Method

Making a checker available + sharedSpellChecker
+ sharedSpellCheckerExists

Managing the spelling panel – accessoryView
– setAccessoryView:
– spellingPanel

Checking spelling – countWordsInString:language:
– checkSpellingOfString:startingAt:
– checkSpellingOfString:startingAt:language:
wrap:inSpellDocumentWithTag:wordCount:

Setting the language – language
– setLanguage:

Managing the spelling process – uniqueSpellDocumentTag
– closeSpellDocumentWithTag:
– ignoreWord:inSpellDocumentWithTag:
– ignoredWordsInSpellDocumentWithTag:
– setIgnoredWords:inSpellDocumentWithTag:
– setWordFieldStringValue:
– updateSpellingPanelWithMisspelledWord:

NSSpellChecker 1-491

1

uniqueSpellDocumentTag

+ (int)uniqueSpellDocumentTag

Returns a guaranteed unique tag to use as the spell-document tag for a
document. Use this method to generate tags to avoid collisions with other
objects that can be spell-checked.

Instance Methods

accessoryView

– (NSView *)accessoryView

Returns the Spelling panel’s accessory NSView object. See also
setAccessoryView: .

checkSpellingOfString:startingAt:

– (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt:(int)startingOffset

Starts the search for a misspelled word in stringToCheck starting at
startingOffset within the string object. Returns the range of the first
misspelled word. Wrapping occurs but no ignored-words dictionary is used.
See also checkSpellingOfString:startingAt:language:
wrap:inSpellDocumentWithTag:wordCount: .

checkSpellingOfString:startingAt:language:
wrap:inSpellDocumentWithTag:wordCount:

– (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt:(int)startingOffset language:(NSString *)language
 wrap:(BOOL)wrapFlag inSpellDocumentWithTag:(int)tag
 wordCount:(int *)wordCount

Starts the search for a misspelled word in stringToCheck starting at
startingOffset within the string object. Returns the range of the first
misspelled word and optionally the word count by reference. tag is an
identifier unique within the application used to inform the spell check which
document (actually, a dictionary) of ignored words to use. wrapFlag
determines whether spell checking continues at the beginning of the string

1-492 OpenStep Programming Reference—September 1996

1

when the end is reached. language is the language used in the string. If
language is the empty string, the current selection in the Spelling panel’s
pop-up menu is used. See also checkSpellingOfString:startingAt: .

closeSpellDocumentWithTag:

– (void)closeSpellDocumentWithTag:(int)tag

Notifies the NSSpellChecker that the user has finished with the ignored-
word document identified by tag , causing it to throw that dictionary away.

countWordsInString:language:

– (int)countWordsInString:(NSString *)aString
language:(NSString *)language

Returns the number of words in string . The language argument specifies
the language used in the string. If language is the empty string, the current
selection in the Spelling panel’s pop-up menu is used.

ignoreWord:inSpellDocumentWithTag:

– (void)ignoreWord:(NSString *)wordToIgnore
inSpellDocumentWithTag:(int)tag

Instructs the NSSpellChecker to ignore all future occurrences of
wordToIgnore in the document identified by tag . You should call this
method from within your implementation of the NSIgnoreMisspelledWords
protocol’s ignoreSpelling: . See also
setIgnoredWords:inSpellDocumentWithTag: ,
ignoredWordsInSpellDocumentWithTag: .

ignoredWordsInSpellDocumentWithTag:

– (NSArray *)ignoredWordsInSpellDocumentWithTag:(int)tag

Returns the array of ignored words for a document identified by tag . Invoke
this before closeSpellDocument: if you want to store the ignored words.
See also setIgnoredWords:inSpellDocumentWithTag: ,
ignoreWord:inSpellDocumentWithTag: .

NSSpellChecker 1-493

1

language

– (NSString *)language

Returns the character string that identifies the English name of the currently
selected language. If the application elects to temporarily override the current
language (by invoking setLanguage:), this method will be useful to record
the current language so that it can subsequently be restored. Otherwise, the
application will not ordinarily need to use this method.See also
setLanguage: .

setAccessoryView:

– (void)setAccessoryView:(NSView *)aView

Makes an NSView object an accessory of the Spelling panel by making it a
subview of the panel’s content view. This method posts the notification
NSWindowDidResizeNotification with the Spelling panel object to the
default notification center. An application can invoke this method to add
controls that extend the panel’s functions. The Spelling panel is automatically
resized to accommodate aView . This method can be invoked repeatedly to
change the accessory view depending on the situation. When aView is nil , the
effect is to remove any accessory view that’s already in the panel. See also
accessoryView .

setIgnoredWords:inSpellDocumentWithTag:

– (void)setIgnoredWords:(NSArray *)someWords
inSpellDocumentWithTag:(int)tag

Initializes the spell checker’s list of acceptable words for the document
identified by tag . someWords identifies the ignored words. tag identifies the
document for which the list is being maintained (described in the section
“Matching a List of Ignored Words to the Document It Belongs To”). See also
ignoredWordsInSpellDocumentWithTag: .

setLanguage:

– (BOOL)setLanguage:(NSString *)aLanguage

1-494 OpenStep Programming Reference—September 1996

1

Tells the NSSpellChecker object what language to use in subsequent spell
check requests. This method is needed only if the application sometimes
overrides the language established by the user’s system defaults or by the
user’s choice of dictionary in the Spelling panel. A different dictionary might
be required while checking a document whose text is distributed among
several objects, each in a different language. Upon completion of the check in a
different language, the application should restore the default. To do so, before
using setLanguage: , use language to get the language previously in effect,
and afterwards use setLanguage: to restore it.

Setting a different language causes corresponding changes to the selected
dictionary and to the user’s list of acceptable words. Suppose that checker is
the id of an NSSpellChecker instance, and the application sends the
following messages:

[checker setLanguage:"French"]
[checker checkSpelling: how of: textToBeChecked]

During the check invoked by the second message, the spelling system refers to
the French dictionary rather than the dictionary selected in the Spelling panel,
and adds “learned” words to the user’s French word list. If aLanguage is
NULL, this method sets the language to the first language for which there is a
dictionary from the list of system languages. Returns YES if the Language pop-
up list in the Spelling panel lists aLanguage . See also language .

setWordFieldStringValue:

– (void)setWordFieldStringValue:(NSString *)aString

Sets the string that appears in the misspelled word field, using the string object
aString .

spellingPanel

– (NSPanel *)spellingPanel

Returns the NSSpellChecker ’s panel.

updateSpellingPanelWithMisspelledWord:

– (void)updateSpellingPanelWithMisspelledWord:(NSString *)word

NSSpellServer 1-495

1

Causes spell checker to update the Spelling panel’s misspelled-word field to
reflect word . You are responsible for highlighting word in the document and
for extracting it from the document using the range returned by the
checkSpelling:... methods. Pass the empty string as word to have the
system beep, indicating no misspelled words were found.

NSSpellServer

Class Description

The NSSpellServer class gives you a way to make your particular spelling
checker a service that’s available to any application. A service is an application
that declares its availability in a standard way, so that any other applications
that wish to use it can do so. If you build a spelling checker that makes use of
the NSSpellServer class and list it as an available service, then users of any
application that makes use of NSSpellChecker or includes a Services menu
will see your spelling checker as one of the available dictionaries.

To make use of NSSpellServer , you write a small program that creates an
NSSpellServer instance and a delegate that responds to messages asking it
to find a misspelled word and to suggest guesses for a misspelled word. Send
the NSSpellServer registerLanguage:byVendor: messages to tell it the
languages your delegate can handle.

The program that runs your spelling checker should not be built as an
Application Kit application, but as a simple program. Suppose you supply
spelling checkers under the vendor name “Acme.” Suppose the file containing
the code for your delegate is called AcmeEnglishSpellChecker . Then the
following might be your program’s main function:

void main()
{
 NSSpellServer *aServer = [[NSSpellServer alloc] init];
 if ([aServer registerLanguage:@"English" byVendor:@"Acme"]) {
 [aServer setDelegate:[AcmeEnglishSpellChecker alloc] init]];
 [aServer run];
 fprintf(stderr, "Unexpected death of Acme SpellChecker!\n");

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellServer.h

1-496 OpenStep Programming Reference—September 1996

1

 } else {
 fprintf(stderr, "Unable to check in Acme SpellChecker.\n");
 }
}

Your delegate is an instance of a custom subclass. It is simplest to make it an
NSObject subclass, but that’s not a requirement. Given an NSString , your
delegate must be able to find a misspelled word by implementing the method
spellServer:findMisspelledWordInString:language:wordCount:c
ountOnly: . Usually, this method also reports the number of words it has
scanned, but that isn’t mandatory.

Optionally, the delegate may also suggest corrections for misspelled words. It
does so by implementing the method
spellServer:suggestGuessesForWord:inLanguage: .

Service Availability Notice

When there’s more than one spelling checker available, the user selects the one
required. The application that requests a spelling check uses an
NSSpellChecker object, and it provides a Spelling panel; in the panel there’s
a pop-up list of available spelling checkers. Your spelling checker appears in
that list if it has a service descriptor.

A service descriptor is an entry in a text file called services . Usually it’s
located within the bundle that also contains your spelling checker’s executable
file. The bundle (or directory) that contains the services file must have a name
ending in .service or .app . The system looks for service bundles in a
standard set of directories.

A spell-checker service availability notice has a standard format, illustrated in
the following example for the Acme spelling checker:

Spell Checker: Acme
Language: French
Language: English
Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say
“Spell Checker:” followed by your vendor name. The next line contains the
English name of a language your spelling checker is prepared to check. (The
language must be one your system recognizes.) If your program can check

NSSpellServer 1-497

1

more than one language, use an additional line for each additional language.
The last line of a descriptor gives the name of the service’s executable file. (It
requires a complete path if it’s in a different directory.)

If there’s a service descriptor for your Acme spelling checker and also a service
descriptor for the English checker provided by a vendor named Consolidated,
a user looking at the Spelling panel’s pop-up list would see:

English (Acme)
English (Consolidated)
French (Acme)

Illustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objects in two
classes: the user application’s NSSpellChecker , which responds to
interactions with the user, and your spelling checker’s NSSpellServer , which
provides the application interface for your spelling checker. You can see the
interaction between the two in the following list of steps involved in finding a
misspelled word.

• The user of an application selects a menu item to request a spelling check.
The application sends a message to its NSSpellChecker object. The
NSSpellChecker in turn sends a corresponding message to the
appropriate NSSpellServer .

• The NSSpellServer receives the message asking it to check the spelling of
an NSString . It forwards the message to its delegate.

• The delegate searches for a misspelled word. If it finds one, it returns an
NSRange identifying the word’s location in the string.

• The NSSpellServer receives a message asking it to suggest guesses for the
correct spelling of a misspelled word, and forwards the message to its
delegate.

• The delegate returns a list of possible corrections, which the
NSSpellServer in turn returns to the NSSpellChecker that initiated the
request.

• The NSSpellServer doesn’t know what the user does with the errors its
delegate has found or with the guesses its delegate has proposed. Perhaps
the user corrects the document, perhaps by selecting a correction from the
NSSpellChecker ’s display of guesses; but that’s not the
NSSpellServer ’s responsibility. However, if the user presses the Learn or

1-498 OpenStep Programming Reference—September 1996

1

Forget buttons, causing the NSSpellChecker to revise the user’s word list,
the NSSpellServer receives a notification of the word thus learned or
forgotten. It’s up to you whether your spell checker acts on this information.
If the user presses the Ignore button, the delegate is not notified (but the
next time that word occurs in the text, the method
isWordInUserDictionaries:caseSensitive: will report YES rather
than NO).

• Once the NSSpellServer delegate has reported a misspelled word, it has
completed its search. Of course, it’s likely that the user’s application will
then send a new message, this time asking the NSSpellServer to check a
string containing the part of the text it didn’t get to earlier.

Method Types

Instance Methods

delegate

– (id)delegate

Returns the NSSpellServer ’s delegate. See also setDelegate: .

isWordInUserDictionaries:caseSensitive:

 (BOOL)isWordInUserDictionaries:(NSString *)word
caseSensitive:(BOOL)flag

Activity Class Method

Checking in your service – registerLanguage:byVendor:

Assigning a delegate – delegate
– setDelegate:

Running the service – run

Checking user dictionaries – isWordInUserDictionaries:caseSensitive:

Methods Implemented by the
Delegate

– spellServer:didForgetWord:inLanguage:
– spellServer:didLearnWord:inLanguage:
– spellServer:findMisspelledWordInString:
language:wordCount:countOnly:
– spellServer:suggestGuessesForWord:inLanguage:

NSSpellServer 1-499

1

Returns whether word is in any open user dictionary; the search is case-
sensitive if flag is YES.

registerLanguage:byVendor:

– (BOOL)registerLanguage:(NSString *)language
byVendor:(NSString *)vendor

Notifies the spell server of a language your spelling checker can check. The
argument language is the English name of a language. The argument vendor
identifies the vendor (to distinguish your spelling checker from those that
others may offer for the same language). If your spelling checker supports
more than one language, it should invoke this method once for each language.
Registering a language/vendor combination causes it to appear in the Spelling
Panel’s pop-up labeled “Dictionary”. Returns YES when the language is
registered, NO if for some reason it can’t be registered.

run

– (void)run

Makes the spell server start listening for spell-checking requests. This method
should not return.

setDelegate:

– (void)setDelegate:(id)anObject

Sets the spell-server delegate. Since the delegate is where the real work is done,
this is an essential step before your program sends the NSSpellServer its
run message.

Methods Implemented by the Delegate

spellServer:didForgetWord:inLanguage:

– (void)spellServer:(NSSpellServer *)sender
didForgetWord:(NSString *)word inLanguage:(NSString *)language

1-500 OpenStep Programming Reference—September 1996

1

Notifies the delegate that the user has pressed Forget in an NSSpellChecker ’s
Spelling Panel (and presumably the NSSpellChecker has removed word
from the user’s list of acceptable words). If the delegate maintains a similar
auxiliary word list, it may wish to edit its list accordingly.

spellServer:didLearnWord:inLanguage:

– (void)spellServer:(NSSpellServer *)sender
didLearnWord:(NSString *)word
inLanguage:(NSString *)language

Notifies the delegate that the user has pressed Learn in an NSSpellChecker ’s
Spelling Panel (and presumably the NSSpellChecker has added word to the
user’s list of acceptable words). If the delegate maintains a similar auxiliary
word list, it may wish to edit it accordingly.

spellServer:findMisspelledWordInString:
language:wordCount:countOnly:

– (NSRange)spellServer:(NSSpellServer *)sender
findMisspelledWordInString:(NSString *)stringToCheck
language:(NSString *)language wordCount:(int *)wordCount
countOnly:(BOOL)countOnly

Search for a misspelled word in stringToCheck , using language , and
marking the first misspelled word found by returning its range within the
string object. wordCount returns by reference the number of words from the
beginning of the string object until the misspelled word (or the end-of-string).
If countOnly is YES, just count the words in the string object; do not spell-
check. Send isWordInUserDictionaries:caseSensitive: to the spelling
server to determine if word exists in the user’s language dictionaries.

spellServer:suggestGuessesForWord:inLanguage:

– (NSArray *)spellServer:(NSSpellServer *)sender
suggestGuessesForWord:(NSString *)word
inLanguage:(NSString *)language

Search for alternatives to the misspelled word in language . Return guesses as
an array of string objects.

NSSplitView 1-501

1

NSSplitView

Class Description

An NSSplitView object lets several views share a region within a window.
The NSSplitView resizes its subviews so that each subview is the same width
as the NSSplitView , and the total of the subviews’ heights is equal to the
height of the NSSplitView . The NSSplitView positions its subviews so that
the first subview is at the top of the NSSplitView , and each successive
subview is positioned below the previous one. The user can set the height of
two subviews by moving a horizontal bar called the divider, which makes one
subview smaller and the other larger.

To add a view to an NSSplitView , you use the NSView method
addSubview: . When the NSSplitView is displayed, it checks to see if its
subviews are properly tiled. If not, it invokes the delegate method
splitView:resizeSubviewsWithOldSize: , allowing the delegate to
specify the heights of specific subviews. If the delegate doesn’t implement this
method, the NSSplitView sends adjustSubviews to itself to yield the
default tiling behavior.

When a mouse-down occurs in an NSSplitView ’s divider, the NSSplitView
determines the limits of the divider’s travel and tracks the mouse to allow the
user to drag the divider within these limits. With the following mouse-up, the
NSSplitView resizes the two affected subviews, informs the delegate that the
subviews were resized, and displays the affected views and divider. The
NSSplitView ’s delegate can constrain the travel of specific dividers by
implementing the method splitView:constrainMinCoordinate:
maxCoordinate:ofSubviewAt: .

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSplitView.h

1-502 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

adjustSubviews

– (void)adjustSubviews

Adjusts the heights of the subviews so the total height fills the split view. The
subviews are resized proportionally; the size of a subview relative to the other
subviews doesn’t change. This method is invoked if the split view’s delegate
doesn’t respond to a splitView:resizeSubviewsWithOldSize: message.

delegate

– (id)delegate

Returns the split view’s delegate. See also setDelegate: .

dividerThickness

– (float)dividerThickness

Returns the thickness of the divider. See also adjustSubviews ,
drawDividerInRect: .

Activity Class Method

Managing component views – adjustSubviews
– dividerThickness
– drawDividerInRect:

Assigning a delegate – delegate
– setDelegate:

Methods Implemented by the
Delegate

– splitView:constrainMinCoordinate:
maxCoordinate: ofSubviewAt:
– splitView:resizeSubviewsWithOldSize:
– splitViewDidResizeSubviews:
– splitViewWillResizeSubviews:

NSSplitView 1-503

1

drawDividerInRect:

– (void)drawDividerInRect:(NSRect)aRect

Draws a divider between two of the split view’s subviews. aRect describes the
entire divider rectangle in the split view’s coordinates, which are flipped. The
default implementation composites a default image to the center of aRect ; if
you override this method and use a different icon to identify the divider, you
may want to change the height of the divider. See also dividerThickness .

setDelegate:

– (void)setDelegate:(id)anObject

Sets the NSSplitView’s delegate.

Makes anObject the split view’s delegate. The delegate doesn’t need to
implement all the delegate methods. See also delegate .

Methods Implemented by the Delegate

splitView:constrainMinCoordinate:
maxCoordinate: ofSubviewAt:

– (void)splitView:(NSSplitView *)splitView
constrainMinCoordinate:(float *)min
maxCoordinate:(float *)max ofSubviewAt:(int)offset

Sent directly by splitView to the delegate. Allows the delegate to constrain
further min and max vertical travel of a divider. offset is an index that
identifies the dividers in a split view from top to bottom starting with divider
0.

splitView:resizeSubviewsWithOldSize:

– (void)splitView:(NSSplitView *)sender
resizeSubviewsWithOldSize:(NSSize)oldSize

Sent directly by splitView to the delegate. Allows the delegate to add custom
resizing behavior after users resize an splitView. oldSize is the size of the
split view before the user resized it.

1-504 OpenStep Programming Reference—September 1996

1

splitViewDidResizeSubviews:

– (void)splitViewDidResizeSubviews:(NSNotification *)notification

Sent by the default notification center to the delegate; aNotification is
always NSSplitViewDidResizeSubviewsNotification . If the delegate
implements this method, it's automatically registered to receive this
notification.

splitViewWillResizeSubviews:

– (void)splitViewWillResizeSubviews:(NSNotification *)notification

Sent by the default notification center to the delegate; aNotification is
always NSSplitViewWillResizeSubviewsNotification . If the delegate
implements this method, it's automatically registered to receive this
notification.

NSTableColumn

Class Description

An NSTableColumn stores the display characteristics and attribute identifier
for a column in an NSTableView . The NSTableColumn determines the
following characteristics for its column in the NSTableView :

• width and width limits
• resizability
• editability

It also stores two NSCell objects:

• The header cell - which is used to draw the column header
• The data cell - used to draw the values for each row

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject(NSObject)

Declared In: AppKit/NSTableColumn.h

NSTableColumn 1-505

1

You can control the display of the column by setting the NSCell subclasses
used, and by setting the font and other display characteristics for these
NSCell s. For example, you can use the default NSTextFieldCell for
displaying string values or substitute an NSImageCell to display pictures. See
the NSTableView class specification for a general overview.

Method Types

Instance Methods

dataCell

- (id)dataCell

Returns the NSCell object used by the NSTableView to draw values for the
table column.

Activity Class Method

Creating an NSTableColumn – initWithIdentifier:

Setting the identifier – identifier
– setIdentifier:

Setting the NSTableView – tableView
– setTableView:

Controlling size – isResizable
– setResizable:
– maxWidth
– setMaxWidth:
– minWidth
– setMinWidth:
– sizeToFit
– width
– setWidth:

Controlling editability – isEditable
– setEditable:

Setting component cells – dataCell
– setDataCell:
– headerCell
– setHeaderCell:

1-506 OpenStep Programming Reference—September 1996

1

headerCell

- (id)headerCell

Returns the NSTableHeaderCell object used to draw the header of the table
column. You can set the column title by sending setStringValue: to this
object.

initWithIdentifier:

- (id)initWithIdentifier:anObject

Initializes a newly created table column with anObject as its identifier and
with an NSTextFieldCell as its data cell. Send setStringValue: to the
header cell to set the column title. This is the designated initializer for the
NSTableColumn class. Returns self. See the NSTableView class specification
for information on identifiers.

identifier

- (id)identifier

Returns the object used by the data source to identify the attribute
corresponding to the NSTableColumn .

isEditable

- (BOOL)isEditable

Returns YES if the user can edit cells associated with the table column by
double-clicking the column in the NSTableView , and returns NO otherwise.
You can initiate editing programmatically regardless of this setting with
NSTableView 's editColumn:row:withEvent:select: method.

isResizable

- (BOOL)isResizable

Returns YES if the user is allowed to resize the table column in its
NSTableView , and returns NO otherwise. You can change the size
programmatically regardless of this setting.

NSTableColumn 1-507

1

maxWidth

- (float)maxWidth

Returns the maximum width for the table column. The table column's width
can't be made larger than this either by the user or programmatically.

minWidth

- (float)minWidth

Returns the minimum width for the table column. The table column's width
can't be made less than this either by the user or programmatically.

setDataCell:

- (void)setDataCell:(NSCell *)aCell

Sets to aCell the NSCell used by the NSTableView to draw individual
values for the table column. You can use this method to control the font,
alignment, and other text attributes for an table column. You can also assign a
cell to display things other than text (for example, an NSImageCell to display
images).

setEditable:

- (void)setEditable:(BOOL)flag

Sets, according to flag, whether the user is allowed to edit cells for the table
column by double-clicking the column in the NSTableView . You can initiate
editing programmatically regardless of this setting with NSTableView 's
editColumn:row:withEvent:select: method.

setHeaderCell:

- (void)setHeaderCell:(NSCell *)aCell

Sets to aCell the NSCell used to draw the table column's header. aCell
should never be nil .

1-508 OpenStep Programming Reference—September 1996

1

setIdentifier:

- (void)setIdentifier:(id)anObject

Sets the table column's identifier to anObject . This object is used by the data
source to identify the attribute corresponding to the table column.

setMaxWidth:

- (void)setMaxWidth:(float)maxWidth

Sets the table column's maximum width to maxWidth , also adjusting the
current width if it's greater than this value. The NSTableView can be made no
wider than this, either by the user or programmatically.

setMinWidth:

- (void)setMinWidth:(float)minWidth

Sets the table column's minimum width to minWidth , also adjusting the
current width if it's less than this value. The NSTableView can be made no
less wide than this, either by the user or programmatically.

setResizable:

- (void)setResizable:(BOOL)flag

Sets according to flag whether the user can resize the table column in its
NSTableView .

setTableView:

- (void)setTableView:(NSTableView *)aTableView

Sets aTableView as the table column's NSTableView . You should never need
to invoke this method; it's invoked automatically when you add an
NSTableColumn to an NSTableView .

setWidth:

- (void)setWidth:(float)newWidth

NSTableColumn 1-509

1

Sets the table column's width to newWidth . If newWidth exceeds the
minimum or maximum width, it's adjusted to the appropriate limiting value.
Marks the NSTableView as needing display. This method posts
NSTableViewColumnDidResizeNotification on behalf of the table
column's NSTableView .

sizeToFit

- (void)sizeToFit

Resizes the table column to fit the width of its header cell. If the maximum
width is less than the width of the header, the maximum is increased to the
header's width. Similarly, if the minimum width is greater than the width of
the header, the minimum is reduced to the header's width. Marks the
NSTableView as needing display if the width actually changes.

tableView

- (NSTableView *)tableView

Returns the NSTableView that the table column belongs to.

width

- (float)width

Returns the table column width.

1-510 OpenStep Programming Reference—September 1996

1

NSTableHeaderCell

Class Description

An NSTableHeaderCell is used by an NSTableHeaderView to draw its
column headers. See the NSTableView class specification for more
information on how it's used. You can subclass NSTableHeaderCell and
override the drawWithFrame:inView: and
highlight:withFrame:inView: methods to change the way your headers
appear.

Method Types

None declared in this class.

NSTableHeaderView

Class Description

An NSTableHeaderView is used by an NSTableView to draw headers over
its columns and to handle mouse events in those headers. See the
NSTableView class specification for more information.

Characteristic Description

Inherits From: NSTextFieldCell

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTableHeaderCell.h

Characteristic Description

Inherits From: NSView

Conforms To: NSCoding(NSResponder),
NSObject(NSObject)

Declared In: AppKit/NSTableHeaderView.h

NSTableHeaderView 1-511

1

Method Types

Instance Methods

columnAtPoint:

- (int)columnAtPoint:(NSPoint)aPoint

Returns the index of the column whose header lies under aPoint in the
NSTableHeaderView , or -1 is no such column is found. aPoint is expressed
in the NSTableHeaderView 's coordinate system.

draggedColumn

- (int)draggedColumn

If the user is dragging a column in the NSTableView , this method returns the
index of that column. Otherwise the return value is meaningless.

draggedDistance

- (float)draggedDistance

If the user is dragging a column in the NSTableView , returns the column's
horizontal distance from its original position. Otherwise the return value is
meaningless.

headerRectOfColumn:

- (NSRect)headerRectOfColumn:(int)columnIndex

Activity Class Method

Setting the table view – tableView
– setTableView:

Checking altered columns – draggedColumn
– draggedDistance
– resizedColumn

Utility methods – columnAtPoint:
– headerRectOfColumn:

1-512 OpenStep Programming Reference—September 1996

1

Returns the rectangle containing the header tile for the column at
columnIndex . Raises an exception if columnIndex is out of bounds.

resizedColumn

- (int)resizedColumn

If the user is resizing a column in the NSTableView , returns the index of that
column. Otherwise the return value is meaningless.

setTableView:

- (void)setTableView:(NSTableView *)aTableView

Sets aTableView as the NSTableColumn 's NSTableView . You should never
need to invoke this method; it's invoked automatically when you set the
header view for an NSTableView .

tableView

- (NSTableView *)tableView

Returns the NSTableView that the NSTableHeaderView belongs to.

NSTableView

Class Description

NSTableView displays data for a set of related records, with rows
representing individual records and columns representing the attributes of
those records. A record is a set of values for a particular object real-world
entity, such as an employee or a bank account. For example, in a table of

Characteristic Description

Inherits From: NSControl

Conforms To: NSCoding(NSResponder),
NSObject(NSObject)

Declared In: AppKit/NSTableView.h

NSTableView 1-513

1

employee records, each row represents one employee, and the columns
represent such attributes as the first and last name, address, salary, and so on.
An NSTableView is usually displayed in an NSScrollView .

The user selects rows or columns in the table by clicking, and edits individual
cells by double-clicking. The user can also rearrange columns by dragging the
column headers and can resize the columns by dragging the divider between
two column headers. You can configure the table's parameters so that the user
can select more than one rows or columns (or have none selected), so that the
user isn't allowed to edit particular columns or rearrange them, and so on. You
can also specify an action message to be sent when the user double-clicks
something other than an editable cell.

Providing Data for Display

Unlike most NSControl s, an NSTableView doesn't store the data it displays.
Instead, it gets all of its data from an object that you provide, called its data
source. Your data source object can store records in any way, but it must be
able to identify them by integer index and must implement methods to provide
the following information: how many records the data source contains, and
what the value is for a particular record's attribute. If you want to allow the
user to edit the records, you must also provide a method for changing the
value of an attribute. These methods are described in the
NSTableDataSource informal protocol specification.

A record attribute is indicated by an object called its identifier, which is
associated with a column in the NSTableView , as described in “Auxiliary
Components”. The data source uses the identifier as a key to retrieve values for
the attribute. The identifier can be any kind of object that uniquely identifies
attributes for the data source. For example, if you specify identifiers as
NSString s containing the names of attributes, such as Last Name, Address,
and so on, the data source object can use these strings as keys into
NSDictionary objects. See the NSTableDataSource informal protocol
specification for example of how to use identifiers.

Auxiliary Components

As indicated earlier, NSTableView is usually displayed in an NSScrollView
along with its two auxiliary views, the header view and the corner view. The
header view is usually an instance of the NSTableHeaderView class, which

1-514 OpenStep Programming Reference—September 1996

1

draws the column headers and handles column selection, rearranging, and
resizing. The corner view is by default a simple view that merely fills in the
corner above the vertical scroller. You can replace the default corner view with
a custom view; for example, a button that selects all data in the column. See the
method description for setCornerView: for more information.

Since the NSTableView and the NSTableHeaderView both need access to
information about columns (such as their width), this information is
encapsulated in NSTableColumn objects. An NSTableColumn stores its
column's width, and determines whether the user can resize the column or edit
its cells. It also holds an NSCell object that the NSTableHeaderView uses to
draw the column header, and an NSCell object that the NSTableView uses to
draw values in the column (it uses the one NSCell for every column cell).
Finally, the NSTableColumn holds the attribute identifier mentioned in
Providing Data for Display. Columns are usually identified by index, but can
also be identified by their NSTableColumn objects.

The cell for the column header is by default an instance of the
NSTableHeaderCell class; it's used by the NSTableHeaderView to draw the
column's header. An NSTableHeaderCell contains the title displayed over
the column, as well as the font and color for that title. You use the API of its
superclass, NSTextFieldCell , to set a column's title and display attributes
for that title.

The cell for the column values is typically an instance of NSTextFieldCell ,
but can be an instance of any NSCell subclass, such as NSImageCell . This
object is used to draw all values in the column and determines the font,
alignment, text color, and other such display attributes for those values.

Delegate Messages

NSTableView adds a handful of delegate messages to those defined by its
superclass, NSControl . These methods give the delegate control over the
appearance of individual cells in the table, over changes in selection, and over
editing of cells. They're invoked during user actions that affect the
NSTableView , but not when you change things programmatically; when
making changes programmaticaly you decide whether you want the delegate
to intervene and send the appropriate message (checking that the delegate
responds first, of course).

NSTableView 1-515

1

tableView:willDisplayCell:forTableColumn:row: informs the
delegate that the NSTableView is about to draw a particular cell. The delegate
can modify the NSCell provided to alter the display attributes for that cell: for
example, putting uneditable cells in italic or gray text.

tableView:shouldSelectRow: and
tableView:shouldSelectTableColumn: give the delegate control over
whether a particular row or column can be selected by the user (though
columns can still be reordered). This is useful for disabling particular rows or
columns. For example, in a database client application, when another user is
editing a record you might want all other users not to be able to select it.

selectionShouldChangeInTableView: allows the delegate to deny a
change in selection; for example, if the user is editing a cell and enters an
improper value, the delegate can prevent the user from selecting or editing any
other cells until a proper value has been entered into the original cell.

tableView:shouldEditTableColumn:row: asks the delegate whether it's
okay to edit a particular cell. The delegate can approve or deny the request.

1-516 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Setting the data source – dataSource
– setDataSource:

Loading data – reloadData

Setting the delegate – delegate
– setDelegate:

Setting auxiliary views – cornerView
– setCornerView:
– headerView
– setHeaderView:

Configuring behavior – allowsColumnReordering
– setAllowsColumnReordering:
– allowsColumnResizing
– setAllowsColumnResizing:
– allowsColumnSelection
– setAllowsColumnSelection:
– allowsEmptySelection
– setAllowsEmptySelection:
– allowsMultipleSelection
– setAllowsMultipleSelection:

Manuipulating columns – addTableColumn:
– autoresizesAllColumnsToFit
– columnWithIdentifier:
– moveColumn:toColumn:
– removeTableColumn:
– setAutoresizesAllColumnsToFit:
– tableColumns
– tableColumnWithIdentifier:

Setting grid attributes – drawsGrid
– setDrawsGrid:
– gridColor
– setGridColor:

NSTableView 1-517

1

Setting display attributes – backgroundColor
– setBackgroundColor:
– intercellSpacing
– setIntercellSpacing:
– rowHeight
– setRowHeight:

Getting table dimensions – numberOfColumns
– numberOfRows

Layout support – columnsInRect:
– rowsInRect:
– columnAtPoint:
– rowAtPoint:
– frameOfCellAtColumn:row:
– noteNumberOfRowsChanged
– rectOfColumn:
– rectOfRow:
– sizeLastColumnToFit
– tile

Scrolling – scrollColumnToVisible:
– scrollRowToVisible:

Editing cells – editColumn:row:withEvent:select:
– editedColumn
– editedRow

Mouse clicking – clickedColumn
– clickedRow
– doubleAction
– setDoubleAction:

Activity Class Method

1-518 OpenStep Programming Reference—September 1996

1

Instance Methods

addTableColumn:

- (void)addTableColumn:(NSTableColumn *)column

Appends aColumn to the table view. See also removeTableColumn: .

allowsColumnReordering

- (BOOL)allowsColumnReordering

Returns YES if the table view allows the user to rearrange columns by
dragging their headers, and returns NO otherwise. The default is YES. You can
rearrange columns programmatically regardless of this setting. See also
setAllowsColumnReordering: .

Selecting columns and rows – deselectAll:
– selectAll:
– deselectColumn:
– deselectRow:
– isColumnSelected:
– isRowSelected:
– numberOfSelectedColumns
– numberOfSelectedColumns
– selectColumn:byExtendingSelection:
– selectRow:byExtendingSelection:
– selectedColumn
– selectedRow
– selectedColumnEnumerator
– selectedRowEnumerator

Drawing – drawGridInClipRect:
– drawRow:clipRect:
– highlightSelectionInClipRect:

Delegate methods – selectionShouldChangeInTableView:
– tableView:shouldEditTableColumn:row:
– tableView:shouldSelectRow:
– tableView:shouldSelectTableColumn:
– tableView:willDisplayCell:forTableColumn:row:

Activity Class Method

NSTableView 1-519

1

allowsColumnResizing

- (BOOL)allowsColumnResizing

Returns YES if the table view allows the user to resize columns by dragging
between their headers, and returns NO otherwise. The default is YES. You can
resize columns programmatically regardless of this setting. See also
setAllowsColumnResizing: .

allowsColumnSelection

- (BOOL)allowsColumnSelection;

Returns YES if the NSTableView allows the user to select columns by clicking
their headers, NO otherwise. The default is YES. You can select columns
programmatically regardless of this setting. See also
setAllowsColumnSelection: .

allowsEmptySelection

- (BOOL)allowsEmptySelection;

Returns YES if the table view allows the user to select zero columns or rows,
NO otherwise. The default is YES. You can not set an empty selection
programmatically if this setting is NO, unlike with the other settings that affect
selection behavior. See also setAllowsEmptySelection: .

allowsMultipleSelection

- (BOOL)allowsMultipleSelection

Controls whether the the user can select more than one row or column at a
time. If flag is YES the user can select multiple rows or columns; if flag is NO
the user can't. The default is NO. You can select multiple columns or rows
programmatically regardless of this setting. See also
setAllowsMultipleSelection: .

autoresizesAllColumnsToFit

- (BOOL)autoresizesAllColumnsToFit

1-520 OpenStep Programming Reference—September 1996

1

Returns YES if columns are resized to fit, and returns NO otherwise. See also
setAutoresizesAllColumnsToFit: .

backgroundColor

- (NSColor *)backgroundColor

Returns the color used to draw the table view background. The default
background color is light gray. See also setBackgroundColor: .

clickedColumn

- (int)clickedColumn

Returns the index of the column clicked by the user. See also clickedRow .

clickedRow

- (int)clickedRow

Returns the index of the row clicked by the user. See also clickedColumn .

columnAtPoint:

- (int)columnAtPoint:(NSPoint)aPoint

Returns the index of the column that aPoint lies in, or -1 if aPoint lies
outside the table view's bounds. See also rowAtPoint: .

columnsInRect:

- (NSRange)columnsInRect:(NSRect)aRect;

Returns a range of indices for the columns that lie wholly or partially within
the horizontal boundaries of aRect . The location of the range is the first such
column's index, and the length is the number of columns that lie in aRect .
Both the width and height of aRect must be nonzero values, or
columnsInRect: returns an NSRange whose location and length are zero. See
also rowsInRect: .

NSTableView 1-521

1

columnWithIdentifier:

- (int)columnWithIdentifier:(id)identifier;

Returns the index of the first column whose identifier is equal to anObject ,
when compared using isEqual: , or -1 if no columns are found with the
specified identifier. See also tableColumnWithIdentifier: .

cornerView

- (NSView *)cornerView

Returns the NSView used to draw the area to the left of the column headers
and above the vertical scroller of the enclosing NSScrollView . This is by
default a simple view that merely fills in its frame, but you can replace it with
a custom view using setCornerView: . See also setCornerView: .

dataSource

- (id)dataSource

Returns the object that provides the data displayed by the table view. See the
class description and the NSTableDataSource informal protocol specification
for more information. See also setDataSource: .

delegate

- (id)delegate;

Returns the table view's delegate. See also setDelegate: .

deselectAll:

- (void)deselectAll:(id)sender

Deselects all selected rows or columns if empty selection is allowed, otherwise
does nothing. Posts NSTableViewSelectionDidChangeNotification to
the default notification center if the selection does in fact change. As a target-
action method, deselectAll: checks with the delegate before changing the
selection, using selectionShouldChangeInTableView: .

1-522 OpenStep Programming Reference—September 1996

1

deselectColumn:

- (void)deselectColumn:(int)columnIndex

Deselects the column at columnIndex if it's selected, regardless of whether
empty selection is allowed. If the selection does in fact change, posts
NSTableViewSelectionDidChangeNotification to the default
notification center. If the indicated column was the last column selected by the
user, the column nearest it effectively becomes the last selected column. In case
of a tie, priority is given to the column on the left. This method doesn't check
with the delegate before changing the selection. See also deselectRow: .

deselectRow:

- (void)deselectRow:(int)rowIndex

Deselects the row at rowIndex if it's selected, regardless of whether empty
selection is allowed. If the selection does in fact change, posts
NSTableViewSelectionDidChangeNotification to the default
notification center. If the indicated row was the last row selected by the user,
the row nearest it effectively becomes the last selected row. In case of a tie,
priority is given to the row above. This method doesn't check with the delegate
before changing the selection. See also deselectColumn: .

doubleAction

- (SEL)doubleAction

Returns the message sent to the target when the user double-clicks a column
header or an uneditable cell. See also setDoubleAction: .

drawGridInClipRect:

- (void)drawGridInClipRect:(NSRect)clipRect

Draws the grid lines within clipRect , using the grid color set with
setGridColor: . This method draws a grid regardless of whether the table
view is set to draw one automatically. Override this method to draw grid lines
other than the default gray lines.

NSTableView 1-523

1

drawRow:clipRect:

- (void)drawRow:(int)rowIndex clipRect:(NSRect)clipRect

Draws the cells for the row at rowIndex in the columns that intersect
clipRect . Sends tableView:willDisplayCell:forTableColum:row: to
the delegate before drawing each cell. Override this method to customize the
appearance of your subclass.

drawsGrid

- (BOOL)drawsGrid

Returns YES if the table view draws grid lines around cells, and return NO if it
does not. The default is YES. See also setDrawsGrid: .

editColumn:row:withEvent:select:

- (void)editColumn:(int)columnIndex
row:(int)rowIndex
withEvent:(NSEvent *)theEvent
select:(BOOL)select

Edits the cell at columnIndex and rowIndex . Scrolls the table view so that
the cell is visible, sets up the field editor, and sends
selectWithFrame:inView:editor:delegate:start:length: and
editWithFrame:inView:editor:delegate:event: to the field editor's
NSCell object with the table view as the text delegate. This method is invoked
automatically in response to user actions. You should rarely need to invoke it
directly.

editedColumn

- (int)editedColumn

If sent during editColumn:row:withEvent:select: returns the index of
the column being edited; otherwise returns -1. See also editedRow .

editedRow

- (int)editedRow

1-524 OpenStep Programming Reference—September 1996

1

If sent during editColumn:row:withEvent:select: returns the index of
the row being edited; otherwise returns -1. See also editedColumn .

frameOfCellAtColumn:row:

- (NSRect)frameOfCellAtColumn:(int)columnIndex row:(int)rowIndex

Returns a rectangle locating the cell that lies at the intersection of
columnIndex and rowIndex . Returns NSZeroRect if columnIndex or
rowIndex are greater than the number of columns or rows in the table view.
The result of this method is used in a drawWithFrame:inView: message to
the NSTableColumn 's data cell.

gridColor

- (NSColor *)gridColor

Returns the color used to draw grid lines. The default color is gray. See also
setGridColor: .

headerView

- (NSTableHeaderView *)headerView

Returns the NSView used to draw headers over columns, or nil if the
NSTableView has no header view. See the class description and the
NSTableHeaderView class specification for more information.. See also
setHeaderView: .

highlightSelectionInClipRect:

- (void)highlightSelectionInClipRect:(NSRect)clipRect

Highlights the region of the table view in clipRect . This method is invoked
after drawRow:clipRect: . Override this method to change the manner in
which your subclass highlights selections.

intercellSpacing

- (NSSize)intercellSpacing

NSTableView 1-525

1

Returns the horizontal and vertical spacing between cells. The default spacing
is (3.0, 2.0). See also setIntercellSpacing: .

isColumnSelected:

- (BOOL)isColumnSelected:(int)columnIndex

Returns YES if the column at columnIndex is selected, and returns NO
otherwise.isRowSelected:

isRowSelected:

- (BOOL)isRowSelected:(int)rowIndex

Returns YES if the row at rowIndex is selected, and returns NO otherwise. See
also isColumnSelected: .

moveColumn:toColumn:

- (void)moveColumn:(int)columnIndex toColumn:(int)newIndex

Moves the column and heading at columnIndex to newIndex , inserting the
column before the existing column at newIndex . This method posts
NSTableViewColumnDidMoveNotification to the default notification
center, along with an NSDictionary that contains integer NSNumbers for both
the index of the column moved (dictionary key NSOldColumn) and the index
to which it was moved (dictionary key NSNewColumn).

noteNumberOfRowsChanged

- (void)noteNumberOfRowsChanged

Informs the table view that the number of records in its data source has
changed. This method allows the table view to update the scrollers in its
NSScrollView without actually reloading data. It's useful for a data source
that continually receives data in the background over a period of time, in
which case the table view can remain responsive to the user while the data is
loaded. See the NSTableDataSource informal protocol specification for
information on the messages an table view sends to its data source.

1-526 OpenStep Programming Reference—September 1996

1

numberOfColumns

- (int)numberOfColumns

Returns the number of table view columns. See also numberOfRows .

numberOfRows

- (int)numberOfRows

Returns the number of table view rows. See also numberOfColumns .

numberOfSelectedColumns

- (int)numberOfSelectedColumns

Returns the number of selected columns.

numberOfSelectedRows

- (int)numberOfSelectedRows

Returns the number of selected rows. See also numberOfSelectedColumns .

rectOfColumn:

- (NSRect)rectOfColumn:(int)columnIndex

Returns the rectangle containing the column at columnIndex . Raises an
exception if columnIndex lies outside the range of valid column indices for the
table view. See also rectOfRow: .

rectOfRow:

- (NSRect)rectOfRow:(int)rowIndex

Returns the rectangle containing the row at rowIndex . Raises an exception if
columnIndex lies outside the range of valid column indices for the table view.
See also rectOfColumn: .

reloadData

- (void)reloadData

NSTableView 1-527

1

Reloads all values from the data source and redisplays the table view.

removeTableColumn:

- (void)removeTableColumn:(NSTableColumn *)column

Deletes aTableColumn from the table view. See also addTableColumn: .

rowAtPoint:

- (int)rowAtPoint:(NSPoint)point;

Returns the index of the row that aPoint lies in, or -1 if aPoint lies outside
the t table view's bounds. See also columnAtPoint: .

rowHeight

- (float)rowHeight;

Returns the height of each row in the table view. The default row height is 16.0.
See also setRowHeight: .

rowsInRect:

- (NSRange)rowsInRect:(NSRect)aRect;

Returns a range of indices for the rows that lie wholly or partially within the
vertical boundaries of aRect . The location of the range is the first such row's
index, and the length is the number of rows that lie in aRect . Both the width
and height of aRect must be nonzero values, or columnsInRect: returns an
NSRange whose location and length are zero. See also columnsInRect: .

scrollColumnToVisible:

- (void)scrollColumnToVisible:(int)columnIndex

Scrolls the table view and header view horizontally in an enclosing
NSClipView so that the column specified by columnIndex is visible. See also
scrollRowToVisible: .

1-528 OpenStep Programming Reference—September 1996

1

scrollRowToVisible:

- (void)scrollRowToVisible:(int)rowIndex

Scrolls the table view vertically in an enclosing NSClipView so that the row
specified by rowIndex is visible. See also scrollColumnToVisible: .

selectAll:

- (void)selectAll:(id)sender

If the table allows multiple selection, selects all rows or all columns, according
to whether rows or columns were most recently selected; otherwise does
nothing. Posts NSTableViewSelectionDidChangeNotification to the
default notification center if the selection does in fact change. As a target-action
method, deselectAll: checks with the delegate before changing the
selection. See also deselectAll: .

selectColumn:byExtendingSelection:

- (void)selectColumn:(int)columnIndex
byExtendingSelection:(BOOL)extend

Selects the column at columnIndex , regardless of whether column selection is
allowed. If extend is NO, deselects all before selecting the new column. Raises
an exception if multiple selection is not allowed and extend is YES. Posts
NSTableViewSelectionDidChangeNotification to the default
notification center if the selection does in fact change. This method doesn't
check with the delegate before changing the selection. If the user is editing a
cell, editing is simply forced to end and the selection is changed. See also
selectRow:byExtendingSelection: .

selectedColumn

- (int)selectedColumn

Returns the index of the last column selected or added to the selection, or -1 if
no column is selected. See also selectedRow .

selectedColumnEnumerator

- (NSEnumerator *)selectedColumnEnumerator

NSTableView 1-529

1

Returns an object that enumerates the indices of the selected columns as
NSNumbers. See also selectedRowEnumerator .

selectedRow

- (int)selectedRow

Returns the index of the last row selected or added to the selection, or -1 if no
row is selected. See also selectedColumn .

selectedRowEnumerator

- (NSEnumerator *)selectedRowEnumerator

Returns an object that enumerates the indices of the selected rows as
NSNumbers. See also selectedColumnEnumerator .

selectRow:byExtendingSelection:

- (void)selectRow:(int)rowIndex byExtendingSelection:(BOOL)extend;

Selects the row at rowIndex . If extend is NO, deselects all before selecting the
new row. Raises an exception if multiple selection isn't allowed and extend is
YES. Posts NSTableViewSelectionDidChangeNotification to the default
notification center if the selection does in fact change. This method doesn't
check with the delegate before changing the selection. If the user is editing a
cell, editing is simply forced to end and the selection is changed. See also
selectColumn:byExtendingSelection: .

setAllowsColumnReordering:

- (void)setAllowsColumnReordering:(BOOL)flag

Controls whether the user can drag column headers to reorder columns. If
flag is YES the user can reorder columns; if flag is NO the user cannot. The
default is YES. You can rearrange columns programmatically regardless of this
setting. See also allowsColumnReordering .

setAllowsColumnResizing:

- (void)setAllowsColumnResizing:(BOOL)flag

1-530 OpenStep Programming Reference—September 1996

1

Controls whether the user can resize columns by dragging between headers. If
flag is YES the user can resize columns; if flag is NO the user can't. The
default is YES. You can resize columns programmatically regardless of this
setting. See also allowsColumnResizing .

setAllowsColumnSelection:

- (void)setAllowsColumnSelection:(BOOL)flag;

Controls whether the user can select an entire column by clicking its header. If
flag is YES the user can select columns; if flag is NO the user can't. The
default is YES. You can select columns programmatically regardless of this
setting. See also allowsColumnSelection .

setAllowsEmptySelection:

- (void)setAllowsEmptySelection:(BOOL)flag;

Controls whether the table view allows zero rows or columns to be selected. If
flag is YES empty selection is allowed; if flag is NO it isn't. The default is
YES. See also allowsEmptySelection .

setAllowsMultipleSelection:

- (void)setAllowsMultipleSelection:(BOOL)flag;

Returns YES if the table view allows the user to select more than one column or
row at a time, and returns NO otherwise. The default is NO. You can select
multiple columns or rows programmatically regardless of this setting. See also
allowsMultipleSelection .

setAutoresizesAllColumnsToFit:

- (void)setAutoresizesAllColumnsToFit:(BOOL)flag

Controls whether columns are resized to fit. If flag is YES, all columns are
resized to fit; if flag is NO, columns are not resized to fit. See also
autoresizesAllColumnsToFit .

setBackgroundColor:

- (void)setBackgroundColor:(NSColor *)color

NSTableView 1-531

1

Sets the table view's background color to aColor . Doesn't redisplay the table
view or mark it as needing display. See also backgroundColor .

setCornerView:

- (void)setCornerView:(NSView *)cornerView;

Sets the table view's corner view to aView . The default corner view merely
draws a bezeled rectangle, but you can replace it with a custom view that
displays an image or with a control that can handle mouse events, such as a
select-all button. Your custom corner view should be as wide as a vertical
NSScroller and as tall as the NSTableView 's header view. See also
cornerView .

setDataSource:

- (void)setDataSource:(id)aSource

Sets the table view's data source to anObject and invokes tile. anObject
should implement the appropriate methods of the NSTableDataSource
informal protocol. This method raises an exception if anObject doesn't
respond to either numberOfRowsInTableView: or
tableView:objectValueForTableColumn:row: . See also dataSource .

setDelegate:

- (void)setDelegate:(id)delegate;

Sets the table view's delegate to anObject . See also delegate .

setDoubleAction:

- (void)setDoubleAction:(SEL)aSelector

Sets the message sent to the target to aSelector when the user double-clicks
an uneditable cell or a column header. If the double-clicked cell is editable, this
message isn't sent and the cell is edited instead. You can use this method to
implement features such as sorting records according to the column that was
double-clicked. See also doubleAction .

1-532 OpenStep Programming Reference—September 1996

1

setDrawsGrid:

- (void)setDrawsGrid:(BOOL)flag

Controls whether the table view draws grid lines around cells. If flag is YES it
draws grid; if flag is NO it does not draw the grid. The default is YES. See also
drawsGrid .

setGridColor:

- (void)setGridColor:(NSColor *)color

Sets the color used to draw grid lines to aColor . The default color is gray. See
also gridColor .

setHeaderView:

- (void)setHeaderView:(NSTableHeaderView *)headerView;

Sets the table view's header view to to aHeaderView . See also headerView .

setIntercellSpacing:

- (void)setIntercellSpacing:(NSSize)aSize

Sets the width and height between cells to those in aSize and redisplays the
table view. The default intercell spacing is (3.0, 2.0). See also
intercellSpacing .

setRowHeight:

- (void)setRowHeight:(float)rowHeight;

Sets the height for rows to rowHeight and invokes tile . See also
rowHeight .

sizeLastColumnToFit

- (void)sizeLastColumnToFit;

Resizes the last column if there's room so that the table view fits exactly within
its enclosing NSClipView .

NSTableView 1-533

1

tableColumns

- (NSArray *)tableColumns

Returns the NSTableColumn s in the table view.

tableColumnWithIdentifier:

- (NSTableColumn *)tableColumnWithIdentifier:(id)identifier

Returns the NSTableColumn object for the first column whose identifier is
equal to anObject , as compared using isEqual: , or nil if no columns are
found with the specified identifier. See also columnWithIdentifier: .

tile

- (void)tile;

Properly sizes the table view and its header view, and marks the table view as
needing display. Also resets cursor rectangles for the header view and line
scroll amounts for the NSScrollView .

Methods Implemented by the Delegate

selectionShouldChangeInTableView:

- (BOOL)selectionShouldChangeInTableView:(NSTableView *)aTableView

Returns YES to permit a table view to change its selection (typically a row
being edited), NO to deny permission. The user can select and edit different
cells within the same row, but can't select another row unless the delegate
approves. The delegate can implement this method for complex validation of
edited rows based on the values of any of their cells.

tableView:shouldEditTableColumn:row:

- (BOOL)tableView:(NSTableView *)tableView
shouldEditTableColumn:(NSTableColumn *)tableColumn
row:(int)row

1-534 OpenStep Programming Reference—September 1996

1

Returns YES to permit aTableView to edit the cell at rowIndex in
aTableColumn , NO to deny permission. The delegate can implement this
method to disallow editing of specific cells.

tableView:shouldSelectRow:

- (BOOL)tableView:(NSTableView *)aTableView
shouldSelectRow:(int)rowIndex

Returns YES to permit aTableView to select the row at rowIndex , NO to
deny permission. The delegate can implement this method to disallow
selection of particular rows.

tableView:shouldSelectTableColumn:

- (BOOL)tableView:(NSTableView *)aTableView
shouldSelectTableColumn:(NSTableColumn *)aTableColumn

Returns YES to permit aTableView to select aTableColumn , NO to deny
permission. The delegate can implement this method to disallow selection of
particular columns.

tableView:willDisplayCell:forTableColumn:row:

- (void)tableView:(NSTableView *)aTableView
willDisplayCell:(id)aCell
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)row

Informs the delegate that aTableView will display the cell at rowIndex in
aTableColumn using aCell . The delegate can modify the display attributes
of aCell to alter the appearance of the cell. Since aCell is reused for every
row in aTableColumn , the delegate must set the display attributes both when
drawing special cells and when drawing normal cells.

NSText 1-535

1

NSText

Class Description

NSText is an abstract superclass that declares the programmatic interface to
objects that manage text (see NSCStringText for a concrete subclass). NSText
objects are used by the Application Kit wherever text appears in interface
objects: An NSText object draws the title of a window, the commands in a
menu, the title of a button, and the items in a browser. Your application
inherits these uses of the NSText class when it incorporates any of these
objects into its interface. Your application can also create NSText objects for its
own purposes.

The NSText class is unlike most other classes in the Application Kit in its
complexity and range of features. One of its design goals is to provide a
comprehensive set of text-handling features so that you’ll rarely need to create
a subclass. An NSText object can (among other things):

• Control the color of its text and background.

• Control the font and layout characteristics of its text.

• Control whether text is editable.

• Wrap text on a word or character basis.

• Display graphic images within its text.

• Write text to or read text from files in the form of RTFD—Rich Text Format
files that contain TIFF or EPS images.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between NSText
objects.

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling
NSIgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextView.h

1-536 OpenStep Programming Reference—September 1996

1

• Let the user check the spelling of words in its text.

• Let the user control the format of paragraphs by manipulating a ruler.

Graphical user-interface building tools (such as Interface Builder) may give
you access to NSText objects in several different configurations, such as those
found in the NSTextField , NSForm, and NSScrollView objects. These
classes configure an NSText object for their own specific purposes.
Additionally, all NSTextField s, NSForms, NSButton s within the same
window—in short, all objects that access an NSText object through associated
NSCell s—share the same NSText object, reducing the memory demands of an
application. Thus, it’s generally best to use one of these classes whenever it
meets your needs, rather than create NSText objects yourself. If one of these
classes doesn’t provide enough flexibility for your purposes, you can create
NSText objects programatically.

Plain and Rich NSText Objects

When you create an NSText object directly, by default it allows only one font,
line height, text color, and paragraph format for the entire text. Once an
NSText object is created, you can alter its global settings using methods such
as setFont: and setTextColor: . For convenience, such an NSText object
will be called a plain NSText object.

To allow multiple values for attributes such as font and color, you must send
the NSText object a setRichText:YES message. An NSText object that
allows multiple fonts also allows multiple paragraph formats, line heights, and
so on. For convenience, such an NSText object will be called a rich NSText
object.

NSText 1-537

1

A rich NSText object can use RTF (Rich Text Format) as an interchange format.
Not all RTF control words are supported: On input, an NSText object ignores
any control word it doesn’t recognize; some of those it can read and interpret it
doesn’t write out. These are the RTF control words that an NSText object
recognizes.

Table 1-24 RTF Control Words Recognized by the NSText Object

Control Word Read Write

\ansi yes yes

\b yes yes

\cb yes yes

\cf yes yes

\colortbl yes yes

\dnn yes yes

\fin yes yes

\fn yes yes

\fonttbl yes yes

\fsn yes yes

\i yes yes

\lin yes yes

\margrn yes yes

\paperwn yes yes

\mac yes no

\margln yes yes

\par yes yes

\pard yes no

\pca yes no

\qc yes yes

\ql yes yes

\qr yes yes

1-538 OpenStep Programming Reference—September 1996

1

NSText objects are designed to work closely with various other objects. Some
of these—such as the delegate or an embedded graphic object—require a
degree of programming on your part. Others—such as the Font panel, spelling
checker, or ruler—take no effort other than deciding whether the service
should be enabled or disabled. The following sections discuss these
interrelationships.

Notifying the NSText Object's Delegate

Many of an NSText object’s actions can be controlled through an associated
object, the NSText object’s delegate. If it implements any of the following
methods, the delegate receives the corresponding message at the appropriate
time:

• textDidBeginEditing:
• textDidChange:
• textDidEndEditing:
• textShouldBeginEditing:
• textShouldEndEditing:

For example, if the delegate implements the textDidBeginEditing:
method, it will receive notification when the user first attempts to change the
text. Depending on the method’s return value, the delegate can either allow or
prohibit changes to the text. See “Methods Implemented by the Delegate”. The
delegate can be any object you choose, and one delegate can control multiple
NSText objects.

Adding Graphics to the Text

A rich NSText object allows graphics to be embedded in the text. Each graphic
is treated as a single (possibly large) “character”: The text’s line height and
character placement are adjusted to accommodate the graphic “character.”

\sn yes no

\tab yes yes

\upn yes yes

Table 1-24 RTF Control Words Recognized by the NSText Object

Control Word Read Write

NSText 1-539

1

Graphics are embedded in the text in either of two ways: programmatically or
directly through user actions. In the programmatic approach, graphic objects
are added using the replaceRange:WithRTFD: method.

An alternate means of adding an image to the text is for the user to drag an
EPS or TIFF file icon directly into an NSText object. The NSText object
automatically creates a graphic object to manage the display of the image. This
feature requires a rich NSText object that has been configured to receive
dragged images—see the setImportsGraphics: method.

Images that have been imported in this way can be written as RTFD
documents. Programmatic creation of RTFD documents is not supported in this
version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file
package has the name of the document plus a .rtfd extension. The file
package always contains a file called TXT.rtf for the text of the document,
and one or more TIFF or EPS files for the images. An NSText object can
transfer information in an RTFD document to a file and read it from a file—see
the writeRTFDToFile:atomically: and readRTFDFromFile: methods.

Cooperating with Other Objects and Services

NSText objects are designed to work with the Application Kit’s font
conversion system. By default, an NSText object keeps the Font panel updated
with the font of the current selection. It also changes the font of the selection
(for a rich NSText object) or of the entire text (for a default NSText object) to
reflect the user’s choices in the Font panel or menu. To disconnect an NSText
object from this service, send it a setUsesFontPanel:NO message.

If an NSText object is a subview of an NSScrollView , it can cooperate with
the NSScrollView to display and update a ruler that displays formatting
information. The NSScrollView retiles its subviews to make room for the
ruler, and the NSText object updates the ruler with the format information of
the paragraph containing the selection. The toggleRuler: method controls
the display of this ruler. Users can modify paragraph formats by manipulating
the components of the ruler.

Coordinates and sizes mentioned in the method descriptions that follow are in
PostScript units—1/72 of an inch.

1-540 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Getting and setting contents – replaceCharactersInRange:withRTF:
– replaceCharactersInRange:withRTFD:
– replaceCharactersInRange:withString:
– replaceRange:withRTF:
– replaceRange:withRTFD:
– RTFDFromRange:
– RTFFromRange:
– setString:
– setText:
– setText:range:
– string

Managing global chracteristics – alignment
– drawsBackground
– importsGraphics
– isEditable
– isRichText
– isSelectable
– setAlignment:
– setDrawsBackground:
– setEditable:
– setImportsGraphics:
– setRichText:
– setSelectable:

Managing font and color – backgroundColor
– changeFont:
– font
– setBackgroundColor:
– setTextColor:range:
– setFont:
– setFont:range:
– setTextColor:
– setTextColor:range:
– setUsesFontPanel:
– textColor
– usesFontPanel

Managing the selection – selectedRange
– setSelectedRange:

NSText 1-541

1

Sizing the frame rectangle – isHorizontallyResizable
– isVerticallyResizable
– maxSize
– minSize
– setHorizontallyResizable:
– setMaxSize:
– setMinSize:
– setVerticallyResizable:
– sizeToFit

Responding to Editing Commands – alignCenter:
– alignLeft:
– alignRight:
– copy:
– copyFont:
– copyRuler:
– cut:
– delete:
– paste:
– pasteFont:
– pasteRuler:
– selectAll:
– subscript:
– superscript:
– underline:
– unscript:

Managing the ruler – isRulerVisible
– toggleRuler:

Spelling – checkSpelling:
– showGuessPanel:

Scrolling – scrollRangeToVisible:

Reading and Writing RTFD files – readRTFDFromFile:
– writeRTFDToFile:atomically:

Activity Class Method

1-542 OpenStep Programming Reference—September 1996

1

Instance Methods

alignCenter:

– (void)alignCenter:(id)sender

Centers the selected text between the margins. The sending object passes its id
as part of the alignCenter: message. The text is rewrapped and redrawn.
See also alignLeft: , alignRight: , alignment .

alignLeft:

– (void)alignLeft:(id)sender

Aligns selected text to the left margin. The sending object passes its id as part
of the align Left : message. The text is rewrapped and redrawn.

alignRight:

– (void)alignRight:(id)sender

Aligns selected text to the right margin. The sending object passes its id as
part of the alignRight: message. The text is rewrapped and redrawn. See
also alignLeft: , alignCenter: , alignment .

alignment

– (NSTextAlignment)alignment

Managing the field editor – isFieldEditor
– setFieldEditor:

Managing the delegate – delegate
– setDelegate:

Methods Implemented by the
Delegate

– textDidBeginEditing:
– textDidChange:
– textDidEndEditing:
– textShouldBeginEditing:
– textShouldEndEditing:

Activity Class Method

NSText 1-543

1

Returns how text in the NSText object is aligned between the margins. The
return value can be one of the following constants:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See also setAlignment: .

backgroundColor

– (NSColor *)backgroundColor

Returns the background color for the NSText object. See also
setBackgroundColor: , textColor .

changeFont:

– (void)changeFont:(id)sender

Changes the font of the selection for a rich NSText object. It changes the font
for the entire NSText object for a plain NSText object. sender must respond
to the convertFont: message. If the NSText object’s delegate implements the
method, it receives a textWillConvert:fromFont:toFont: message for
each text run that’s about to be converted.

checkSpelling:

– (void)checkSpelling:(id)sender

Searches for a misspelled word in the text of the receiving NSText object. The
search starts at the current selection and continues until it reaches a word
suspected of being misspelled or the end of the text. If a word isn’t recognized
by the spelling server or listed in the user’s local dictionary, it’s highlighted. A
showGuessPanel: message will then display the Guess panel and allow the
user to make a correction or add the word to the local dictionary.

copy:

– (void)copy:(id)sender

1-544 OpenStep Programming Reference—September 1996

1

Copies the selected text from the NSText object to the pasteboard. The
selection remains unchanged. The pasteboard receives the text and its
corresponding run information. The pasteboard types used are
NSStringPboardType and NSRTFPboardType . See also copyFont: ,
copyRuler: , cut: , delete: , paste: .

copyFont:

– (void)copyFont:(id)sender

Copies font information for the selected text to the font pasteboard. If the
selection spans more than one font, the information copied is that of the first
font in the selection. The selection remains unchanged. The pasteboard type
used is NSFontPboardType . The sender passes its id as the argument of the
copyFont: message. See also pasteFont: , copy: , copyRuler: .

copyRuler:

– (void)copyRuler:(id)sender

Copies the selected text’s ruler to the pasteboard. The selection expands to
paragraph boundaries. The ruler controls a paragraph’s text alignment, tab
settings, and indentation. If the selection spans more than one paragraph, the
information copied is that of the first paragraph in the selection. The
pasteboard type used is NSRulerPboardType . Once copied to the pasteboard,
ruler information can be pasted into another object or application that’s able to
paste RTF data into its document. The sender passes its id as the message
argument. See also pasteRuler: , copy: , copyFont: .

cut:

– (void)cut:(id)sender

Copies the selected text to the pasteboard and then deletes it from the NSText
object. The pasteboard receives the text and its corresponding font information.
If the NSText object’s delegate implements the method, it receives a
textDidChange: message immediately after the cut operation. If this is the
first change since the NSText object became the first responder (and the
delegate implements the method), a textDidEndEditing: message is also
sent to the delegate. The sender passes its id as part of the cut: message. See
also paste: , copy: , delete: .

NSText 1-545

1

delegate

– (id)delegate

Returns the delegate of the NSText object. See also setDelegate: .

delete:

– (void)delete:(id)sender

Deletes the selected text without adding it to the pasteboard. This method
posts the notification NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.
(NSTextDidEndEditingNotification gets posted when the first responder
changes.) If the NSText object’s delegate implements the method, it receives a
textDidChange: message immediately after the cut operation. If this is the
first change since the NSText object became the first responder and the
delegate implements the method, a textDidEndEditing: message is also
sent to the delegate. The sender passes its id as part of the cut: message. See
also paste: , copy: , cut: .

drawsBackground

– (BOOL)drawsBackground

Returns YES if the NSText object draws its own background, and returns NO
otherwise. See also setDrawsBackground: .

font

– (NSFont *)font

Returns the default NSFont object for the NSText object. See also setFont: ,
changeFont: .

importsGraphics

– (BOOL)importsGraphics

1-546 OpenStep Programming Reference—September 1996

1

Returns YES if the NSText object can import TIFF and EPS images dragged
into it by the user, and returns NO otherwise. The default is NO. See also
setImportsGraphics: , isRichText .

isEditable

– (BOOL)isEditable

Returns YES if users can edit the NSText object, and returns NO otherwise. The
default is YES. See also setEditable: , isSelectable .

isFieldEditor

– (BOOL)isFieldEditor

Returns YES if the receiving NSText object gives up first responder status on
tab, carriage return, and so on, and returns NO otherwise. The default is YES.
See also setFieldEditor: .

isHorizontallyResizable

– (BOOL)isHorizontallyResizable

Returns YES if the frame width can automatically change size, and returns NO
otherwise. The default is NO. See also setHorizontallyResizable: ,
isVerticallyResizable .

isRichText

– (BOOL)isRichText

Returns YES if the text in the NSText object is RTF, and returns NO otherwise.
See also setRichText: .

isRulerVisible

– (BOOL)isRulerVisible

Returns YES if the ruler is visible in the NSText object’s superview; otherwise,
returns NO. See also toggleRuler: .

NSText 1-547

1

isSelectable

– (BOOL)isSelectable

Returns YES if the text can be selected, NO if not. The default value is YES. See
also setSelectable: .

isVerticallyResizable

– (BOOL)isVerticallyResizable

Returns YES if the frame height can automatically change size vertically, NO if
not. The default value is NO. See also setVerticallyResizable: ,
isHorizontallyResizable .

maxSize

– (NSSize)maxSize

Gets the maximum size of the NSText object’s frame. See also setMaxSize: ,
minSize .

minSize

– (NSSize)minSize

Gets the minimum size of the NSText object’s frame. See also setMinSize: ,
maxSize .

paste:

– (void)paste:(id)sender

Replaces the selected text with the contents of the pasteboard. This method
posts the notification NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.

pasteFont:

– (void)pasteFont:(id)sender

1-548 OpenStep Programming Reference—September 1996

1

Places the contents of the selection pasteboard into the NSText object at the
position of the current selection. If the selection is zero-width, the text is
inserted at the caret. If the selection has positive width, the selection is
replaced by the contents of the pasteboard. In either case, the text is rewrapped
and redrawn. sender is the id of the sending object.

Before the paste operation, a textDidBeginEditing: message is sent to the
delegate, assuming that this is the first change since the NSText object became
the first responder and that the delegate implements the method. After the
paste operation, the delegate receives a textDidChange: message, if it
implements the method.

This method posts the NSTextDidChangeNotification notification with the
receiving object to the default notification center and may post the
NSTextDidBeginEditing notification as well.

pasteRuler:

– (void)pasteRuler:(id)sender

Takes ruler information from the ruler pasteboard and applies it to the
paragraph or paragraphs marked by the current selection. The ruler controls a
paragraph’s text alignment, tab settings, and indentation. sender is the id of
the sending object. After the ruler is pasted, the text is rewrapped and
redrawn. If the ruler is visible, it’s also updated.

pasteRuler: works only with rich NSText objects. Attempting to paste a
ruler into a plain NSText object generates a system beep without altering any
ruler settings. Before the paste operation, a textDidBeginEditing: message
is sent to the delegate, assuming that this is the first change since the Text
object became the first responder and that the delegate implements the
method. After the paste operation, the delegate receives a textDidChange:
message, if it implements the method. See also copyRuler: , pasteFont: ,
paste: , copy: .

readRTFDFromFile:

– (BOOL)readRTFDFromFile:(NSString *)path

Reads RTFD or RTF data from the file package specified by path and
initializes an NSText object with it; returns whether the operation succeeded.
See also writeRTFDToFile:atomically: , RTFFromRange: .

NSText 1-549

1

replaceCharactersInRange:withRTF:

– (void)replaceCharactersInRange:(NSRange)range
withRTF:(NSData *)rtfData

Replaces the characters within the specified range of text with the RTF data
rtfData . This message is sent in response to pasting RTF data from the
pasteboard. See also replaceCharactersInRange:withRTFD: ,
replaceCharactersInRange:withString: .

replaceCharactersInRange:withRTFD:

– (void)replaceCharactersInRange:(NSRange)range
withRTFD:(NSData *)rtfdData

Replaces the characters within the specified range of text with the RTFD data
rtfdData . This message is sent in response to pasting RTFD data from the
pasteboard. After replacing the selection, this method rewraps and redisplays
the text. See also replaceCharactersInRange:withRTF: ,
replaceCharactersInRange:withString: .

replaceCharactersInRange:withString:

– (void)replaceCharactersInRange:(NSRange)range
withString:(NSString *)string

Replaces the characters in the specified range of text in the text object to be
string . See also replaceCharactersInRange:withRTF: ,
replaceCharactersInRange:withRTFD: .

replaceRange:withRTF:

– (void)replaceRange:(NSRange)range withRTF:(NSData *)rtfData

Replaces the characters within the specified range of text with the RTF data
rtfData . This message is sent in response to pasting RTF data from the
pasteboard. This method is not part of the OpenStep specification. See also
replaceRange:withRTF: , RTFFromRange: .

replaceRange:withRTFD:

– (void)replaceRange:(NSRange)range withRTFD:(NSData *)rtfdData

1-550 OpenStep Programming Reference—September 1996

1

Replaces the characters within the specified range of text with the RTFD data
rtfdData . This message is sent in response to pasting RTFD data from the
pasteboard. After replacing the selection, this method rewraps and redisplays
the text. This method is not part of the OpenStep specification. See also
replaceRange:withRTF: , RTFDFromRange: .

RTFFromRange:

– (NSData *)RTFFromRange:(NSRange)range

Extracts the specified range of RTF text from the NSText object and returns a
data object initialized with that text. This data is formatted according to the
RTF file format. See also RTFDFromRange: , NSData .

RTFDFromRange:

– (NSData *)RTFDFromRange:(NSRange)range

Extracts the specified range of RTFD text from the NSText object and returns
an data object initialized with that text. See also RTFFromRange: , NSData .

scrollRangeToVisible:

– (void)scrollRangeToVisible:(NSRange)range

Scrolls the NSText object so that the range of text is visible.

selectAll:

– (void)selectAll:(id)sender

Selects all text in the NSText object.

selectedRange

– (NSRange)selectedRange

Returns the range of the selected text in the NSText object.

setAlignment:

– (void)setAlignment:(NSTextAlignment)mode

NSText 1-551

1

Sets how the text in the NSText object is aligned between the margins. The
return value can be one of the following constants:

• NSLeftTextAlignment
• NSRightTextAlignment
• NSCenterTextAlignment
• NSJustifiedTextAlignment
• NSNaturalTextAlignment

See also alignment .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)color

Sets the background color for the NSText object. color is displayed the next
time the text is redrawn; this message doesn’t cause the text to be redrawn. See
also backgroundColor , textColor , setTextColor:range: .

setDelegate:

– (void)setDelegate:(id)anObject

Makes anObject the NSText object’s delegate. In response to user input, the
NSText object can send the delegate any of several notification messages. See
the class description for more information. See also delegate .

setDrawsBackground:

– (void)setDrawsBackground:(BOOL)flag

Sets whether the NSText object draws its own background.

setEditable:

– (void)setEditable:(BOOL)flag

Sets whether users can edit text in the NSText object. If flag is YES, the text is
editable; if NO, the text is read-only. By default, text is editable. See also
isEditable , setSelectable: .

1-552 OpenStep Programming Reference—September 1996

1

setFieldEditor:

– (void)setFieldEditor:(BOOL)flag

Sets whether the receiving NSText object is to be used as a field editor. flag
indicates whether to end on carriage return, tab, or other terminating character.
See also NSFieldFilter() and NSEditorFilter() (Application Kit
“Functions” chapter).

setFont:

– (void)setFont:(NSFont *)obj

Sets the default font for the text object. The entire text is then rewrapped and
redrawn. See also setFont:range: , changeFont: .

setFont:range:

– (void)setFont:(NSFont *)font range:(NSRange)range

Sets the font for the specified range of text in the text object to font . The text
is then rewrapped and redrawn. See also setFont: .

setHorizontallyResizable:

– (void)setHorizontallyResizable:(BOOL)flag

Sets whether the frame’s width can change size horizontally. If flag is YES, the
text object’s frame rectangle can change in the horizontal dimension in
response to additions or deletions of text; if NO, it can’t. By default, the text
objects can’t change size.

setImportsGraphics:

– (void)setImportsGraphics:(BOOL)flag

Sets whether the text object can import TIFF and EPS images dragged into it by
the user. By default, text objects refuse to import such images. See
importsGraphics .

NSText 1-553

1

setMaxSize:

– (void)setMaxSize:(NSSize)newMaxSize

Sets the maximum size of the text object to newMaxSize . This maximum size is
ignored if the text object can’t be resized. The default maximum size is {0.0,
0.0}. See also maxSize , setMinSize: .

setMinSize:

– (void)setMinSize:(NSSize)newMinSize

Sets the minimum size of the text object to newMinSize . This size is ignored if
the text object can’t be resized. The default minimum size is {0.0, 0.0}. See also
minSize , setMaxSize: .

setRichText:

– (void)setRichText:(BOOL)flag

Sets whether the text in the text object allows for multiple values of attributes,
such as color and font (that is, RTF and RTFD). See also isRichText .

setSelectable:

– (void)setSelectable:(BOOL)flag

Sets whether users can select text in the text object. By default, text is
selectable. See also isSelectable , setSelectedRange: , setEditable: .

setSelectedRange:

– (void)setSelectedRange:(NSRange)range

Makes the text object the first responder and then selects and highlights a
portion of the text described by range . See also setSelectable: , NSRange.

setString:

– (void)setString:(NSString *)string

1-554 OpenStep Programming Reference—September 1996

1

Replaces the current text with the text referred to by aString . The text object
then wraps and redraws the text if autodisplay is enabled. This method doesn’t
affect the object’s frame or bounds rectangle. To resize the text rectangle to
make the text entirely visible, use the sizeToFit method. See also
setString: .

setText:

– (void)setText:(NSString *)string

Replaces the current text with the text referred to by aString . The text object
then wraps and redraws the text if autodisplay is enabled. This method doesn’t
affect the object’s frame or bounds rectangle. To resize the text rectangle to
make the text entirely visible, use the sizeToFit method. This method is not
part of the OpenStep specification. See also setString: ,setText:range: ,
string , replaceRange:withRTF: .

setTextColor:range:

– (void)setTextColor:(NSColor *)color range:(NSRange)range

Sets the color for the specified range of text in the NSText object to color .
See also textColor , setTextColor: , setFont:range: .

setText:range:

– (void)setText:(NSString *)string range:(NSRange)range

Replaces the characters in the specified range of text in the text object to be
string . This method is not part of the OpenStep specification. See also
setText: , NSRange, NSString .

setTextColor:

– (void)setTextColor:(NSColor *)color

Sets color as the display color for the entire text. This method doesn’t redraw
the text. See also textColor , setTextColor:range: ,
setBackgroundColor: .

NSText 1-555

1

setUsesFontPanel:

– (void)setUsesFontPanel:(BOOL)flag

Sets whether the text object will respond to the changeFont: message issued
by the Font panel. If enabled, the text object will allow the user to change the
font of the selection for a rich text object. For a plain text object, the font for the
entire text is changed. If enabled, the text object also updates the Font panel’s
font selection information. See also usesFontPanel .

setVerticallyResizable:

– (void)setVerticallyResizable:(BOOL)flag

Sets whether the text frame can change size vertically. If flag is YES, the text
object’s frame rectangle can change in the vertical dimension in response to
additions or deletions of text; if NO, it can’t. By default, a text object can’t
change size. See also isVerticallyResizable ,
setHorizontallyResizable: .

showGuessPanel:

– (void)showGuessPanel:(id)sender

Displays the spell-checker’s Show Guess panel, which offers suggested
alternate spellings for a word that’s suspected of being misspelled. The user
can either accept one of the alternates, add the word to a local dictionary, or
skip the word. A word becomes a candidate for the Guess panel’s actions by
being selected as the result of the text object’s receiving a checkSpelling:
message. See also checkSpelling: .

sizeToFit

– (void)sizeToFit

Modifies the frame rectangle to completely display the text. This is often used
with text objects in an NSScrollView object. The
setHorizontallyResizable: and setVerticallyResizable: methods
determine whether the text object will resize horizontally or vertically (by
default, it won’t change size in either dimension). After receiving a calcLine

1-556 OpenStep Programming Reference—September 1996

1

(NSCStringText) message, a text object that is the document view of an
NSScrollView sends itself a sizeToFit message. See also calcLine
(NSCStringText).

string

– (NSString *)string

Returns the contents of the text object as an immutable string object. See also
setText: .

subscript:

– (void)subscript:(id)sender

Subscripts the current selection. The text is then rewrapped and redrawn. The
text is subscripted by 40% of the selection’s font height. See also
superscript: , unscript: .

superscript:

– (void)superscript:(id)sender

Superscripts the current selection. The text is then rewrapped and redrawn.
The text is superscripted by 40% of the selection’s font height. See also
subscript: , unscript: .

textColor

– (NSColor *)textColor

Returns the text object’s color for drawing text. See also setTextColor: .

toggleRuler:

– (void)toggleRuler:(id)sender

Controls the display of the ruler. This method has effect only if the receiving
text object is a rich text object, and is a subview of an NSScrollView . This
method causes the NSScrollView to display a ruler if one isn’t already

NSText 1-557

1

present, or to remove the ruler if one is. When the ruler is displayed, its
settings reflect the paragraph style of the paragraph containing the selection.
sender is the id of the sending object. See also isRulerVisible .

underline:

– (void)underline:(id)sender

Adds an underline to the selected text if one doesn’t already exist or removes
the underline if it does. If the selection is zero-width, this method affects the
underline attribute of text that’s subsequently entered at the insertion point.
sender is the id of the sending object. See also subscript: .

unscript:

– (void)unscript:(id)sender

Removes superscript or subscript in the current selection. The text is then
rewrapped and redrawn. See also superscript: , subscript: .

usesFontPanel

– (BOOL)usesFontPanel

Returns YES if the text object will respond to the Font panel, NO if not. The
default is YES. See also setUsesFontPanel: .

writeRTFDToFile:atomically:

– (BOOL)writeRTFDToFile:(NSString *)path atomically:(BOOL)flag

Writes RTFD data from the receiving text object to the file package specified by
path . flag determines whether writing occurs atomically. Returns whether or
not the operation succeeded. See also readRTFDFromFile: .

Methods Implemented by the Delegate

textDidBeginEditing:

– (void)textDidBeginEditing:(NSNotification *)aNotification

1-558 OpenStep Programming Reference—September 1996

1

Sent by the default notification center to the delegate; aNotification is
always NSTextDidBeginEditingNotification . If the delegate implements
this method, it’s automatically registered to receive this notification.

textDidChange:

– (void)textDidChange:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSTextDidChangeNotification . If the delegate implements this
method, it’s automatically registered to receive this notification.

textDidEndEditing:

– (void)textDidEndEditing:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is
always NSTextDidEndEditingNotification . If the delegate implements
this method, it’s automatically registered to receive this notification.

textShouldBeginEditing:

– (BOOL)textShouldBeginEditing:(NSText *)textObject

Sent directly by textObject to the delegate. Informs delegate of an
impending textual change. A return value of YES means go ahead and make
the change.

textShouldEndEditing:

– (BOOL)textShouldEndEditing:(NSText *)textObject

Sent directly by textObject to the delegate. Warns delegate of the impending
loss of first responder status. A return value of YES means go ahead and
change status.

NSTextField 1-559

1

NSTextField

Class Description

An NSTextField is an NSControl object that can display a piece of text that
a user can select or edit, and which sends an action message to its target if the
user presses the Return key while editing. An NSTextField can also be linked
to other NSTextField s, so that when the user presses Tab or Shift-Tab, the
object assigned as the “next” or “previous” field gets a message to select its
text.

An NSTextField is a good alternative to an NSText object for small regions
of editable text, since the display of the NSTextField is achieved by using a
global NSText object shared by objects all over your application, which saves
on memory usage. Each NSWindow also has an NSText object used for editing
of NSTextField s (and NSTextFieldCell s in NSMatrix s). An NSWindow’s
global NSText object is called a field editor, since it’s attached as needed to an
NSTextField to perform its editing. NSTextField allows you to specify an
object to act as an indirect delegate to the field editor; the NSTextField itself
acts as the NSText delegate if it needs to, then passes the delegate method on
to its own NSText delegate.

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextField.h

1-560 OpenStep Programming Reference—September 1996

1

Method Types

Instance Methods

acceptsFirstResponder

– (BOOL)acceptsFirstResponder

Returns YES if text is editable or selectable, and returns NO otherwise.

Activity Class Method

Setting user access to text – isEditable
– isSelectable
– setEditable:
– setSelectable:

Editing text – selectText:

Setting Tab key behavior – nextText
– previousText
– setNextText:
– setPreviousText:

Assigning a delegate – delegate
– setDelegate:

Modifying graphic attributes – backgroundColor
– drawsBackground
– isBezeled
– isBordered
– setBackgroundColor:
– setBezeled:
– setBordered:
– setDrawsBackground:
– setTextColor:
– textColor

Target and action – errorAction
– setErrorAction:

Handling events – acceptsFirstResponder
– textDidBeginEditing:
– textDidChange:
– textDidEndEditing:
– textShouldBeginEditing:
– textShouldEndEditing:

NSTextField 1-561

1

backgroundColor

– (NSColor *)backgroundColor

Returns the background color of the background. See also
setBackgroundColor: .

delegate

– (id)delegate

Returns the delegate for messages from the field editor. See also
setDelegate: .

drawsBackground

– (BOOL)drawsBackground

Returns YES if the NSTextField draws its own background. See also
setDrawsBackground: .

errorAction

– (SEL)errorAction

Returns the action sent to the text field target when the user enters an illegal
value for the cell type (as set by NSCell ’s setEntryType: method and
checked by NSCell ’s isEntryAcceptable: method). See also
setErrorAction: .

isBezeled

– (BOOL)isBezeled

Returns YES if the text is drawn in a bezeled frame. See also setBezeled: ,
isBordered .

isBordered

– (BOOL)isBordered

Returns YES if the text has a solid black border around it. See also
setBordered: , isBezeled .

1-562 OpenStep Programming Reference—September 1996

1

isEditable

– (BOOL)isEditable

Returns YES if the text is editable and selectable, NO if the text is not editable
(though it may be selectable). See also setEditable: , isSelectable .

isSelectable

– (BOOL)isSelectable

Returns YES if the text is selectable, NO otherwise. Selectable text isn’t necessarily
editable. See also setSelectable: , isEditable .

nextText

– (id)nextText

Returns the object whose text is selected when the user presses Tab while editing
the text field. If that object responds to the selectText: message, the current
text field is deactivated and selectText: is sent to the next text. See also
setNextText: , previousText .

previousText

– (id)previousText

Returns the object that is selected when the user presses Shift-Tab while editing
the text field. If that object responds to the selectText: message, the current
text field is deactivated and selectText: is sent to the previous text. See also
setPreviousText: , nextText .

selectText:

– (void)selectText:(id)sender

Selects the entire contents of the receiving text field if it is editable or selectable.
If the text field isn’t in a view hierarchy, it has no effect. See also isSelectable .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)aColor

NSTextField 1-563

1

Sets the color of the background to aColor . See also backgroundColor .

setBezeled:

– (void)setBezeled:(BOOL)flag

If flag is YES, the NSTextField is drawn with a bezel around the edge; if
flag is NO, nothing is drawn around the text. Bezels and borders are mutually
exclusive. See also isBezeled , setBordered: .

setBordered:

– (void)setBordered:(BOOL)flag

If flag is YES, a 1-pixel black border will be drawn around the text; if flag is
NO, nothing is drawn around the text. Borders and bezels are mutually exclusive.
Does not affect the background color. See also isBordered , setBezeled: .

setDelegate:

– (void)setDelegate:(id)anObject

Sets the delegate for messages from the field editor to anObject . See also
delegate .

setDrawsBackground:

– (void)setDrawsBackground:(BOOL)flag

Sets whether the text field draws its own background color. See also
drawsBackground .

setEditable:

– (void)setEditable:(BOOL)flag

If flag is YES, then the text in the text field is made both editable and selectable.
If flag is NO, the text can’t be edited, and is restored to its previous selectable
state. For example, if a t ext field is set selectable but not editable, then made
editable for a time, then made not editable again, it will remain selectable. To
guarantee that text will be neither editable nor selectable, simply turn off
selectability explicitly. See also isEditable , setSelectable: .

1-564 OpenStep Programming Reference—September 1996

1

setErrorAction:

– (void)setErrorAction:(SEL)aSelector

Sets the action sent to the text field’s target when the user enters an illegal value
for the NSCell ’s entry type as set by NSCell ’s setEntryType: method and
checked by NSCell ’s isEntryAcceptable: method. See also errorAction .

setNextText:

– (void)setNextText:(id)anObject

Sets the object selected when the user presses Tab while editing the text field’s
text. anObject should respond to the selectText: message. If anObject
also responds to both selectText: and setPreviousText: , it is sent
setPreviousText: with the receiving text field as the argument; this builds a
two-way connection, so that pressing Tab in the text field selects anObject ’s
text, and pressing Shift-Tab in anObject selects the text field’s text. See also
nextText .

setPreviousText:

– (void)setPreviousText:(id)anObject

Sets the object selected when the user presses Shift-Tab while editing the text
field’s text. anObject should respond to the selectText: message. Your code
shouldn’t need to use this method directly, since it’s invoked automatically by
setNextText: . In deference to setNextText: , this method doesn’t build a
two-way connection. See also previousText .

setSelectable:

– (void)setSelectable:(BOOL)flag

If flag is YES, then the text field is made selectable but not editable (use
setEditable: to make text both selectable and editable). If flag is NO, then
the text is made neither editable nor selectable. See also isSelectable ,
setEditable: .

setTextColor:

– (void)setTextColor:(NSColor *)aColor

NSTextField 1-565

1

Sets the text field’s text color to aColor . This method doesn’t cause the text to
be redrawn. See also textColor .

textColor

– (NSColor *)textColor

Returns the text field’s text color. See also setTextColor: .

textDidBeginEditing:

– (void)textDidBeginEditing:(NSNotification *)notification

Invoked when there’s a change in the text after the receiver gains first
responder status. The default behavior passes this message on to the text
delegate by posting the notification
NSControlTextDidEndEditingNotification with the receiving object
and, in the notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center.

textDidChange:

– (void)textDidChange:(NSNotification *)notification

Invoked upon a key-down event or paste operation that changes the receiver’s
contents. The default behavior passes this message on to the text delegate by
posting the NSControlTextDidChangeNotification notification with the
receiving object and, in the notification’s dictionary, the text object (with the
key NSFieldEditor) to the default notification center.

textDidEndEditing:

– (void)textDidEndEditing:(NSNotification *)notification

Invoked when text editing ends. The default behavior is to pass this message
on to the text delegate by posting the notification
NSControlTextDidEndEditingNotification with the receiving object
and, in the notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center.

1-566 OpenStep Programming Reference—September 1996

1

textShouldBeginEditing:

– (BOOL)textShouldBeginEditing:(NSText *)textObject

Invoked to let the text field respond to impending changes to its text and then
forwarded to the text delegate. See also textShouldEndEditing: .

textShouldEndEditing:

– (BOOL)textShouldEndEditing:(NSText *)textObject

Invoked to let the text field respond to impending loss of first responder status
and then forwarded to the text delegate. See also
textShouldBeginEditing: .

NSTextFieldCell

Class Description

NSCell s display text or images—an NSTextFieldCell is simply an NSCell
that displays text and that keeps track of its background and text colors.
Normally, the NSCell class assumes white as the background when bezeled,
and light gray otherwise, and the text is always black. With
NSTextFieldCell , you can specify those colors.

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTextFieldCell.h

NSTextFieldCell 1-567

1

Method Types

Instance Methods

backgroundColor

– (NSColor *)backgroundColor

Returns the background color. See also setBackgroundColor: ,
drawsBackground .

drawsBackground

– (BOOL)drawsBackground

Returns YES if the text field cell draws its own background. See also
setDrawsBackground: .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)aColor

Sets the background color to aColor . See also backgroundColor .

setDrawsBackground:

– (void)setDrawsBackground:(BOOL)flag

If flag is YES, the NSTextFieldCell draws its own background. See also
drawsBackground .

Activity Class Method

Modifying raphic attributes – backgroundColor
– setBackgroundColor:
– setDrawsBackground:
– setTextColor:
– setUpFieldEditorAttributes:
– textColor

1-568 OpenStep Programming Reference—September 1996

1

setTextColor:

– (void)setTextColor:(NSColor *)aColor

Sets the color of the text to aColor . See also textColor .

setUpFieldEditorAttributes:

– (NSText *)setUpFieldEditorAttributes:(NSText *)textObject

Sets the background and text colors of textObject to those of the
NSTextFieldCell , and returns textObject . textObject should respond
to the messages setBackgroundColor: , and setTextColor: . You rarely
need to override this method; you never need to invoke it.

textColor

– (NSColor *)textColor

Returns the color of the text. See also setTextColor: .

NSView

Class Description

NSView is an abstract class that provides its subclasses with a structure for
drawing and for handling events. Any application that needs to display, print,
or receive events must use NSView objects.

To be displayed, a view must be placed in a window represented by an
NSWindow object. All the views within a window are arranged in a hierarchy,
with each view having a single superview and zero or more subviews. Each view

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSView.h
AppKit/NSClipView.h

NSView 1-569

1

has its own drawing area, and its own coordinate system expressed as a
transformation of its superview’s coordinate system. An NSView object can
scale, translate, or rotate its coordinates, or flip the polarity of its y-axis.

An NSView keeps track of its size and location in two ways: as a frame
rectangle (expressed in its superview’s coordinate system) and as a bounds
rectangle (expressed in its own coordinate system). Both are represented by
NSRect structures.

Subclasses of NSView typically override drawRect: to implement an object’s
distinctive appearance. They also frequently override one or more of NSView’s
or NSResponder ’s event-handling methods, to react to the user’s
manipulations of the mouse and keyboard.

Note – Do not add or remove views from the view list during display xxx
messages. Adding or removing views during display will raise
NSInternalInconsistancyException .

1-570 OpenStep Programming Reference—September 1996

1

Method Types

Activity Class Method

Initializing NSView
objects

– initWithFrame:

Managing the NSView
hierarchy

– addSubview:
– addSubview:positioned:relativeTo:
– ancestorSharedWithView:
– isDescendantOf:
– opaqueAncestor
– removeFromSuperview
– replaceSubview:with:
– sortSubviewsUsingFunction:context:
– subviews
– superview
– window
– viewWillMoveToSuperview:
– viewWillMoveToWindow:

Modifying the frame
rectangle

– frameRotation
– frame
– rotateByAngle:
– setFrame:
– setFrameOrigin:
– setFrameRotation:
– setFrameSize:

Modifying the
coordinate system

– boundsRotation
– bounds
– isFlipped
– isRotatedFromBase
– isRotatedOrScaledFromBase
– scaleUnitSquareToSize:
– setBounds:
– setBoundsOrigin:
– setBoundsRotation:
– setBoundsSize:
– translateOriginToPoint:

NSView 1-571

1

Converting coordinates – centerScanRect:
– convertPoint:fromView:
– convertPoint:toView:
– convertRect:fromView:
– convertRect:toView:
– convertSize:fromView:
– convertSize:toView:

Notifying ancestor
views

– postsBoundsChangedNotifications
– postsFrameChangedNotifications
– setPostsBoundsChangedNotifications:
– setPostsFrameChangedNotifications:

Resizing subviews – resizeSubviewsWithOldSize:
– setAutoresizesSubviews:
– autoresizesSubviews
– setAutoresizingMask:
– autoresizingMask
– resizeWithOldSuperviewSize:

Graphics state objects – allocateGState
– releaseGState
– gState
– renewGState
– setUpGState

Focusing + focusView
– lockFocus
– unlockFocus

Displaying – canDraw
– display
– displayIfNeeded
– displayIfNeededIgnoringOpacity
– displayIfNeededInRect:
– displayIfNeededInRectIgnoringOpacity:
– displayRect:
– displayRectIgnoringOpacity:
– drawRect:
– visibleRect
– isOpaque
– needsDisplay
– setNeedsDisplay:
– setNeedsDisplayInRect:
– shouldDrawColor

Activity Class Method

1-572 OpenStep Programming Reference—September 1996

1

Scrolling – adjustScroll:
– autoscroll:
– enclosingScrollView
– reflectScrolledClipView:
– scrollClipView:toPoint:
– scrollPoint:
– scrollRect:by:
– scrollRectToVisible:

Managing the cursor – addCursorRect:cursor:
– discardCursorRects
– removeCursorRect:cursor:
– resetCursorRects

Assigning a tag – tag
– viewWithTag:

Aiding event handling – acceptsFirstMouse:
– hitTest:
– mouse:inRect:
– performKeyEquivalent:
– removeTrackingRect:
– shouldDelayWindowOrderingForEvent:
– addTrackingRect:owner:userData:assumeInside:

Dragging – dragFile:fromRect:slideBack:event:
– dragImage:at:offset:event:pasteboard:source:
slideBack:
– registerForDraggedTypes:
– unregisterDraggedTypes

Activity Class Method

NSView 1-573

1

Class Methods

focusView

+ (NSView *)focusView

Returns the currently focused view object, or nil if none.

Printing – dataWithEPSInsideRect:
– fax:
– print:
– writeEPSInsideRect:toPasteboard:

Pagination – adjustPageHeightNew:top:bottom:limit:
– adjustPageWidthNew:left:right:limit:
– heightAdjustLimit
– knowsPagesFirst:last:
– locationOfPrintRect:
– rectForPage:
– widthAdjustLimit

Writing conforming
PostScript

– addToPageSetup
– beginPage:label:bBox:fonts:
– beginPageSetupRect:placement:
– beginPrologueBBox:creationDate:createdBy:
fonts:forWhom:pages:title:
– beginSetup
– beginTrailer
– drawPageBorderWithSize:
– drawSheetBorderWithSize:
– endHeaderComments
– endPrologue
– endSetup
– endPageSetup
– endPage
– endTrailer

Activity Class Method

1-574 OpenStep Programming Reference—September 1996

1

Instance Methods

acceptsFirstMouse:

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

This method returns YES if an initial mouse-down event in the NSView—an
event that causes the NSView’s NSWindow to become the key window—is sent
to the NSView (through a mouseDown: message). If only those mouse-downs
that occur when the NSView’s NSWindow is already the keywindow are sent,
this returns NO (the default). The only way to change the default behavior is to
implement this method in an NSView subclass. See also mouseDown:
(NSResponder), hitTest: , mouse:inRect: , performKeyEquivalent: ,
removeTrackingRect: , shouldDelayWindowOrderingForEvent: ,
addTrackingRect:owner:userData:assumeInside: .

addCursorRect:cursor:

– (void)addCursorRect:(NSRect)aRect cursor:(NSCursor *)anObject

Adds cursor rectangle aRect for cursor anObject to the NSView. When the
user moves the mouse within the rectangle specified by aRect , the cursor
object that the mouse controls changes to anObject , which must be an
NSCursor object. The rectangle is given in the NSView’s coordinate system;
however, the rectangle isn’t automatically clipped to the NSView’s frame—it’s
possible to create a cursor rectangle that extends beyond the NSView. You
should also note that cursor rectangles don’t work well in rotated NSViews.
You never invoke this method directly from your application. It should only be
used as part of the implementation of the resetCursorRects method. See
also discardCursorRects , removeCursorRect:cursor: ,
resetCursorRects .

addSubview:

– (void)addSubview:(NSView *)aView

Adds aView to the NSView’s list of subviews. The new subview will be
displayed on top of its siblings. The receiving NSView is also made aView ’s
next responder. This message should not be sent to an NSClipview object. Use
NSClipview ’s setDocumentView: method. See also
addSubview:positioned:relativeTo: , isDescendantOf: ,

NSView 1-575

1

opaqueAncestor , removeFromSuperview , replaceSubview:with: ,
sortSubviewsUsingFunction:context: , subviews , superview ,
window , viewWillMoveToWindow: .

addSubview:positioned:relativeTo:

– (void)addSubview:(NSView *)aView
positioned:(NSWindowOrderingMode)place
relativeTo:(NSView *)otherView

Puts aView into the receiving NSView’s list of subviews, so that it will be
displayed immediately above or below otherView , as indicated by place .
place can be one of the following values:

• NSWindowAbove
• NSWindowBelow
• NSWindowOut

If otherView is nil or isn’t in the subview list, aView is added above or
below all its siblings. This message should not be sent to an NSClipview
object. Use NSClipview ’s setDocumentView: method. See also
addSubview: , NSWindowOrderingMode (Display Postscript Types and
Constants).

addToPageSetup

– (void)addToPageSetup

Lets you adjust for differences in the graphics state between the screen and the
printer. See also beginPage:label:bBox:fonts: ,
beginPageSetupRect:placement: .

addTrackingRect:owner:userData:assumeInside:

–(NSTrackingRectTag)addTrackingRect:(NSRect)aRect
owner:(id)anObject
userData:(void *)data
assumeInside:(BOOL)flag

Adds a tracking rectangle (aRect) owned by anObject to the receiving
NSView. flag indicates whether the tracking rectangle will be only inside the
NSView. Returns a unique tag that identifies the tracking rectangle. See also
removeTrackingRect: .

1-576 OpenStep Programming Reference—September 1996

1

adjustPageHeightNew:top:bottom:limit:

– (void)adjustPageHeightNew:(float *)newBottom top:(float)oldTop

Assists automatic pagination of the view object. See also
adjustPageWidthNew:left:right:limit: .

adjustPageWidthNew:left:right:limit:

– (void)adjustPageWidthNew:(float *)newRight left:(float)oldLeft
right:(float)oldRight limit:(float)rightLimit

Assists automatic pagination of the view object. See also
adjustPageHeightNew:top:bottom:limit: .

adjustScroll:

– (NSRect)adjustScroll:(NSRect)newVisible

Lets the view object adjust the scroll position of a document. This method is
invoked by a NSClipView immediately prior to scrolling its document view.
You may want to override it to provide specific scrolling behavior.
newVisible will be the visible rectangle after the scroll. You might use this for
scrolling through a table, for example a spreadsheet. You could modify
newVisible->origin such that the scroll would fall on column or row
boundaries. The default implementation returns newVisible . See also
scrollRect:by: .

allocateGState

– (void)allocateGState

Explicitly tells the NSView to allocate a graphics state object. Graphics state
objects are Display PostScript objects that contain the entire state of the
graphics environment. They are used by the Application Kit as a caching
mechanism to save PostScript code used for focusing. This is purely a
performance optimization. You can allocate a graphics state object for NSViews
that will be focused on repeatedly, but you should exercise some discretion as
these state objects can take a fair amount of memory. The graphics state object
will be freed automatically when the NSView is freed. See also
releaseGState , gState , renewGState , setUpGState .

NSView 1-577

1

ancestorSharedWithView:

– (NSView *)ancestorSharedWithView:(NSView *)aView

Returns the ancestor view shared by aView and the receiver. Returns self if
aView and the receiving view are identical, or if the receiving view is the
ancestor of aView . Returns aView if it is the superview of the receiving view.
Returns nil in any other case. See also addSubview: .

autoresizesSubviews

– (BOOL)autoresizesSubviews

Returns YES if the NSView automatically notifies subviews of resizing, and NO
otherwise. See also setAutoresizesSubviews: , setAutoresizingMask: ,
autoresizingMask , resizeSubviewsWithOldSize: ,
resizeWithOldSuperviewSize: .

autoresizingMask

– (unsigned int)autoresizingMask

Returns the NSView’s autoresizing mask. The mask is used to determine how
the NSView is automatically resized when its superview is resized. For the
mask to have an effect, the superview must be set to resize its subviews; this is
done through the setAutoresizeSubviews: method. The autoresizing
masks are

• NSViewNotSizable
• NSViewMinXMargin
• NSViewWidthSizable
• NSViewMaxXMargin
• NSViewMinYMargin
• NSViewHeightSizable
• NSViewMaxYMargin

See also setAutoresizingMask: , autoresizesSubviews .

autoscroll:

– (BOOL)autoscroll:(NSEvent *)theEvent

Scrolls in response to a mouse-dragged event.

1-578 OpenStep Programming Reference—September 1996

1

beginPage:label:bBox:fonts:

– (void)beginPage:(int)ordinalNum label:(NSString *)aString
bBox:(NSRect)pageRect fonts:(NSString *)fontNames

Writes a page separator.

beginPageSetupRect:placement:

– (void)beginPageSetupRect:(NSRect)aRect
placement:(NSPoint)location

Writes the beginning of a page setup section. It outputs a PostScript save , and
generates the initial coordinate transformation to set up this view for printing
the aRect rectangle within the view. This method does a lockFocus on the
view, which must be balanced in endPage by an unlockFocus . The save
output here should be balanced by a PostScript restore in endPage . aRect
is the rectangle in the view’s coordinates that is being printed. location is the
offset in page coordinates of the rectangle on the physical page.

beginPrologueBBox:creationDate:createdBy:
fonts:forWhom:pages:title:

– (void)beginPrologueBBox:(NSRect)boundingBox
creationDate:(NSString *)dateCreated
createdBy:(NSString *)anApplication fonts:(NSString *)fontNames
forWhom:(NSString *)user pages:(int)numPages
title:(NSString *)aTitle

Writes the start of the conforming PostScript header for a print job.
boundingBox is the bounding box of the document. This rectangle should be
in the default PostScript coordinate system on the page. If it is unknown,
boundingBox should be NULL and the system will accumulate it as pages are
printed. dateCreated is an ASCII string containing a human readable date. If
dateCreated is NULL the current date is used. anApplication is a string
containing the name of the document creator.

user is a string containing the name of the person the document is being
printed for. If NULL, the login name of the user is used. numPages specifies the
number of pages in the document. If unknown at the beginning of printing,
numPages should have a value of -1. In this case the pages are counted as they
are generated and the resulting count is written in the trailer. aTitle is a

NSView 1-579

1

string specifying the title of the document. If aTitle is NULL, then the title of
the NSView’s NSWindow is used. If the NSWindow has no title, “Untitled” is
output. See also addToPageSetup .

beginSetup

– (void)beginSetup

Writes the beginning of the job setup section, which begins with a
%%BeginSetup comment and includes a %%PaperSize comment declaring the
type of paper being used. This section of the output is intended for device
setup or general initialization code. See also addToPageSetup .

beginTrailer

– (void)beginTrailer

Writes the beginning of the conforming PostScript trailer for the print job. See
also addToPageSetup .

boundsRotation

– (float)boundsRotation

Returns the rotation of the NSView’s coordinate system. If the NSView’s
coordinate system has been rotated, this angle will be the accumulation of all
setBoundsRotation: messages; otherwise, it will be 0.0. See also
setBoundsRotation: , bounds , setBoundsOrigin: , setBoundsSize: .

bounds

– (NSRect)bounds

Returns the NSView’s bounds rectangle. See also setBounds: ,
boundsRotation .

canDraw

– (BOOL)canDraw

1-580 OpenStep Programming Reference—September 1996

1

Informs you of whether drawing will have any result. You only need to send
this message when you want to draw, but are not invoking one of the display
methods. You should not draw or send the lockFocus: message if this
returns NO. This method returns YES if your NSView has an NSWindow object,
your NSView’s NSWindow object has a corresponding window on the Window
Server, and your NSWindow object is enabled for display; otherwise it returns
NO.

centerScanRect:

– (NSRect)centerScanRect:(NSRect)aRect

Converts the corners of aRect to lie on the center of device pixels. This is
useful in compensating for PostScript overscanning when the coordinate
system has been scaled. This routine converts the given rectangle to device
coordinates, adjusts the rectangle to lie in the center of the pixels, and converts
the resulting rectangle back to the NSView’s coordinate system. Returns the
transformed aRect . See also convertRect:fromView: ,
convertRect:toView: , convertPoint:fromView: ,
convertPoint:toView: , convertSize:toView: .

convertPoint:fromView:

– (NSPoint)convertPoint:(NSPoint)aPoint fromView:(NSView *)aView

Converts a point from aView ’s coordinate system to the coordinate system of
the receiving NSView. If aView is nil , then this method converts from
NSWindow’s base coordinates. Both aView and the receiving NSView must
belong to the same NSWindow. Returns the converted aPoint . See also
convertPoint:toView: , NSPoint (Foundation Kit “Types and Constants”
chapter).

convertPoint:toView:

– (NSPoint)convertPoint:(NSPoint)aPoint toView:(NSView *)aView

Converts a point from the receiving NSView’s coordinate system to the
coordinate system of aView . If aView is nil , then this method converts to the
NSWindow’s base coordinates. Both aView and the receiving NSView must

NSView 1-581

1

belong to the same NSWindow. Returns the converted aPoint . See also
convertPoint:fromView: , NSPoint (Foundation Kit “Types and
Constants” chapter).

convertRect:fromView:

– (NSRect)convertRect:(NSRect)aRect fromView:(NSView *)aView

Converts aRect from aView ’s coordinate system to the coordinate system of
the receiving NSView. Both aView and the receiving NSView must belong to
the same NSWindow. Returns the converted aRect . See also
convertRect:toView: , NSRect (Foundation Kit “Types and Constants”
chapter).

convertRect:toView:

– (NSRect)convertRect:(NSRect)aRect toView:(NSView *)aView

Converts aRect from the receiving NSView’s coordinate system to the
coordinate system of aView . Both aView and the receiving NSView must
belong to the same NSWindow. See also convertRect:fromView: , NSRect
(Foundation Kit “Types and Constants” chapter).

convertSize:fromView:

– (NSSize)convertSize:(NSSize)aSize fromView:(NSView *)aView

Converts aSize from the coordinate system of aView to the coordinate system
of the receiving NSView. Both aView and the receiving NSView must belong to
the same NSWindow. See also convertSize:toView: , NSSize (Foundation
Kit “Types and Constants” chapter).

convertSize:toView:

– (NSSize)convertSize:(NSSize)aSize toView:(NSView *)aView

Converts aSize from the receiving NSView’s coordinate system to the
coordinate system of aView . Both aView and the receiving NSView must
belong to the same NSWindow. See also convertSize:fromView: , NSSize
(Foundation Kit “Types and Constants” chapter).

1-582 OpenStep Programming Reference—September 1996

1

dataWithEPSInsideRect:

– (NSData *)dataWithEPSInsideRect:(NSRect)aRect

Returns the encapsulated PostScript inside rect as a data object. See also
EPSOperationWithView:insideRect:toData: (NSPrintOperation),.

discardCursorRects

– (void)discardCursorRects

Removes the NSView’s cursor rectangles. You shouldn’t need to invoke this
method directly; it’s invoked automatically before the NSView’s cursor
rectangles are reset. See also addCursorRect:cursor: .

display

– (void)display

Displays the receiving view and its subviews, using each view’s bounds
rectangle. See also displayIfNeeded ,
displayIfNeededIgnoringOpacity , displayRect: ,
displayRectIgnoringOpacity: , canDraw , isOpaque , needsDisplay ,
setNeedsDisplay: .

displayIfNeeded

– (void)displayIfNeeded

Descends the NSView hierarchy starting at the receiving NSView and sends a
display message to each opaque NSView that needs to be displayed. This is
useful when you wish to disable display in the NSWindow, modify a series of
NSViews, and then display only the ones whose appearance has changed. See
also display .

displayIfNeededIgnoringOpacity

– (void)displayIfNeededIgnoringOpacity

Conditionally displays the receiving view and its subviews, regardless of
opacity. Display is needed if the view contents have changed. See also
displayIfNeeded , display .

NSView 1-583

1

displayIfNeededInRect:

- (void)displayIfNeededInRect:(NSRect)aRect

Displays the receiving view and its subviews, within aRect , if needed. See also
displayIfNeeded , displayRect: .

displayIfNeededInRectIgnoringOpacity:

- (void)displayIfNeededInRectIgnoringOpacity:(NSRect)aRect

Displays the receiving view and its subviews within aRect if necessary,
ignoring opacity. See also displayIfNeededInRect: ,
displayIfNeededIgnoringOpacity .

displayRect:

– (void)displayRect:(NSRect)aRect

Displays the receiving NSView and its subviews (if opaque) within aRect . See
also displayRectIgnoringOpacity: , display .

displayRectIgnoringOpacity:

– (void)displayRectIgnoringOpacity:(NSRect)aRect

Displays the receiving NSView and its subviews, regardless of opacity, within
aRect . See also displayRect: .

dragFile:fromRect:slideBack:event:

– (BOOL)dragFile:(NSString *)filename fromRect:(NSRect)rect
slideBack:(BOOL)slideFlag event:(NSEvent *)event

Causes a file icon represented by an NSImage-derived object to be dragged
from the NSView to any application that accepts files. This method only makes
sense when invoked from within an implementation of the mouseDown:
method. The arguments are:

• filename is the complete name (including path) of the file to be dragged.

• rect describes the position of the icon in the NSView’s coordinates.

1-584 OpenStep Programming Reference—September 1996

1

• slideFlag indicates whether the icon should slide back to its position in
the NSView if the file is not accepted. If slideFlag is YES and filename is
not accepted and the user has not disabled icon animation, the icon will
slide back; otherwise it will not.

• event is the mouse-down event record (or a copy).

This method returns YES if the NSView successfully initiated the file dragging
session; otherwise it returns NO. See also
dragImage:at:offset:event:pasteboard:source: slideBack: ,
registerForDraggedTypes: , unregisterDraggedTypes .

dragImage:at:offset:event:pasteboard:source:
slideBack:

– (void)dragImage:(NSImage *)anImage at:(NSPoint)viewLocation
offset:(NSSize)initialOffset event:(NSEvent *)event
pasteboard:(NSPasteboard *)pboard source:(id)sourceObject
slideBack:(BOOL)slideFlag

Initiates an image-dragging session, dragging anImage from viewLocation .
initialOffset is the difference in the mouse location from the mouse-down.
pboard is the pasteboard holding the data. sourceObject is the object
receiving NSDraggingSource messages. slideFlag determines whether the
NSImage should slide back if rejected.

Instigates an image-dragging session. This method only makes sense when
invoked from within an implementation of the mouseDown: method. The
arguments are:

• anImage is the NSImage (contained within the NSView) that’s being
dragged.

• location is the NSImage’s origin in the NSView’s coordinate system.

• initialOffset gives the mouse’s current location relative to the mouse-
down location.

• event is the mouse-down that started the dragging session.

• pboard is the pasteboard that holds the data that the NSImage represents.

• sourceObject is the object that receives NSDraggingSource messages.

• slideFlag determines whether the NSImage should slide back if it’s
rejected.

NSView 1-585

1

Before invoking this method, the NSView must place the data that’s being
dragged on the drag pasteboard. To do this, it must get the pasteboard, declare
the type of data that it’s placing, and then place the data:

/* You always use the NSDragPboard pasteboard when dragging. */
NSPasteboard *pboard = [Pasteboard newName:NSDragPboard];

/* Declare the type of data and place it on the pasteboard. */
[pboard declareTypes:... owner:...];
[pboard setData:... forType:...];

/* Now invoke dragImage:.*/
[self dragImage:... at:... offset:... event:...
 pasteboard:pboard source:... slideBack:...];

This method returns YES if the NSView successfully initiated the file dragging
session; otherwise it returns NO.

If you ask for events inside the mouseDown: method before invoking this
method (if, for example, you’re making sure that the image is really being
dragged before initiating a dragging session), you must copy the mouse-down
event before asking for more events. You then pass the copy as the argument to
the event: keyword of this method. See also
dragFile:fromRect:slideBack:event: .

drawPageBorderWithSize:

– (void)drawPageBorderWithSize:(NSSize)borderSize

Implemented by subclasses to draw in margins for example, borders and
numbering. borderSize is the size of the border.

drawRect:

– (void)drawRect:(NSRect)rect

Implemented by subclasses to supply drawing instructions for the NSView.
Each NSView subclass must override this method to draw itself within its
frame rectangle. The default implementation of this method does nothing.
rect is a rectangle indicating the region within the NSView that needs to be
drawn. This method is invoked by the display method; you shouldn’t send a
drawRect: message directly to an NSView.

1-586 OpenStep Programming Reference—September 1996

1

Your implementation of drawRect: doesn’t need to invoke lockFocus ; focus
is already locked on an object when it’s told to draw itself. See also display .

drawSheetBorderWithSize:

– (void)drawSheetBorderWithSize:(NSSize)borderSize

Implemented by subclasses to draw in margins, for example borders and
numbering. borderSize is the size of the border. This method is invoked by
beginPageSetupRect:placement: .

enclosingScrollView

- (NSScrollView *)enclosingScrollView

Returns the scroll view that encloses the receiving view, or nil if the view isn't
in a scroll view. In the unlikely event that the view is in nested scroll views, this
method returns the "closest" one going up the view hierarchy.

endHeaderComments

– (void)endHeaderComments

Writes out the end of a conforming PostScript header. It prints out the
%%EndComments line and then the start of the prologue, including the
Application Kit’s standard printing package. The prologue should contain
definitions global to a print job. This method is indirectly invoked by print:
or fax: after beginPrologueBBox:creationDate:createdBy:
fonts:forWhom:pages:title: , and before endPrologue .

endPage

– (void)endPage

Writes the end of a conforming PostScript page. This method is invoked after
each page is printed. It performs an unlockFocus to balance the lockFocus
done in beginPageSetupRect:placement: . It also generates a PostScript
showpage and a restore .

endPageSetup

– (void)endPageSetup

NSView 1-587

1

Writes the end of a page setup section, which begins with a %%EndPageSetup
comment. This method is invoked by print: and fax: just after
beginPageSetupRect:placement: is invoked.

endPrologue

– (void)endPrologue

Writes out the end of the conforming PostScript prologue. This method is
invoked by print: and fax: after the prologue of the document has been
written. Applications can override this method to add their own definitions to
the prologue. For example:

- endPrologue
{
 DPSPrintf(DPSGetCurrentContext(), "/littleProc {pop} def");
 return [super endPrologue];
}

See also addToPageSetup .

endSetup

– (void)endSetup

Writes out the end of the conforming PostScript setup section, which begins
with a %%EndSetup comment. This method is invoked by print: and fax:
just after beginSetup is invoked. See also addToPageSetup .

endTrailer

– (void)endTrailer

Writes the end of the conforming PostScript trailer. This method is invoked by
print: and fax: just after beginTrailer is invoked.

fax:

– (void)fax:(id)sender

Prints the NSView and all its subviews to a fax modem. Note that faxing is
platform specific, therefore this method is not part of the OpenStep
specification. See also print: , addToPageSetup .

1-588 OpenStep Programming Reference—September 1996

1

frame

– (NSRect)frame

Returns the NSView’s frame rectangle. The frame rectangle is specified in the
coordinate system of the NSView’s superview. See also frameRotation ,
rotateByAngle: , setFrame: , setFrameOrigin: , setFrameRotation: ,
setFrameSize: .

frameRotation

– (float)frameRotation

Returns the angle of the frame rectangle’s rotation, relative to its superview’s
coordinate system. See also setFrameRotation: .

gState

– (int)gState

Returns the graphics state object allocated to the NSView. If no graphics state
object has been allocated, or if the NSView has not been focused on since
receiving the allocateGState message, this method will return 0. Graphics
state objects are not immediately allocated by invoking the allocateGState
method, but are done in a “lazy” fashion upon subsequent focusing.

heightAdjustLimit

– (float)heightAdjustLimit

Overide to return the fraction (between 0.0 and 1.0) of the page that can be
pushed onto the next page during automatic pagination to prevent items from
being cut in half. This limit applies to vertical pagination. This method is
invoked by print: and fax: . By default, this method returns 0.2.

hitTest:

– (NSView *)hitTest:(NSPoint)aPoint

Returns the lowest subview containing the point aPoint . Returns the NSView
if it contains the point but none of its subviews do, or nil if the point isn’t
located within the receiving NSView. This method is used primarily by an

NSView 1-589

1

NSWindow to determine which NSView in the view hierarchy should receive a
mouse-down event. You’d rarely have reason to invoke this method, but you
might want to override it to have an NSView trap mouse-down events before
they get to its subviews. aPoint is in the receiving NSView’s superview’s
coordinates.

initWithFrame:

– (id)initWithFrame:(NSRect)frameRect

Initializes the NSView, which must be a newly allocated NSView instance, to
the location and dimensions of frameRect . This method is the designated
initializer for the NSView class, and can be used to initialize an NSView
allocated from your own zone. Programs generally use instances of NSView
subclasses rather than direct instances of the NSView class. Returns self . See
also NSRect (Foundation Kit “Types and Constants” chapter).

isDescendantOf:

– (BOOL)isDescendantOf:(NSView *)aView

Returns YES if aView is an ancestor of the receiving NSView in the view
hierarchy or if it’s identical to the receiving NSView. Otherwise, this method
returns NO. See also addSubview: , ancestorSharedWithView: ,
superview , subviews .

isFlipped

– (BOOL)isFlipped

Returns YES if the receiver uses flipped drawing coordinates, or NO if it uses
native PostScript coordinates. By default, NSViews are not flipped, and the
NSView implementation of this simply returns NO.

isOpaque

– (BOOL)isOpaque

Returns whether the NSView is opaque. Returns YES if the NSView guarantees
that it will completely cover the area within its frame when it draws itself;
otherwise returns NO. See also opaqueAncestor , display .

1-590 OpenStep Programming Reference—September 1996

1

isRotatedFromBase

– (BOOL)isRotatedFromBase

Returns YES if the receiving NSView or any of its ancestors in the NSView
hierarchy have been rotated; otherwise returns NO.

isRotatedOrScaledFromBase

– (BOOL)isRotatedOrScaledFromBase

Returns YES if the receiving NSView or any of its ancestors in the NSView
hierarchy have been rotated or scaled; otherwise returns NO.

knowsPagesFirst:last:

– (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Indicates whether this NSView can return a rectangle specifying the region that
must be displayed to print a specific page. The default implementation simply
returns NO. This method is invoked by print: and fax: . Just before invoking
this method, the first page to be printed is set to 1, and the last page to be
printed is set to the maximum integer size. You can override this method to
change the first page to be printed, and also the last page to be printed if the
view knows where its pages lie. If this method is made to return YES, the
printing mechanism will later query the NSView for the rectangle
corresponding to a specific page using rectForPage: .

locationOfPrintRect:

– (NSPoint)locationOfPrintRect:(NSRect)aRect

Places the printing rectangle on the physical page. This method is invoked by
print: and fax: . aRect is the rectangle being printed on the current page.
Returns the location of the lower left corner of the placed rectangle. All
coordinates are in the default PostScript coordinate system of the page. By
default, if the flags for centering are YES in the global NSPrintInfo object,
this routine centers the rectangle within the margins. If the flags are NO, it
defaults to abutting the rectangle against the top left margin. See also
rectForPage: .

NSView 1-591

1

lockFocus

– (void)lockFocus

Locks the focus on the NSView so that subsequent graphics commands are
applied to the NSView. This method ensures that the NSView draws in the
correct coordinates and to the correct device. You must send this message to
the NSView before you draw to it, and you must balance it with an
unlockFocus message to the NSView when you finish drawing.

lockFocus and unlockFocus messages are automatically sent when you use
a display method; you don’t have to include lockFocus or unlockFocus in
your drawRect: method. See also unlockFocus , focusView .

mouse:inRect:

– (BOOL)mouse:(NSPoint)aPoint inRect:(NSRect)aRect

Returns whether the point aPoint lies inside the aRect . aPoint and aRect
must be expressed in the same coordinate system. See also
convertPoint:fromView: , hitTest: , acceptsFirstMouse: .

needsDisplay

– (BOOL)needsDisplay

Returns YES if the NSView needs to be displayed to reflect changes to its
contents, otherwise returns NO. If automatic display is disabled, the NSView
will not redisplay itself automatically, so you can invoke this method to
determine whether you need to send a display message to the NSView. The
flag indicating that the NSView needs to be displayed is cleared by the display
methods when the NSView is displayed. See also setNeedsDisplay: ,
display .

opaqueAncestor

– (NSView *)opaqueAncestor

Returns the receiver’s nearest opaque ancestor (including the receiving
NSView itself). See also isOpaque .

1-592 OpenStep Programming Reference—September 1996

1

performKeyEquivalent:

– (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Implemented by subclasses to allow them to respond to keyboard input. If the
NSView responds to the key, it should take the appropriate action and return
YES. Otherwise, it should return the result of passing the message along to
super , which will pass the message down the NSView hierarchy:

return [super performKeyEquivalent:theEvent];

The default implementation of this method simply passes the message down
the NSView hierarchy and returns NO if none of the NSView’s subviews
responds to the key. theEvent points to the event record of a key-down event.
See also acceptsFirstMouse: .

postsBoundsChangedNotifications

- (BOOL)postsBoundsChangedNotifications

Returns YES if the view posts bounds changed notifications whenever the
view's bounds are translated, scaled, or rotated. Returns NO otherwise. See also
setPostsBoundsChangedNotifications: .

postsFrameChangedNotifications

– (BOOL)postsFrameChangedNotifications

Returns whether notifications of frame changes to ancestors are activated. If
YES is returned, the receiving NSView will inform its ancestors in the view
hierarchy whenever its frame changes in size or location. If NO is returned, the
ancestors are not informed of any frame size or location changes. See also
setPostsFrameChangedNotifications: .

print:

– (void)print:(id)sender

Prints the NSView and all its subviews. This method brings up a Print panel
before printing begins. See also fax: , runOperation (NSPrintOperation).

NSView 1-593

1

rectForPage:

– (NSRect)rectForPage:(int)page

This method should be implemented by subclasses to determine how much of
the NSView will be printed for page number page . The default implementation
returns an NSRect initialized to zero. You should override this method to
return an NSRect with the coordinates of the NSView (in its own coordinate
system) that represent the page requested. The NSView will later be told to
display that NSRect region in order to generate the image for this page. This
method is invoked by print: and fax: if the NSView’s
knowsPagesFirst:last: method returns YES. The NSView should not
assume that the pages will be generated in any particular order.

reflectScrolledClipView:

– (void)reflectScrolledClipView:(NSClipView *)aClipView

Reflects scrolling within clip view aClipView . See also
scrollClipView:toPoint: , adjustScroll: .

registerForDraggedTypes:

– (void)registerForDraggedTypes:(NSArray *)newTypes

Registers the pasteboard types that the NSView will accept in an image-
dragging session. the values in the NSArray are NSPasteboard types, not file
extensions (you can’t register for specific file extensions). See the
NSPasteboard section of the Application Kit’s “Types and Constants” chapter
for a list of valid pasteboard types.

Note – the values in the first argument are pasteboard types, not file extensions
(you can’t register for specific file extensions). For example, the following
registers a view as accepting files.

See also unregisterDraggedTypes .

releaseGState

– (void)releaseGState

Release the NSView’s graphics state object. See also allocateGState .

1-594 OpenStep Programming Reference—September 1996

1

removeCursorRect:cursor:

– (void)removeCursorRect:(NSRect)aRect cursor:(NSCursor *)anObject

Removes cursor rectangle aRect for cursor anObject from the view. aRect
and anObject must match the values that were specified when the cursor
rectangle was added (through addCursorRect:cursor:). See also
addCursorRect:cursor: . You rarely need to use this method; it’s usually
easier to use NSWindow’s invalidateCursorRectsForView: method and
let the resetCursorRects mechanism restore the cursor rectangles.

removeFromSuperview

– (void)removeFromSuperview

Unlinks the NSView from its superview and its NSWindow, removes it from the
responder chain, and invalidates its cursor rectangles. See also addSubview: .

removeTrackingRect:

– (void)removeTrackingRect:(NSTrackingRectTag)tag

Removes the tracking rectangle identified by tag from the view. (tag is an
unique identifier returned from the
addTractingRect:owner:assumeInside: method). See also
acceptsFirstMouse: .

renewGState

– (void)renewGState

Marks the NSView’s graphics state object as needing initialization. This method
is lazy: the graphics state object isn’t refreshed until the NSView is drawn. See
also allocateGState .

replaceSubview:with:

– (void)replaceSubview:(NSView *)oldView with:(NSView *)newView

NSView 1-595

1

Replaces oldView with newView in the NSView’s subview list. This method
does nothing if oldView is not a subview of the NSView, if newView is not an
NSView, or if oldView equals newView . This message should not be sent to an
NSClipview object. Use NSClipview ’s setDocumentView: method instead.
See also addSubview: .

resetCursorRects

– (void)resetCursorRects

This method should be implemented by subclasses to reset their cursor
rectangles. Each NSView subclass that wants to include cursor
rectangles—areas in which the cursor is changed—must implement this
method. The implementation must contain invocations of
addCursorRect:cursor: , the method that defines the cursor rectangles and
associates them with particular NSCursor objects. The NSView must clip the
cursor rectangles that it adds to ensure that they don’t overlap the visible
rectangle. For example:

- resetCursorRects
{
 NSRect visible = [self visibleRect]

 if (visible != NSZeroRect)
 [self addCursorRect:&visible cursor:theCursor];

 }

You never need to invoke this method directly; it’s invoked automatically
when the NSView’s NSWindow frame changes, or when the NSWindow receives
an invalidateCursorRectsForView: message. Note that this method isn’t
invoked when the NSView’s frame changes unless it changed because its
NSWindow was resized. If your application changes an NSView’s frame
programmatically, through setFrameSize: or setFrameOrigin: , for
example, you should follow the frame-changing message with an
invalidateCursorRectsForView: message, as shown below:

/* Change the NSView’s frame. */
[aView setFrame:toNewRect];

/* Tell the NSWindow that the view’s cursor rects may have changed.
*/
[[aView window] invalidateCursorRectsForView:aView];

1-596 OpenStep Programming Reference—September 1996

1

/* Redisplay the Window. */
[[aView window] display];

Invocations of this method aren’t cumulative; before a resetCursorRects
message is sent to a particular NSView, the NSView’s existing cursor rectangles
are automatically discarded. See also addCursorRect:cursor: .

resizeSubviewsWithOldSize:

– (void)resizeSubviewsWithOldSize:(NSSize)oldSize

Initiates superviewSizeChanged: messages to subviews. This method is
invoked from the setFrameSize: method if the NSView has subviews and
has received a setAutoresizeSubviews:YES message. By default, this
method sends a resizeWithOldSuperviewSize: message to each subview.
You should not invoke this method directly, but you may want to override it to
define a specific retiling behavior. oldSize is the previous bounds rectangle
size. See also autoresizesSubviews .

resizeWithOldSuperviewSize:

– (void)resizeWithOldSuperviewSize:(NSSize)oldSize

Informs the NSView that its superview’s size has changed. This method is
invoked when the NSView’s superview has received a
resizeSubviewsWithOldSize: message. This method will automatically
resize the NSView according to the parameters set by the
setAutosizingMask: message. You may want to override this method to
provide specific resizing behavior. oldSize is the previous bounds rectangle
size of the receiving NSView’s superview.

rotateByAngle:

– (void)rotateByAngle:(float)angle

Rotates the NSView’s frame rectangle by angle from its current angle of
orientation. Positive values indicate counterclockwise rotation; negative values
indicate clockwise rotation. The position of the coordinate origin, (0.0, 0.0),
remains unchanged; it’s at the center of the rotation. This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See also frameRotation .

NSView 1-597

1

scaleUnitSquareToSize:

– (void)scaleUnitSquareToSize:(NSSize)newSize

Scales the NSView’s coordinate system unit size to newSize . Unit lengths
along the x and y axes will be equal to those given in newSize . This method
posts the notification NSViewFocusDidChangeNotification with the
receiving object to the default notification center. See the “Notifications”
section of the Application Kit’s “Types and Constants” chapter for more
information on notifications. See also boundsRotation .

scrollClipView:toPoint:

– (void)scrollClipView:(NSClipView *)aClipView
toPoint:(NSPoint)aPoint

Scrolls the clip view aClipView to aPoint . See also scrollPoint: .

scrollPoint:

– (void)scrollPoint:(NSPoint)aPoint

Aligns aPoint with an NSClipView -derived document view’s origin. aPoint
is given in the receiving view’s coordinates. After scrolling, aPoint will be
coincident with the document view’s lower left corner, or its upper left corner
if the receiving view is flipped. See also adjustScroll: , autoscroll: ,
reflectScrolledClipView: , scrollClipView:toPoint: ,
scrollRect:by: , scrollRectToVisible: .

scrollRect:by:

– (void)scrollRect:(NSRect)aRect by:(NSSize)delta

Shifts the rectangle aRect , which is in the NSView’s drawing coordinates, by
delta . Only those bits which are visible before and after scrolling are moved.
This method works for all NSViews and does not require that the NSView’s
immediate ancestor be an NSClipView or NSScrollView . See also
scrollPoint: .

scrollRectToVisible:

– (BOOL)scrollRectToVisible:(NSRect)aRect

1-598 OpenStep Programming Reference—September 1996

1

Scrolls aRect so that it becomes visible within the NSView’s parent
NSClipView . The receiving NSView must be a NSClipView ’s content view.
This method will scroll the NSClipView the minimum amount necessary to
make aRect visible. aRect is a rectangle in the receiving NSView’s
coordinates. Returns YES if scrolling actually occurs; otherwise returns NO. See
also scrollPoint: .

setAutoresizesSubviews:

– (void)setAutoresizesSubviews:(BOOL)flag

Sets whether to notify subviews of resizing. This method determines whether
the resizeSubviewsWithOldSize: message will be sent to the NSView
upon receipt of a setFrameSize: message. By default, automatic resizing of
subviews is disabled. See also autoresizesSubviews .

setAutoresizingMask:

– (void)setAutoresizingMask:(unsigned int)mask

Determines how the receiving NSView’s frame rectangle will change when its
superview’s size changes. Create mask by logically ORing the following
together:

See also autoresizesSubviews .

Table 1-25 Autoresizing Masks

Flag Meaning

NSViewNotSizeable NSView does not resize with its superview.

NSViewMinXMargin Left margin between NSViews can stretch.

NSViewWidthSizable NSView’s width can stretch.

NSViewMaxXMargin Right margin between NSViews can stretch.

NSViewMinYMargin Top margin between NSViews can stretch.

NSViewHeightsSizabl
e

NSView’s height can stretch.

NSViewMaxYMargin Bottom margin between NSViews can stretch.

NSView 1-599

1

setBounds:

– (void)setBounds:(NSRect)aRect

Sets the view’s bounds origin and size to aRect by sending the
setBoundsOrigin: , and setBoundsSize: messages. See also bounds ,
boundsRotation .

setBoundsOrigin:

– (void)setBoundsOrigin:(NSPoint)newOrigin

Sets the view’s drawing origin to newOrigin . This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See also setBounds: ,
boundsRotation .

setBoundsRotation:

– (void)setBoundsRotation:(float)angle

Rotates the NSView’s coordinate system to angle. This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See also setBounds: ,
boundsRotation .

setBoundsSize:

– (void)setBoundsSize:(NSSize)newSize

Resizes the NSView’s coordinate system to newSize . This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See the “Notifcations” section of the
Application Kit’s “Types and Constants” chapter for more information on
notifications. See also boundsRotation .

setFrame:

– (void)setFrame:(NSRect)frameRect

Assigns the view a new frame rectangle (size and origin) by sending the view
setFrameSize: and setFrameOrigin: messages. See also frame .

1-600 OpenStep Programming Reference—September 1996

1

setFrameOrigin:

– (void)setFrameOrigin:(NSPoint)newOrigin

Sets the origin of the view’s frame to newOrigin . This method posts the
NSViewFrameDidChangeNotification and
NSViewFocusDidChangeNotification notifications with the receiving
object to the default notification center. See the “Notifications” section of the
Application Kit’s “Types and Constants” chapter for more information on
notifications. See also setFrame: , frame .

setFrameRotation:

– (void)setFrameRotation:(float)angle

Rotates the view’s frame to angle . This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See the “Notifications” section of the
Application Kit’s “Types and Constants” chapter for more information on
notifications. See also frame .

setFrameSize:

– (void)setFrameSize:(NSSize)newSize

Resizes the view’s frame to newSize , in its superview’s coordinates. This
method posts the NSViewFrameDidChangeNotification and
NSViewFocusDidChangeNotification notifications with the receiving
object to the default notification center. See also setFrame: , frame .

setNeedsDisplay:

– (void)setNeedsDisplay:(BOOL)flag

This method sets a flag indicating whether the NSView needs to be displayed.
If flag is YES, the view is marked as changed and requiring redisplay. This
method sends the setNeedsDisplayInRect: message with the current
bounding rectangle for the view to do the work, thereby marking the whole
view as needing redisplay. See also display .

NSView 1-601

1

setNeedsDisplayInRect:

– (void)setNeedsDisplayInRect:(NSRect)invalidRect

Marks the NSView as changed and requiring redisplay within rectangle
invalidRect . This rectangle is added to a list of any other “dirty” rectangles
within the view needing updating. See also setNeedsDisplay: , display .

setPostsBoundsChangedNotifications:

- (void)setPostsBoundsChangedNotifications:(BOOL)flag

Sets whether the view posts bounds changed notifications whenever the view's
bounds are translated, scaled, or rotated. See also
postsBoundsChangedNotifications .

setPostsFrameChangedNotifications:

– (void)setPostsFrameChangedNotifications:(BOOL)flag

Sets whether to activate ancestor notifications. If flag is YES, the receiving
NSView will inform its ancestors in the view hierarchy whenever its frame
changes in size or location. If flag is NO, the ancestors are not informed of any
frame size or location changes. See also
postsFrameChangedNotifications .

setUpGState

– (void)setUpGState

Sets up the NSView’s graphics state object. See also allocateGState ,
gState .

shouldDelayWindowOrderingForEvent:

– (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)anEvent

Returns YES if the normal NSWindow ordering and activation mechanism
should be delayed until the next mouse-up event. You never inovke this
method directly; it’s invoked automatically for each mouse-down that’s
directed at the NSView. The default implementation returns NO.

1-602 OpenStep Programming Reference—September 1996

1

An NSView subclass that contains draggable images should implement this to
return YES (perhaps predicating the decision on the data in anEvent , the
event record for the mouse-down itself). This allows the user to click on a
draggable image without bringing the NSView’s NSWindow to the front or
making its application active. Note that this method doesn’t prevent this
ordering and activation from occurring, it simply puts it off until the user
releases the mouse. To cause the ordering and activation to be skipped when
the mouse is released, the NSView should send a preventWindowOrdering
message to the NSApplication object from within its implementation of
mouseDown: . The preventWindowOrdering message is sent automatically
by NSView’s dragImage:... method—in other words, ordering and
activation is prevented if the user actually drags the clicked-on item.

shouldDrawColor

– (BOOL)shouldDrawColor

Returns whether the view should be drawn in color. If the NSView is being
drawn to a window that can render color, then YES is returned; otherwise NO is
returned. See also display .

sortSubviewsUsingFunction:context:

– (void)sortSubviewsUsingFunction:(int (*)(id ,id ,void *))compare
context:(void *)context

Sorts the receiving view’s subviews using the sorting function compare and
the context context . The first two arguments of the function are the views to
be compared. See also addSubview: .

subviews

– (NSArray *)subviews

Returns a mutable array containing the receiving NSView’s subviews. You can
use this array to send messages to each NSView in the NSView hierarchy. You
never modify this array directly; use addSubview: and
removeFromSuperview to add and remove NSViews from the NSView
hierarchy. If the NSView has no subviews an empty array is returned. See also
addSubview: , superview .

NSView 1-603

1

superview

– (NSView *)superview

Returns the NSView’s superview. If the NSView hasn’t a superview, nil is
returned. When applying this method recursively, you should check the return
value against the content NSView of the NSView’s NSWindow to avoid flying
off the top of the NSView hierarchy. See also subviews .

tag

– (int)tag

Returns the NSView’s tag, which is an integer that you can use to identify
objects in your application. By default, NSView returns -1. You can override
this method to identify certain NSViews. For example, your application could
take special action when an NSView with a given tag receives a mouse event.
See also viewWithTag: .

translateOriginToPoint:

– (void)translateOriginToPoint:(NSPoint)point

Shifts the NSView’s coordinate system to point . This method posts the
NSViewFocusDidChangeNotification notification with the receiving
object to the default notification center. See the Notifications section of the
Application Kit’s Types and Constants chapter for information on notifications.
See also boundsRotation .

unlockFocus

– (void)unlockFocus

Unfocuses the receiving view. Balances an earlier lockFocus message to the
same NSView. If the lockFocus method saved the previous graphics state,
this method restores it.

unregisterDraggedTypes

– (void)unregisterDraggedTypes

1-604 OpenStep Programming Reference—September 1996

1

Unregisters the window as a recipient of dragged images. See also
registerForDraggedTypes: , dragFile:fromRect:slideBack:event: .

viewWillMoveToSuperview:

- (void)viewWillMoveToSuperview:(NSView *)newSuperview

Changes the receiving view’s superview to newSuperview . See also
viewWillMoveToWindow: .

viewWillMoveToWindow:

– (void)viewWillMoveToWindow:(NSWindow *)newWindow

Notifies the view that it will move to a new window. See also window ,
viewWillMoveToSuperview: .

viewWithTag:

– (id)viewWithTag:(int)aTag

Returns the subview (including self) with aTag as its tag, or nil if no view
is found with that tag. See also tag .

visibleRect

– (NSRect)visibleRect

Returns the visible portion of the NSView. If no portion of the NSView is
visible, an empty rectangle (NSZeroRect) is returned. Visibility is determined
by intersecting the NSView’s frame rectangle against the frame rectangles of
each of its ancestors in the view hierarchy, after appropriate coordinate
transformations. Only those portions of the NSView that lie within the frame
rectangles of all its ancestors can be visible. This method does not take into
account any siblings of the receiving view or siblings of its ancestors. If the
NSView is being printed, this method returns the portion of the NSView that is
visible on the page being imaged. See also display .

widthAdjustLimit

– (float)widthAdjustLimit

NSWindow 1-605

1

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto
the next page during automatic pagination to prevent items from being cut in
half. This limit applies to horizontal pagination. This method is invoked by
print: and fax: . By default, this method returns 0.2. See also
heightAdjustLimit , adjustPageHeightNew:top:bottom:limit: ,
adjustPageWidthNew:left:right:limit: .

window

– (NSWindow *)window

Returns the NSWindow in which the view is displayed. See also addSubview: .

writeEPSInsideRect:toPasteboard:

– (void)writeEPSInsideRect:(NSRect)rect
toPasteboard:(NSPasteboard *)pasteboard

Places PostScript code for the rectangle rect on the pasteboard . See also
dataWithEPSInsideRect: .

NSWindow

Class Description

The NSWindow class defines objects that manage and coordinate the windows
that an application displays on the screen. A single NSWindow object
corresponds to, at most, one window. The two principle functions of an
NSWindow are to provide an area in which views can be placed, and to accept
and distribute, to the appropriate NSViews, events that the user instigates by
manipulating the mouse and keyboard.

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

1-606 OpenStep Programming Reference—September 1996

1

Rectangles, Views, and the View Hierarchy

An NSWindow is defined by a frame rectangle that encloses the entire window,
including its title bar, resize bar, and border, and by a content rectangle that
encloses just its content area. Both rectangles are specified in the screen
coordinate system. The frame rectangle establishes the NSWindow’s base
coordinate system. This coordinate system is always aligned with and is
measured in the same increments as the screen coordinate system (in other
words, the base coordinate system can’t be rotated or scaled). The origin of a
base coordinate system is the bottom left corner of the window’s frame
rectangle.

You create an NSWindow through one of the init:... methods by specifying,
among other attributes, the size and location of its content rectangle. The frame
rectangle is derived from the dimensions of the content rectangle.

When it’s created, an NSWindow automatically creates two NSViews: an opaque
frame view and a transparent content view that fills the content area. The frame
view is a private object that your application can’t access directly. The content
view is the “highest” accessible view in the window; you can replace the
content view with an NSView of your own creation through NSWindow’s
setContentView: method.

You add other views to the window by declaring each to be a subview of the
content view, or a subview of one of the content view’s subviews, and so on,
through NSView’s addSubview: method. This tree of views is called the
window’s view hierarchy. When an NSWindow is told to display itself, it does so
by sending view-displaying messages to each object in its view hierarchy.
Because displaying is carried out in a determined order, the content view
(which is drawn first) may be wholly or partially obscured by its subviews,
and these subviews may be obscured by their subviews (and so on).

Event Handling

The window system and the NSApplication object forward mouse and
keyboard events to the appropriate NSWindow object. The NSWindow that’s
currently designated to receive keyboard events is known as the key window. If
the mouse or keyboard event affects the window directly—resizing or moving
it, for example—the NSWindow performs the appropriate operation itself and

NSWindow 1-607

1

sends messages to its delegate informing it of its intentions, thus allowing your
application to intercede. Events that are directed at specific views within the
window are forwarded by the NSWindow to the NSView.

The NSWindow keeps track of the object that was last selected to handle
keyboard events as its first responder. The first responder is typically the
NSView that displays the current selection. In addition to keyboard events, the
first responder is sent action messages that have a user-selected target (a nil
target in program code). The NSWindow continually updates the first responder
in response to the user’s mouse actions.

Each NSWindow provides a field editor, an NSText object that handles small-
scale text-editing chores. The field editor can be used by the NSWindow’s first
responder to edit the text that it displays. The fieldEditor:forObject:
method returns the NSWindow’s field editor. (You can make this method
instead return an alternative NSText object, appropriate for the object specified
the second argument, by implementing the delegate method
windowWillReturnFieldEditor:toObject: .)

Method Types

Activity Class Method

Initializing and
getting a new
NSWindow object

– initWithContentRect:styleMask:backing:defer:
– initWithContentRect:styleMask:backing:defer: screen:

Computing frame and
content rectangles

+ contentRectForFrameRect:styleMask:
+ frameRectForContentRect:styleMask:
+ minFrameWidthWithTitle:styleMask:

Accessing the content
view

– contentView
– setContentView:

Window graphics – backgroundColor
– representedFilename
– setBackgroundColor:
– setRepresentedFilename:
– setTitle:
– setTitleWithRepresentedFilename:
– styleMask
– title

1-608 OpenStep Programming Reference—September 1996

1

Window device
attributes

– backingType
– deviceDescription
– gState
– isOneShot
– setBackingType:
– setOneShot:
– windowNumber

The miniwindow – miniwindowImage
– miniwindowTitle
– setMiniwindowImage:
– setMiniwindowTitle:

The field editor – endEditingFor:
– fieldEditor:forObject:

Window status and
ordering

– becomeKeyWindow
– becomeMainWindow
– canBecomeKeyWindow
– canBecomeMainWindow
– hidesOnDeactivate
– isKeyWindow
– isMainWindow
– isMiniaturized
– isVisible
– level
– makeKeyAndOrderFront:
– makeKeyWindow
– makeMainWindow
– orderBack:
– orderFront:
– orderFrontRegardless
– orderOut:
– orderWindow:relativeTo:
– resignKeyWindow
– resignMainWindow
– setHidesOnDeactivate:
– setLevel:

Activity Class Method

NSWindow 1-609

1

Moving and resizing
the window

– cascadeTopLeftFromPoint:
– center
– constrainFrameRect:toScreen:
– frame
– minSize
– maxSize
– setContentSize:
– setFrame:display:
– setFrameOrigin:
– setFrameTopLeftPoint:
– setMinSize:
– setMaxSize:

Converting
coordinates

– convertBaseToScreen:
– convertScreenToBase:

Managing the display – display
– disableFlushWindow
– displayIfNeeded
– enableFlushWindow
– flushWindow
– flushWindowIfNeeded
– isAutodisplay
– isFlushWindowDisabled
– setAutodisplay:
– setViewsNeedDisplay:
– update
– useOptimizedDrawing:
– viewsNeedDisplay

Screen and window
depths

+ defaultDepthLimit
– canStoreColor
– deepestScreen
– depthLimit
– hasDynamicDepthLimit
– screen
– setDepthLimit:
– setDynamicDepthLimit:

Cusor management – areCursorRectsEnabled
– disableCursorRects
– discardCursorRects
– enableCursorRects
– invalidateCursorRectsForView:
– resetCursorRects

Activity Class Method

1-610 OpenStep Programming Reference—September 1996

1

Handling user actions
and events

– close
– deminiaturize:
– isDocumentEdited
– isReleasedWhenClosed
– miniaturize:
– performClose:
– performMiniaturize:
– resizeFlags
– setDocumentEdited:
– setReleasedWhenClosed:

Aiding event handling – acceptsMouseMovedEvents
– currentEvent
– discardEventsMatchingMask:beforeEvent:
– firstResponder
– keyDown:
– makeFirstResponder:
– mouseLocationOutsideOfEventStream
– nextEventMatchingMask:
– nextEventMatchingMask:untilDate:inMode: dequeue:
– postEvent:atStart:
– setAcceptsMouseMovedEvents:
– sendEvent:
– tryToPerform:with:
– worksWhenModal

Dragging – dragImage:at:offset:event:pasteboard:source: slideBack:
– registerForDraggedTypes:
– unregisterDraggedTypes

Services and
windows menu
support

– isExcludedFromWindowsMenu
– setExcludedFromWindowsMenu:
– validRequestorForSendType:returnType:

Saving and restoring
the frame

+ removeFrameUsingName:
– frameAutosaveName
– saveFrameUsingName:
– setFrameAutosaveName:
– setFrameFromString:
– setFrameUsingName:
– stringWithSavedFrame

Printing and
PostScript

– dataWithEPSInsideRect:
– fax:
– print:

Activity Class Method

NSWindow 1-611

1

Window image
caching and restoring

– cacheImageInRect:
– discardCachedImage
– restoreCachedImage

Assigning a delegate – delegate
– setDelegate:

Methods
Implemented
by the Delegate

– windowDidBecomeKey:
– windowDidBecomeMain:
– windowDidChangeScreen:
– windowDidDeminiaturize:
– windowDidExpose:
– windowDidMiniaturize:
– windowDidMove:
– windowDidResignKey:
– windowDidResignMain:
– windowDidResize:
– windowDidUpdate:
– windowShouldClose:
– windowWillClose:
– windowWillReturnFieldEditor:toObject:

Activity Class Method

1-612 OpenStep Programming Reference—September 1996

1

Class Methods

contentRectForFrameRect:styleMask:

+ (NSRect)contentRectForFrameRect:(NSRect)aRect
styleMask:(unsigned int)aStyle

Calculates and returns the content rectangle for an NSWindow with frame
rectangle aRect and window type style aStyle . Both are in screen
coordinates. The acceptable style masks are

• NSBorderlessWindowMask
• NSTitledWindowMask
• NSClosableWindowMask
• NSMiniturizableWindowMask
• NSResizableWindowMask

See also frameRectForContentRect:styleMask: , and the NSWindow
enums in the Application Kit “Types and Constants” section.

defaultDepthLimit

+ (NSWindowDepth)defaultDepthLimit

Returns the default depth limit for all windows. Do not send this message
before the NSApplication object is running. Do not send this messge until
your application object is created, and a DPS context is created. See also
depthLimit , setDepthLimit: , hasDynamicDepthLimit ,
setDynamicDepthLimit: .

frameRectForContentRect:styleMask:

+ (NSRect)frameRectForContentRect:(NSRect)aRect
styleMask:(unsigned int)aStyle

Calculates and returns the frame rectangle for an NSWindow with the given
content rectangle (aRect) and style (aStyle). Both are in screen coordinates.
See the style method for a list of acceptable style values. The acceptable style
masks are

• NSBorderlessWindowMask
• NSTitledWindowMask
• NSClosableWindowMask

NSWindow 1-613

1

• NSMiniturizableWindowMask
• NSResizableWindowMask

See also contentRectForFrameRect:styleMask: .

minFrameWidthWithTitle:styleMask:

+ (float)minFrameWidthWithTitle:(NSString *)aTitle
styleMask:(unsigned int)aStyle

Returns the minimum frame width that an NSWindow’s frame rectangle must
have for it to display all of aTitle , given the specified style. See the style
method for a list of acceptable style mask values.

removeFrameUsingName:

+ (void)removeFrameUsingName:(NSString *)name

Removes frame rectangle name from the system defaults. See also
saveFrameUsingName: , setFrameFromString: , setFrameUsingName: ,
stringWithSavedFrame , frameAutosaveName ,
setFrameAutosaveName: .

Instance Methods

acceptsMouseMovedEvents

– (BOOL)acceptsMouseMovedEvents

Returns YES if the NSWindow accepts mouse-moved events, and NO otherwise.
See also setAcceptsMouseMovedEvents: .

areCursorRectsEnabled

– (BOOL)areCursorRectsEnabled

Returns YES if cursor rectangles are enabled, NO otherwise. See also
disableCursorRects , enableCursorRects , discardCursorRects ,
invalidateCursorRectsForView: , resetCursorRects .

1-614 OpenStep Programming Reference—September 1996

1

backgroundColor

– (NSColor *)backgroundColor

Returns the NSwindow’s background color. See also NSColor ,
setBackgroundColor: .

backingType

– (NSBackingStoreType)backingType

Returns the window device’s backing store type, which is one of the following
values:

• NSBackingStoreRetained
• NSBackingStoreNonretained
• NSBackingStoreBuffered

See also NSBackingStoreType (Display Postscript “Types and Constants”
chapter).

becomeKeyWindow

– (void)becomeKeyWindow

Records the window’s new status as the key window. This method posts the
notification NSWindowDidBecomeKeyNotification with the receiving
object to the default notification center, and sends a becomeKeyWindow
message to this window’s first responder (unless this window is the first
responder, or none exists). It is not necessary to invoke this method; it is
invoked automatically when the NSWindow becomes the key window. See also
canBecomeKeyWindow , isKeyWindow , makeKeyWindow,
makeKeyAndOrderFront: , resignKeyWindow .

becomeMainWindow

– (void)becomeMainWindow

Records the window’s new status as the main window. This method posts the
notification NSWindowDidBecomeMainNotification with the receiving
object to the default notification center. See also canBecomeMainWindow ,
isMainWindow , makeMainWindow , resignMainWindow .

NSWindow 1-615

1

cacheImageInRect:

- (void)cacheImageInRect:(NSRect)aRect

This method saves a window's current "bits". The sender can then draw into
the window (animation, etc.), after which they can quickly clear their drawing
by restoring the area(s) they have drawn over. This used to be accomplished
with instance drawing.See also restoreCachedImage ,
discardCachedImage .

canBecomeKeyWindow

– (BOOL)canBecomeKeyWindow

Returns YES if the receiving NSWindow object can become the key window, NO
otherwise. See also becomeKeyWindow .

canBecomeMainWindow

– (BOOL)canBecomeMainWindow

Returns YES if the receiving NSWindow object can become the main window,
NO otherwise. See also becomeMainWindow .

canStoreColor

– (BOOL)canStoreColor

Returns YES if the NSWindow has a depth limit large enough to store color
values, and NO otherwise. See also depthLimit .

cascadeTopLeftFromPoint:

– (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeftPoint

When successively invoked, tiles windows by offsetting them slightly to the
right and down from the previous window. Returns the top left point of the
placed window, which is typically used for topLeftPoint in the next
invocation. If you specify (0,0) for the top left point, this method places the
window as is, and returns its top left point.

1-616 OpenStep Programming Reference—September 1996

1

center

– (void)center

Moves the NSWindow to the center of the screen: dead-center horizontally and
slightly above center vertically. Use this method to place an NSWindow—most
likely an attention panel—where the user can’t miss it. This method is invoked
automatically when a panel is placed on the screen by NSApplication ’s
beginModalSessionForWindow: method.

close

– (void)close

Closes the window. When this method begins, it posts the notification
NSWindowWillCloseNotification with the receiving object to the default
notification center. See also isReleasedWhenClosed ,
setReleasedWhenClosed: , performClose: .

constrainFrameRect:toScreen:

– (NSRect)constrainFrameRect:(NSRect)frameRect
toScreen:(NSScreen *)screen

Constrains the window’s frame rectangle frameRect to fit on screen .
Returns the constrained frame rectangle. theFrame is modified so that its top
edge lies on the given screen. If the NSWindow is resizable, the rectangle’s
height is adjusted to bring the bottom edge onto the screen as well. The
rectangle’s width and horizontal location are unaffected. You shouldn’t need to
invoke this method yourself; it is invoked automatically (and the modified
frame is used to locate and set the size of the NSWindow) whenever a titled
NSWindow is placed on-screen or resized. You can override this method to
prevent a particular NSWindow from being constrained, or to constrain it
differently. The unconstrained frame rectangle is pointed to by theFrame ; the
screen that it will be displayed on is pointed to by screen .

contentView

– (id)contentView

Returns the NSWindow’s content view: the highest accessible NSView object in
the NSWindow’s view heirarchy. See also setContentView: .

NSWindow 1-617

1

convertBaseToScreen:

– (NSPoint)convertBaseToScreen:(NSPoint)aPoint

Converts aPoint from base to screen coordinates. See also
convertScreenToBase: .

convertScreenToBase:

– (NSPoint)convertScreenToBase:(NSPoint)aPoint

Converts aPoint from screen to base coordinates. See also
convertBaseToScreen: .

currentEvent

– (NSEvent *)currentEvent

Returns the last event object retrieved from the even queue by the
NSApplication . See also NSApplication , NSEvent .

dataWithEPSInsideRect:

– (NSData *)dataWithEPSInsideRect:(NSRect)rect

Returns the encapsulated PostScript inside rect as a data object. See also
EPSOperationWithView:insideRect:toData: (NSPrintOperation),
NSData (Foundation Kit “Types and Constants” chapter).

deepestScreen

– (NSScreen *)deepestScreen

Returns the deepest screen that the NSWindow is on, or nil if the NSWindow is
off the screen. See also screen , depthLimit .

delegate

– (id)delegate

Returns the NSWindow’s delegate, or nil if none exists.

1-618 OpenStep Programming Reference—September 1996

1

deminiaturize:

– (void)deminiaturize:(id)sender

Hides the miniwindow and redisplays the NSWindow. You rarely need to
invoke this method; it’s invoked automatically when an NSWindow is
deminiaturized by the user (by double-clicking a miniwindow, or by choosing
the Arrange in Front item in the NSWindow’s menu). However, if you feel
compelled to deminiaturize an NSWindow programmatically, you should note
that the deminiaturize message is sent to the miniwindow, not the original
NSWindow, and the value passed as sender is ignored.

depthLimit

– (NSWindowDepth)depthLimit

Returns the window’s depth limit, which can be one of the following values:

• NSDefaultDepth
• NSTwoBitGrayDepth
• NSEightBitGrayDepth
• NSTwelveBitRGBDepth
• NSTwentyFourBitRGBDepth

If the return value is NSDefaultDepth , you can find the actual depth
limit by sending the window class a defaultDepthLimit message. See
also defaultDepthLimit , deepestScreen , hasDynamicDepthLimit ,
setDepthLimit: .

deviceDescription

– (NSDictionary *)deviceDescription

Returns the window device’s attributes as key/value pairs. See also
NSDictionary .

disableCursorRects

– (void)disableCursorRects

Disables all cursor rectangles within the NSWindow. Typically this method is
used when you need to do some special cursor manipulation, and you don’t
want the Application Kit interfering. See also areCursorRectsEnabled .

NSWindow 1-619

1

disableFlushWindow

– (void)disableFlushWindow

Disables the flushWindow method for the NSWindow. If the NSWindow is a
buffered window, drawing won’t automatically be flushed to the screen by the
display methods defined in the NSView class. This permits several NSViews to
be displayed before the results are shown to the user. Flushing should be
disabled only temporarily, while the NSWindow’s display is being updated.
Each disableFlushWindow message should be paired with a subsequent
enableFlushWindow message. Message pairs can be nested; flushing won’t
be reenabled until the last (unnested) enableFlushWindow message is sent.
See also flushWindow .

discardCachedImage

- (void)discardCachedImage

This method releases the memory used to store a saved bit image. This method
should be called after the final restoreCachedImage is called. See also
cacheImageInRect: , restoreCachedImage .

discardCursorRects

– (void)discardCursorRects

Removes all cursor rectangles in the NSWindow. This method is invoked by
resetCursorRects to remove existing cursor rectangles before resetting
them. In general, you wouldn’t invoke it in the code you write, but might want
to override it to change its behavior. See also areCursorRectsEnabled .

discardEventsMatchingMask:beforeEvent:

– (void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent

Invokes the NSApplication method of the same name. Removes all events
from the event queue matching mask that were generated before lastEvent .
If lastEvent is nil , all events matching mask are removed from the queue.

1-620 OpenStep Programming Reference—September 1996

1

display

– (void)display

Displays all the NSWindow’s views, including the border, resize bar, and title
bar. If displaying is disabled for the NSWindow, display enables it. See also
displayIfNeeded , isAutodisplay , setAutodisplay: ,
setViewsNeedDisplay: , update .

displayIfNeeded

– (void)displayIfNeeded

Displays all the NSWindow’s views that need to be redrawn. This method is
useful when you want to disable displaying in the NSWindow, modify some
number of NSViews, and then display only the ones that were modified Note
that this method, unlike display , doesn’t reenable display if it’s currently
disabled. See also display .

dragImage:at:offset:event:pasteboard:source:
slideBack:

– (void)dragImage:(NSImage *)anImage at:(NSPoint)baseLocation
offset:(NSSize)initialOffset event:(NSEvent *)event
pasteboard:(NSPasteboard *)pboard source:(id)sourceObject
slideBack:(BOOL)slideFlag

Instigates an image-dragging session. You never invoke this method directly
from your application; it can only be invoked from within an NSView’s
implementation of the mouseDown: method. Furthermore, NSView also
implements the dragImage:... method; you typically instigate an image-
dragging session by sending this message to an NSView, rather than an
NSWindow. The two methods are identical except for the interpretation of the
baseLocation argument: In NSWindow’s implementation, baseLocation is
taken in the base coordinate system. See the description of this method in the
NSView class for the meanings of the other arguments. See also
dragImage:at:offset:event:pasteboard:source: slideBack:
(NSView).

enableCursorRects

– (void)enableCursorRects

NSWindow 1-621

1

Enables cursor rectangles within the NSWindow. See also
areCursorRectsEnabled .

enableFlushWindow

– (void)enableFlushWindow

Enables flushing for a buffered window. See also disableFlushWindow ,
flushWindow , flushWindowIfNeeded , isFlushWindowDisabled .

endEditingFor:

– (void)endEditingFor:(id)anObject

Ends the field editor’s editing assignment for anObject . If the field editor is
the first responder, it resigns that status, passing it to the NSWindow (even if
the field editor refuses to resign). This forces a textDidEndEditing:
message to be sent to the field editor’s delegate. The field editor is then
removed from the view hierarchy and its delegate is set to nil . See also
fieldEditor:forObject: .

fax:

– (void)fax:(id)sender

Prints the NSWindow (all the NSViews in its view hierarchy including the frame
view) to a fax modem. This method provides users with an independent
control for faxing an NSWindow. This method brings up a Fax panel before
printing begins. Note that faxing is platform specific, therefore this method is
not part of the OpenStep specification. See also print: , NSPrintOperation .

fieldEditor:forObject:

– (NSText *)fieldEditor:(BOOL)createFlag forObject:(id)anObject

Returns the NSWindow object’s field editor for anObject . If the field editor
does not exist and createFlag is YES, a field editor is created. The field editor
is provided as a convenience and can be used however your application sees
fit. Typically, the field editor is used by simple text-bearing objects—for
example, a NSTextField object uses its NSWindow’s field editor to display
and manipulate text. The field editor can be shared by any number of objects

1-622 OpenStep Programming Reference—September 1996

1

and so its state may be constantly changing. Therefore, it shouldn’t be used to
display text that demands sophisticated NSText object preparation. For this
you should create a dedicated NSText object).

A newly created NSWindow doesn’t have a field editor; the only way to create
a field editor is to invoke this method with a flag value of YES. After a field
editor has been created for an NSWindow, the flag argument is ignored.

The NSWindow’s delegate can supply the object that this method returns as the
return value of the windowWillReturnFieldEditor:toObject: delegate
message (the NSWindow is passed as the first argument, anObject is passed as
the second). However, note the following:

• If the NSWindow’s delegate is anObject , the
windowWillReturnFieldEditor:toObject: message isn’t sent.

• The object returned by the delegate method doesn’t become the NSWindow’s
field editor.

If this method returns a non-nil value, it should be followed by an invocation
of NSWindow’s endEditingFor: method before the field editor is actually
used.

firstResponder

– (NSResponder *)firstResponder

Returns the first responder to user events. See also makeFirstResponder: ,

flushWindow

– (void)flushWindow

If the NSWindow is buffered and flushing hasn’t been disabled by
disableFlushWindow , this flushes the off-screen buffer to the screen. This
method is automatically invoked when you send a display message to an
NSWindow or NSView. However, it has no effect if the display is being directed
to a printer or other device, rather than to the screen. See also display ,
disableFlushWindow , enableFlushWindow , flushWindowIfNeeded ,
isFlushWindowDisabled .

NSWindow 1-623

1

flushWindowIfNeeded

– (void)flushWindowIfNeeded

Flushes the Window’s off-screen buffer to the screen, provided that:

• The NSWindow is a buffered window.

• Flushing isn’t currently disabled.

• Some previous flushWindow messages had no effect because flushing was
disabled.

You should use this method, rather than flushWindow , to flush an NSWindow
after flushing has been reenabled. See also flushWindow .

frame

– (NSRect)frame

Returns the window’s frame rectangle. See also setFrame:display: ,
setFrameOrigin: , setFrameTopLeftPoint: , minSize , maxSize ,
setContentSize: , setMinSize: , setMaxSize: .

frameAutosaveName

– (NSString *)frameAutosaveName

Returns the name that’s used to automatically save the NSWindow’s frame
rectangle data in the system defaults, as set through
setFrameAutosaveName: . If the NSWindow has an autosave name, it’s frame
data is written as a default whenever the frame rectangle changes. See also
removeFrameUsingName: , saveFrameUsingName: ,
setFrameAutosaveName: , setFrameFromString: ,
setFrameUsingName: , stringWithSavedFrame .

gState

– (int)gState

Returns the PostScript graphics-state object for the NSWindow.

1-624 OpenStep Programming Reference—September 1996

1

hasDynamicDepthLimit

– (BOOL)hasDynamicDepthLimit

Returns YES if the NSWindow’s depth limit can change to match the depth of
the screen it is displayed on, and NO if it can’t. See also
setDynamicDepthLimit: , depthLimit .

hidesOnDeactivate

– (BOOL)hidesOnDeactivate

Returns YES if the NSWindow will be removed from the screen when its
application is deactivated, and NO if it will remain on-screen. See also
setHidesOnDeactivate: .

initWithContentRect:styleMask:backing:defer:

– (id)initWithContentRect:(NSRect)contentRect
styleMask:(unsigned int)aStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)flag

Initializes a new NSWindow. contentRect specifies the location and size of
the NSWindow’s content area in screen coordinates. If a NULL pointer is passed
for this argument, a default rectangle is used. aStyle is a bitmap mask, and
specifies the NSWindow’s style. Styles are

• NSBorderlessWindowMask
• NSTitledWindowMask
• NClosableWindowMask
• NSMiniturizableWindowMask
• NSResizableWindowMask

Titled and resizable NSWindows are by far the most common. The third
argument, bufferingingType , specifies how the drawing done in the
NSWindow is buffered by the object’s window device:

• NSBackingStoreRetained
• NSBackingStoreNonretained
• NSBackingStoreBuffered

NSWindow 1-625

1

Lastly, if flag is YES, window creation is deferred until the NSWindow is
needed on-screen. All display messages sent to the NSWindow or its NSViews
will be postponed until the window is created, just before it’s moved on-
screen. Deferring the creation of the window improves launch time and
minimizes the virtual memory load on the Window Server.

The NSWindow creates an instance of NSView to be its default content view.
You can replace it with your own object by using the setContentView:
method. This method returns self . See also
initWithContentRect:styleMask:backing:defer: screen: ,
NSBackingStoreType (Display Postscript “Types and Constants” chapter).

initWithContentRect:styleMask:backing:defer:
screen:

– (id)initWithContentRect:(NSRect)contentRect
styleMask:(unsigned int)aStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)flag
screen:(NSScreen *)aScreen

Initializes a new NSWindow with a content rectangle location and size specified
by contentRect , a window style and buttons as indicated in the bitmap mask
aStyle , drawing buffering specified by bufferingType , and for the screen
specified by aScreen . This method is equivalent to
initContent:style:backing:buttonMask:defer: , except that the
content rectangle is specified relative to the lower left corner of aScreen .

If aScreen is NULL, the content rectangle is interpreted relative to the lower
left corner of the main screen. The main screen is the one that contains the
current key window, or, if there is no key window, the one that contains the
main menu. If there’s neither a key window nor a main menu (if there’s no
active application), the main screen is the one where the origin of the screen
coordinate system is located. If flag is YES, the window system defers
creating the window until it’s needed. See
initWithContentRect:styleMask:backing:defer: for a further
explanation of the arguments. See also NSScreen .

invalidateCursorRectsForView:

– (void)invalidateCursorRectsForView:(NSView *)aView

1-626 OpenStep Programming Reference—September 1996

1

Marks cursor rectangles invalid for aView . See also
areCursorRectsEnabled .

isAutodisplay

– (BOOL)isAutodisplay

Returns whether the window displays all views requiring redrawing when
update is invoked. See also setAutodisplay: , update .

isDocumentEdited

– (BOOL)isDocumentEdited

Returns YES if the NSWindow’s document has been edited, otherwise returns
NO. See also setDocumentEdited: .

isExcludedFromWindowsMenu

– (BOOL)isExcludedFromWindowsMenu

Returns YES if the NSWindow is excluded from the application’s Windows
menu, and NO if it isn’t. See also setExcludedFromWindowsMenu: .

isFlushWindowDisabled

– (BOOL)isFlushWindowDisabled

Returns YES if the NSWindow’s flushing ability is disabled, otherwise returns
NO. See also flushWindow .

isKeyWindow

– (BOOL)isKeyWindow

Returns YES if the NSWindow is the application’s key window, otherwise
returns NO. See also becomeKeyWindow , canBecomeKeyWindow ,
isMainWindow .

isMainWindow

– (BOOL)isMainWindow

NSWindow 1-627

1

Returns YES if the NSWindow is the main window for the application, and NO if
it isn’t. See also becomeMainWindow , canBecomeMainWindow ,
isKeyWindow .

isMiniaturized

– (BOOL)isMiniaturized

Returns YES if the NSWindow is hidden and the miniwindow displayed, and
NO otherwise. See also isVisible .

isOneShot

– (BOOL)isOneShot

Returns YES if the backing-store memory for the NSWindow is freed when the
NSWindow is ordered off-screen. See also setOneShot: .

isReleasedWhenClosed

– (BOOL)isReleasedWhenClosed

Returns YES if the NSWindow is released when it is closed, otherwise returns
NO. See also setReleasedWhenClosed: , performClose: .

isVisible

– (BOOL)isVisible

Returns YES if the NSWindow is on-screen (even if it’s obscured by other
NSWindows), otherwise returns NO.

keyDown:

– (void)keyDown:(NSEvent *)theEvent

Responds to the key-down event passed as theEvent . NSWindow’s version of
keyDown: first checks to see if the message has been sent to an NSMenu object
that is not visible, in which case an update message is sent to the NSMenu.
Next, if theEvent is an NSKeyDown event sent along with some characters,
then theEvent is sent to the content view object. The content view object

1-628 OpenStep Programming Reference—September 1996

1

passes it along to any subviews until it reaches the first subview that accepts it.
If no view responds, the default NSResponder keyDown: method is invoked.
See also update , keyDown: (NSResponder .

level

– (int)level

Returns the current window level. The following values represent the
NSWindow levels:

• NSNormalWindowLevel
• NSFloatingWindowLevel
• NSDockWindowLevel
• NSSubmenuWindowLevel
• NSMainMenuWindowLevel

For more information on window levels, see the “NSWindow” section of the
Application Kit’s “Types and Constants” chapter. See also setLevel: .

makeFirstResponder:

– (BOOL)makeFirstResponder:(NSResponder *)aResponder

Makes aResponder the first receiver of keyboard events and action messages
sent to the NSWindow. If successful, YES is returned. If aResponder isn’t
already the NSWindow’s first responder, this method asks the object that
currently is first responder to resign. However, if the old first responder refuses
to resign, no changes are made and NO is returned.

The Application Kit uses this method to alter the first responder in response to
mouse-down events; you can also use it to explicitly set the first responder
from within your program. aResponder should be a NSResponder object.
Typically, it’s an NSView in the NSWindow’s view hierarchy. See also
firstResponder .

makeKeyAndOrderFront:

– (void)makeKeyAndOrderFront:(id)sender

NSWindow 1-629

1

Moves the NSWindow to the front of the screen list (within its tier) and makes it
the key window. This method can be used in an action message. See also
setLevel: , orderFront: , orderBack: , orderOut: ,
orderWindow:relativeTo: .

makeKeyWindow

– (void)makeKeyWindow

Makes the NSWindow the key window, that is, the window that accepts
keyboard events. See also becomeKeyWindow , becomeMainWindow .

makeMainWindow

– (void)makeMainWindow

Makes the NSWindow the main window. See also becomeMainWindow ,
becomeKeyWindow .

maxSize

– (NSSize)maxSize

Returns the maximum size that an NSWindow’s frame can be sized. See also
minSize , setMaxSize: , setMinSize: .

minSize

– (NSSize)minSize

Returns the minimum size that an NSWindow’s frame can be sized. See also
maxSize , setMaxSize: , setMinSize: .

miniaturize:

– (void)miniaturize:(id)sender

Hides the window and displays its miniwindow. If the window doesn’t have a
miniwindow counterpart, one is created. When this method completes
successfully, it posts NSWindowDidMiniaturizeNotification .

1-630 OpenStep Programming Reference—September 1996

1

A miniaturize: message is generated when the user clicks the miniaturize
button in the NSWindow’s title bar. This method has a sender argument so
that it can be used in an action message from an NSControl . It ignores this
argument. See also deminiaturize: .

miniwindowImage

– (NSImage *)miniwindowImage

Returns the image that’s displayed in the miniwindow. See also
setMiniwindowImage: , miniwindowTitle , setMiniwindowTitle: .

miniwindowTitle

– (NSString *)miniwindowTitle

Returns the title that’s displayed in the miniwindow. See also
setMiniwindowTitle: , miniwindowImage , setMiniwindowImage: .

mouseLocationOutsideOfEventStream

– (NSPoint)mouseLocationOutsideOfEventStream

Provides current location of the cursor, in base coordinates.

nextEventMatchingMask:

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask

Returns the next event object for the application that matches the events
indicated by the given event mask. See the Event Handling section of the Types
and Constants chapter for a list of event masks. See also
nextEventMatchingMask:untilDate:inMode: dequeue: .

nextEventMatchingMask:untilDate:inMode:
dequeue:

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate:(NSDate *)expiration inMode:(NSString *)mode
dequeue:(BOOL)deqFlag

NSWindow 1-631

1

Returns the next event object for the application that matches the event mask,
and that occurs before time expiration . Until expiration , the run loop
runs in mode, which can be one of the following values:

• NSEventTrackingRunLoopMode
• NSModalPaneRunLoopMode

If flag is YES, the event is removed from the event queue. See also
nextEventMatchingMask: .

orderBack:

– (void)orderBack:(id)sender

Moves the NSWindow to the back of its tier in the screen list. This method may
also change the key window and the main window. See also orderFront: ,
makeKeyAndOrderFront: .

orderFront:

– (void)orderFront:(id)sender

Moves the NSWindow to the front of its tier in the screen list. This method may
also change the key window and main window. See orderBack: ,
makeKeyAndOrderFront: .

orderFrontRegardless

– (void)orderFrontRegardless

Moves the NSWindow to the front of its tier, even if the NSWindow’s application
isn’t active. Normally an NSWindow can’t be moved in front of the key window
unless the NSWindow and the key window are in the same application. You
should rarely need to invoke this method; it’s designed to be used when
applications are cooperating such that an active application (with the key
window) is using another application to display data. If the NSWindow is
currently miniaturized, this method posts the notification
NSWindowDidDeminiaturizeNotification with the window object to the
default notification center.

1-632 OpenStep Programming Reference—September 1996

1

orderOut:

– (void)orderOut:(id)sender

Removes the window object from the screen list. This method may change the
key window and the main window. See also makeKeyAndOrderFront: .

orderWindow:relativeTo:

– (void)orderWindow:(NSWindowOrderingMode)place
relativeTo:(int)otherWin

Repositions the NSWindow in position place relative to otherWin within the
screen list. If the window is currently miniaturized, this method posts the
NSWindowDidDeminiaturizeNotification notification to the default
notification center. place can be on of the following values:

• NSWindowAbove
• NSWindowBelow
• NSWindowOut

See also makeKeyAndOrderFront: .

performClose:

– (void)performClose:(id)sender

Simulates the user clicking the close button by momentarily highlighting the
button and then closing the NSWindow. If the NSWindow’s delegate or the
NSWindow itself implements windowWillClose: , then that message is sent
with the NSWindow as the argument (only one such message is sent; if both the
delegate and the NSWindow implement the method, only the delegate will
receive the message). If the NSWindow doesn’t have a close button, then the
method calls NSBeep() . See also close , performClick: (NSButton).

performMiniaturize:

– (void)performMiniaturize:(id)sender

Simulates the user clicking the miniaturize button by momentarily
highlighting the button then miniaturizing the NSWindow. If the NSWindow
doesn’t have a miniaturize button, then this method calls NSBeep() . See also
performClick: (NSButton).

NSWindow 1-633

1

postEvent:atStart:

– (void)postEvent:(NSEvent *)event atStart:(BOOL)flag

Posts an event for the NSApplication . If atStart is YES, the event goes to
the beginning of the event queue. See also postEvent:atStart:
(NSApplication).

print:

– (void)print:(id)sender

Prints the NSWindow (all the NSViews in its view hierarchy including the frame
view). This method brings up a Print panel before printing begins. See also
fax: , NSPrintOperation .

registerForDraggedTypes:

– (void)registerForDraggedTypes:(NSArray *)newTypes

Registers the NSPasteboard types (newTypes) that the NSWindow accepts in
an image-dragging session. Argument values are NSPasteboard types, not
file extensions (you can’t register for specific file extensions). For example, the
following registers an NSWindow as accepting files:

NSArray *fileType = [NSArray arrayWithObjects:
NSFilenamesPboardType, nil];

[aWindow registerForDraggedTypes:fileType];

Note – Registering a window for dragged types automatically makes it a
candidate destination object during a dragging session. As such, it must
implement some or all of the NSDraggingDestination protocol methods. As
a convenience, NSWindow provides default implementations of these methods
(in general, the dragging destination methods are forwarded to the
NSWindow’s delegate). See the NSDraggingDestination protocol description
for details.

See also dragImage:at:offset:event:pasteboard:source:
slideBack: , unregisterDraggedTypes .

1-634 OpenStep Programming Reference—September 1996

1

representedFilename

– (NSString *)representedFilename

Returns the filename associated with this NSWindow (regardless of the title
string). See also setRepresentedFilename: ,
setTitleWithRepresentedFilename: .

resetCursorRects

– (void)resetCursorRects

Removes all existing cursor rectangles from the NSWindow, then recreates the
cursor rectangles by sending a resetCursorRects message to every NSView in
the NSWindow’s view hierarchy. This method is typically invoked by the
NSApplication object when it detects that the key window’s cursor
rectangles are invalid. In program code, it’s more efficient to invoke
invalidateCursorRectsForView: , rather than this method, to fix invalid
cursor rectangles. See also areCursorRectsEnabled , resetCursorRects
(NSView).

resignKeyWindow

– (void)resignKeyWindow

Records that the NSWindow object is no longer the key window. This method
posts the notification NSWindowDidResignKeyNotification with the
receiving object to the default notification center. See the “Notifications”
section of the Application Kit’s “Types and Constants” chapter for more
information on notifications. You never need to invoke this method; it’s
invoked automatically when the NSWindow resigns key window status. The
method sends resignKeyWindow to the NSWindow’s first responder, and
sends windowDidResignKey: to the NSWindow’s delegate (if the respective
objects can respond). See also becomeKeyWindow .

resignMainWindow

– (void)resignMainWindow

NSWindow 1-635

1

Records that the NSWindow is no longer the main window. This method posts
the notification NSWindowDidResignMainNotification with the receiving
object to the default notification center. See the Notifications section of the
Application Kit Types and Constants chapter for more information on
notifications.

resizeFlags

– (int)resizeFlags

Valid only while the NSWindow is being resized, this method returns the flags
field of the event record for the mouse-down event that initiated the resizing
session. The integer encodes, as a mask, information such as the modifier key
that was held down when the event occurred. Because of its limited validity,
this method should only be invoked from within an implementation of the
delegate method windowDidResize: . Note that the default implementation
of this method returns 0.

resizeIncrements

- (NSSize)resizeIncrements

Returns the increment used in window resizing.

restoreCachedImage

- (void)restoreCachedImage

This method will redraw the image cached by cacheImageInRect: back into
the window, erasing whatever was previously there. Note that this method will
not flush the window. For the image restoration to appear in the window, you
may need to call flushWindowIfNeeded . Only call flushWindowIfNeeded
if you are not already calling flushWindow following your
restoreCachedImage call, or you may get some flicker. See also
cacheImageInRect: , discardCachedImage .

saveFrameUsingName:

– (void)saveFrameUsingName:(NSString *)name

1-636 OpenStep Programming Reference—September 1996

1

Saves the NSWindow’s frame rectangle as a system default. With the companion
method setFrameUsingName: , you can save and reset an NSWindow’s frame
over various launchings of an application. The default is owned by the
application, filed under the name “NSWindow Frame name”. See also
removeFrameUsingName: (class method), setFrameUsingName: ,
frameAutosaveName , setFrameAutosaveName: , setFrameFromString: ,
stringWithSavedFrame .

screen

– (NSScreen *)screen

Returns the screen that the NSWindow is on. If the NSWindow is partly on one
screen and partly on another, the screen where most of it lies is the one
returned. See also deepestScreen .

sendEvent:

– (void)sendEvent:(NSEvent *)theEvent

Dispatches mouse and keyboard events. If this method is dispatching a
window exposed event, it posts the NSWindowDidExposeNotification
notification with the receiving object and, in the notification’s dictionary, a
rectangle describing the exposed area (with the key NSExposedRect) to the
default notification center. If this method is dispatching a screen changed
event, it posts the NSWindowDidChangeScreenNotification with the
receiving object. If this method is dispatching a window moved event, it posts
NSWindowDidMoveNotification . See the Notifications section of the
Applications Kit’s Types and Constants chapter for more information on
notifications.

setAcceptsMouseMovedEvents:

– (void)setAcceptsMouseMovedEvents:(BOOL)flag

If flag is YES, the NSWindow accepts mouse-moved events. If flag is NO, the
NSWindow does not accept mouse-moved events.

setAutodisplay:

– (void)setAutodisplay:(BOOL)flag

NSWindow 1-637

1

If flag is YES, the NSWindow displays all views requiring redrawing when
update is invoked. See also isAutodisplay .

setBackgroundColor:

– (void)setBackgroundColor:(NSColor *)color

Sets the color that fills the NSWindow’s content area. See also
backgroundColor .

setBackingType:

 (void)setBackingType:(NSBackingStoreType)type

Sets the type of backing used by the NSWindow’s window device.

• NSBackingStoreRetained
• NSBackingStoreNonretained
• NSBackingStoreBuffered

This method can only be used to switch a buffered NSWindow to retained or
vice versa; you can’t change the backing type of a nonretained NSWindow (a
PostScript error is generated if you attempt to do so). See also backingType ,
NSBackingStoreType (Display Postscript “Types and Constants” chapter).

setContentSize:

– (void)setContentSize:(NSSize)aSize

Resizes the window’s content area to aSize . This method calls
frameRectForContentRect:styleMask: with the new content rectangle
size, and the current style.

setContentView:

– (void)setContentView:(NSView *)aView

Makes aView the NSWindow’s content view. The previous content view is
removed from the NSWindow’s view hierarchy. aView is resized to fit precisely
within the content area of the NSWindow. You can transform the content view’s
coordinate system, but you can’t alter its size or location directly. See also
contentView .

1-638 OpenStep Programming Reference—September 1996

1

setDelegate:

– (void)setDelegate:(id)anObject

Makes anObject the NSWindow’s delegate, and returns self. An NSWindow’s
delegate is given a chance to respond to action messages that work their way
up the responder chain to the NSWindow through NSApplication ’s
sendAction:to:from: method. It can also respond to notification messages
sent by the NSWindow. See also delegate .

setDepthLimit:

– (void)setDepthLimit:(NSWindowDepth)limit

Sets the window’s depth limit to limit which can be one of the following
values:

• NSDefaultDepth
• NSTwoBitGrayDepth
• NSEightBitGrayDepth
• NSTwelveBitRGBDepth
• NSTwentyFourBitRGBDepth

See also depthLimit .

setDocumentEdited:

– (void)setDocumentEdited:(BOOL)flag

Sets whether the NSWindow’s document has been edited. If flag is YES, the
NSWindow’s close button will display a broken “X” to indicate that the
document needs to be saved. If flag is NO, the close button will be shown with
a solid “X”. The default is NO.

setDynamicDepthLimit:

– (void)setDynamicDepthLimit:(BOOL)flag

Sets whether the NSWindow’s depth limit should change to match the depth of
the display device that it’s on. If flag is YES, the depth limit will depend on
which screen the NSWindow is on. If flag is NO, the NSWindow will have the
default depth limit. A different, and nondynamic, depth limit can be set with
the setDepthLimit: method. See also depthLimit .

NSWindow 1-639

1

setExcludedFromWindowsMenu:

– (void)setExcludedFromWindowsMenu:(BOOL)flag

Sets whether the receiving window object is omitted from the NSWindow’s
menu. If flag is YES, it won’t be listed in the menu. If flag is NO, it will be
listed when the NSWindow, or its miniwindow, is on-screen. The default is NO.
See also isExcludedFromWindowsMenu .

setFrame:display:

– (void)setFrame:(NSRect)frameRect display:(BOOL)flag

Moves and/or resizes the NSWindow frame to frameRect . If flag is YES, the
NSWindow is displayed; otherwise the NSWindow is not displayed. This
method posts the NSWindowDidResizeNotification notification with the
receiving object to the default notification center. See the Notifications section
of the Application Kit’s Types and Constants chapter for more information on
notifications. See also setFrameOrigin: , setFrameTopLeftPoint: .

setFrameAutosaveName:

– (BOOL)setFrameAutosaveName:(NSString *)name

Sets the name that’s used to automatically save the NSWindow’s frame
rectangle in the system defaults. If name isn’t NULL, the NSWindow’s frame is
saved as a default (as described in saveFrameUsingName:) under the given
name each time the frame changes. Passing NULL as an argument turns off this
automation. An NSWindow can have only one frame autosave name at a time;
if the NSWindow already has an autosave name, the old one is replaced. If
name is already being used as an autosave name by an NSWindow in this
application, the name isn’t set and this method returns NO; otherwise returns
YES. See also frameAutosaveName , saveFrameUsingName: ,
removeFrameUsingName: (class method).

setFrameFromString:

– (void)setFrameFromString:(NSString *)string

1-640 OpenStep Programming Reference—September 1996

1

Sets the frame rectangle from string , which encodes the position and
dimensions of the frame rectangle and the position and dimensions of the
screen. See also stringWithSavedFrame , setFrameUsingName: ,
removeFrameUsingName: (class method).

setFrameOrigin:

– (void)setFrameOrigin:(NSPoint)aPoint

Moves the window by changing its frame origin (lower left corner) to aPoint .
See also setFrameTopLeftPoint: , frame .

setFrameTopLeftPoint:

– (void)setFrameTopLeftPoint:(NSPoint)aPoint

Moves the window by changing its top-left corner to aPoint . See also frame .

setFrameUsingName:

– (BOOL)setFrameUsingName:(NSString *)name

Sets the frame rectangle from the named default. This method returns YES if
name exists in the system defaults; otherwise the frame rectangle isn’t set, and
NO is returned. See also frameAutosaveName , saveFrameUsingName: ,
setFrameFromString: , removeFrameUsingName: (class method).

setHidesOnDeactivate:

– (void)setHidesOnDeactivate:(BOOL)flag

Determines whether the NSWindow will disappear when the application is
inactive. If flag is YES, the NSWindow is hidden (taken out of the screen list)
when the application stops being the active application. If flag is NO, the
NSWindow stays on-screen. The default for NSWindows is NO; the default for
NSPanel s and NSMenus is YES.

setLevel:

– (void)setLevel:(int)newLevel

NSWindow 1-641

1

Resets the window level to newLevel . The following values represent the
NSWindow levels:

• NSNormalWindowLevel
• NSFloatingWindowLevel
• NSDockWindowLevel
• NSSubmenuWindowLevel
• NSMainMenuWindowLevel

For more information on window levels, see the NSWindow section of the
Application Kit’s “Types and Constants” chapter. See also level .

setMaxSize:

– (void)setMaxSize:(NSSize)aSize

Sets the NSWindow’s maximum size to aSize . See also maxSize ,
setMinSize: .

setMinSize:

– (void)setMinSize:(NSSize)aSize

Sets the NSWindow’s minimum size to aSize . See also minSize ,
setMaxSize: .

setMiniwindowImage:

– (void)setMiniwindowImage:(NSImage *)image

Sets the image that’s displayed in the NSWindow’s miniwindow.

setMiniwindowTitle:

– (void)setMiniwindowTitle:(NSString *)title

Sets the title that’s displayed in the miniwindow. Normally, the
miniwindow’s title is taken, often abbreviated, from that of the NSWindow. This
method is guaranteed to work only if the miniwindow is currently visible. In
the latter case, the miniwindow’s title is automatically redisplayed. Note that
setting the NSWindow’s title (through setTitle: or
setTitleWithRepresentedFilename:) will automatically reset the
miniwindow’s title to that of the NSWindow.

1-642 OpenStep Programming Reference—September 1996

1

setOneShot:

– (void)setOneShot:(BOOL)flag

Sets whether the backing-store memory that the NSWindow object manages
should be freed when the NSWindow is removed from the screen. This is
convenient for NSWindows used once or twice but not displayed continually.
The default is NO. See also isOneShot .

setReleasedWhenClosed:

– (void)setReleasedWhenClosed:(BOOL)flag

If flag is YES the NSWindow object is released upon closing; if flag is NO, the
object is retained. See also close .

setRepresentedFilename:

– (void)setRepresentedFilename:(NSString *)aString

Alters aString by formatting it as a path and file name, then sets the internal
file name associated with this window to the result. The format of the file name
associate with the NSWindow is the file name, followed by a dash, followed by
the path, with the dash surrounded by two space. For example:

MyFile - /Net/sever/group/home

If aString doesn’t include a path to the file, the current working directory is
used. This method doesn’t affect the title string. See
setTitleWithRepresentedFilename: .

setResizeIncrements:

- (void)setResizeIncrements:(NSSize)increments

Sets the increment used in window resizing.

setTitle:

– (void)setTitle:(NSString *)aString

Makes aString the NSWindow’s title.

NSWindow 1-643

1

setTitleWithRepresentedFilename:

– (void)setTitleWithRepresentedFilename:(NSString *)aString

Invokes setRepresentedFilename: and makes the resulting string the
NSWindow’s title.

setViewsNeedDisplay:

– (void)setViewsNeedDisplay:(BOOL)flag

If flag is YES, then some of the NSWindow’s views need to be redrawn. If
flag is NO, then no redrawing is necessary. See also viewsNeedDisplay .

stringWithSavedFrame

– (NSString *)stringWithSavedFrame

Returns a string encoding the position and dimensions of the frame rectangle
and the position and dimensions of the screen. See also
saveFrameUsingName: , setFrameFromString: ,
removeFrameUsingName: (class method).

styleMask

– (unsigned int)styleMask

Returns the NSWindow’s style mask, which can be one of the following values:

• NSBorderlessWindowMask
• NSTitledWindowMask
• NSClosableWindowMask
• NSMiniaturizableWindowMask
• NSResizableWindowMask

title

– (NSString *)title

Returns the NSWindow’s title string. See also setTitle: .

1-644 OpenStep Programming Reference—September 1996

1

tryToPerform:with:

– (BOOL)tryToPerform:(SEL)anAction with:(id)anObject

Aids in dispatching action messages (anAction) to anObject . This method
gives the NSWindow’s delegate a chance to respond to the action message
before passing the message up the responder chain. If a receiver for anAction
is found, this method returns YES. Otherwise, it returns NO. See also
delegate .

unregisterDraggedTypes

– (void)unregisterDraggedTypes

Unregisters the NSWindow as a recipient of dragged images. See also
registerForDraggedTypes: .

update

– (void)update

Update’s the NSWindow’s display and cursor rectangles. This method is
invoked after every event. The default implementation of this method does
nothing more than post the NSWindowDidUpdateNotification notification.
A subclass can reimplement this method to perform specialized operations, but
should send an update message to super just before returning. For example,
the NSMenu class implements this method to disable and enable menu
commands as appropriate.

A window is automatically sent an update message before it’s ordered into
the screen list. If the NSApplication object has received a
setWindowsNeedUpdate:YES message, each visible NSWindow in the
application is sent an update message after every event in the main event
loop.

You can manually cause an update message to be sent to all visible
NSWindows through NSApplication ’s updateWindows method. See the
“Notifications” section of the Application Kit’s “Types and Constants” chapter
for more information on notifications.

NSWindow 1-645

1

useOptimizedDrawing:

– (void)useOptimizedDrawing:(BOOL)flag

Informs the NSWindow whether to optimize focusing and drawing when
NSViews are displayed. The optimizations may prevent sibling subviews from
being displayed in the correct order—this matters only if the subviews overlap.
You should always set flag to YES if there are no overlapping subviews
within the NSWindow. The default is NO.

validRequestorForSendType:returnType:

– (id)validRequestorForSendType:(NSString *)sendType
returnType:(NSString *)returnType

Returns whether the NSWindow can respond to a service with send and receive
types sendType and returnType . This message is passed to the NSWindow’s
delegate, if the delegate can respond and isn’t an NSResponder with its own
next responder. If the delegate can’t respond or returns nil , this method
passes the message to the NSApplication object. If the NSApplication
object returns nil , this method also returns nil , indicating that no object was
found that could supply sendType data for a remote message from the
Services menu and accept back returnType data. If such an object was found,
it is returned.

viewsNeedDisplay

– (BOOL)viewsNeedDisplay

Returns YES if some of the receiving NSWindow’s views need redrawing;
returns NO otherwise. See also setViewsNeedDisplay: .

windowNumber

– (int)windowNumber

Returns the window number of the NSWindow’s window device. Each window
device in an application is given a unique window number—note that this isn’t
the same as the global window number assigned by the Window Server. You
use this number as the second argument of orderWindow:relativeTo: . If
the NSWindow doesn’t have a window device, the return value will be equal to
or less than 0.

1-646 OpenStep Programming Reference—September 1996

1

worksWhenModal

– (BOOL)worksWhenModal

This method should be overridden to return YES if the NSWindow can receive
keyboard and mouse events when there’s a modal panel (an attention panel)
on-screen. The default implementation returns NO. Only NSPanel objects
should change this default.

Methods Implemented by the Delegate

windowDidBecomeKey:

– (void)windowDidBecomeKey:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window is
the key window. aNotification is always
NSWindowDidBecomeKeyNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidBecomeMain:

– (void)windowDidBecomeMain:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window is
the main window. aNotification is always
NSWindowDidBecomeMainNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidChangeScreen:

– (void)windowDidChangeScreen:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
changed screens. aNotification is always
NSWindowDidChangeScreenNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

NSWindow 1-647

1

windowDidDeminiaturize:

– (void)windowDidDeminiaturize:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
was restored to screen. aNotification is always
NSWindowDidDeminiaturizeNotification . If the delegate implements
this method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidExpose:

– (void)windowDidExpose:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
was exposed. aNotification is always
NSWindowDidExposeNotification . If the delegate implements this method,
it’s automatically registered to receive this notification. See the “Notifications”
section of the “Types and Constants” chapter.

windowDidMiniaturize:

– (void)windowDidMiniaturize:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
was miniaturized. aNotification is always
NSWindowDidMiniaturizeNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidMove:

– (void)windowDidMove:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
did move. aNotification is always NSWindowDidMoveNotification . If
the delegate implements this method, it’s automatically registered to receive
this notification. See the “Notifications” section of the “Types and Constants”
chapter.

1-648 OpenStep Programming Reference—September 1996

1

windowDidResignKey:

– (void)windowDidResignKey:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
isn’t the key window. aNotification is always
NSWindowDidResignKeyNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidResignMain:

– (void)windowDidResignMain:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
isn’t the main window. aNotification is always
NSWindowDidResignMainNotification . If the delegate implements this
method, it’s automatically registered to receive this notification. See the
“Notifications” section of the “Types and Constants” chapter.

windowDidResize:

– (void)windowDidResize:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
was resized. aNotification is always
NSWindowDidResizeNotification . If the delegate implements this method,
it’s automatically registered to receive this notification. See the “Notifications”
section of the “Types and Constants” chapter.

windowDidUpdate:

– (void)windowDidUpdate:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
was updated. aNotification is always
NSWindowDidUpdateNotification . If the delegate implements this method,
it’s automatically registered to receive this notification. See the “Notifications”
section of the “Types and Constants” chapter.

NSWorkspace 1-649

1

windowShouldClose:

– (BOOL)windowShouldClose:(id)sender

Notifies delegate that the window is about to close.

windowWillClose:

– (void)windowWillClose:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate that the window
will close. aNotification is always NSWindowWillCloseNotification . If
the delegate implements this method, it’s automatically registered to receive
this notification. See the “Notifications” section of the “Types and Constants”
chapter.

windowWillReturnFieldEditor:toObject:

– (id)windowWillReturnFieldEditor:(NSWindow *)sender
toObject:(id)client

Lets the delegate provide another text object for the field editor.

NSWorkspace

Class Description

An NSWorkspace object responds to application requests to perform a variety
of services:

• Opening, manipulating, and obtaining information about files and devices

• Tracking changes to the file system, devices, and the user database

• Launching applications

• Miscellaneous services such as animating an image and requesting
additional time before power off

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSWorkspace.h

1-650 OpenStep Programming Reference—September 1996

1

An NSWorkspace object is made available through the sharedWorkspace
context method. For example, the following statement uses an NSWorkspace
object to request that a file be opened in the Edit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README"
 withApplication:@"Edit"];

Method Types

Activity Class Method

Creating a workspace + sharedWorkspace

Opening files – openFile:
– openFile:fromImage:at:inView:
– openFile:withApplication:
– openFile:withApplication:andDeactivate:
– openTempFile:

Manipulating files – performFileOperation:source:destination: files:tag:
– selectFile:inFileViewerRootedAtPath:

Requesting information
about files

– fullPathForApplication:
– getFileSystemInfoForPath:isRemovable:
isWritable:isUnmountable:description:
– getInfoForFile:application:type:
– iconForFile:
– iconForFiles:
– iconForFileType:

Tracking changes to the
file system

– fileSystemChanged
– noteFileSystemChanged

Updating registered
services and file types

– findApplications

Launching and
manipulating applications

– hideOtherApplications
– launchApplication:
– launchApplication:showIcon:autolaunch:

Unmounting a device – unmountAndEjectDeviceAtPath:

Tracking status changes
for devices

– checkForRemovableMedia
– mountNewRemovableMedia
– mountedRemovableMedia

Notification center – notificationCenter

NSWorkspace 1-651

1

Tracking changes to the
user defaults database

– noteUserDefaultsChanged
– userDefaultsChanged

Animating an image – slideImage:from:to:

Requesting additional
time before power off or
logout

– extendPowerOffBy:

Activity Class Method

1-652 OpenStep Programming Reference—September 1996

1

Class Methods

sharedWorkspace

+ (NSWorkspace *)sharedWorkspace

Returns a shared workspace.

Instance Methods

checkForRemovableMedia

– (void)checkForRemovableMedia

Causes the Workspace Manager to poll the system’s drives for any disks that
have been inserted but not yet mounted. Asks the Workspace Manager to
mount the disk asynchronously and returns immediately. See also
mountNewRemovableMedia , mountedRemovableMedia .

extendPowerOffBy:

– (int)extendPowerOffBy:(int)requested

Requests more time before the power goes off or the user logs out. Returns the
granted number of additional milliseconds.

fileSystemChanged

– (BOOL)fileSystemChanged

Returns whether a change to the file system has been registered with a
noteFileSystemChanged message since the last fileSystemChanged
message.

findApplications

– (void)findApplications

Instructs Workspace Manager to examine all applications in the normal places
and update its records of registered services and file types. See also
launchApplication: .

NSWorkspace 1-653

1

fullPathForApplication:

– (NSString *)fullPathForApplication:(NSString *)appName

Returns the full path for the application appName, and returns nil if it isn’t
found. See also getFileSystemInfoForPath:isRemovable:
isWritable:isUnmountable:description: ,
getInfoForFile:application:type: , iconForFile: , iconForFiles: ,
iconForFileType: .

getFileSystemInfoForPath:isRemovable:
isWritable:isUnmountable:description:

– (BOOL)getFileSystemInfoForPath:(NSString *)fullPath
isRemovable:(BOOL *)removableFlag
isWritable:(BOOL *)writableFlag
isUnmountable:(BOOL *)unmountableFlag
description:(NSString **)description
type:(NSString **)fileSystemType

Describes the file system at fullPath in description and
fileSystemType , sets the flags appropriately, and returns YES if fullPath is
a file system mount point, or NO if it isn’t. See also
getInfoForFile:application:type: , fullPathForApplication: .

getInfoForFile:application:type:

– (BOOL)getInfoForFile:(NSString *)fullPath
application:(NSString **)appName type:(NSString **)type

Retrieves information about the file specified by fullPath , sets appName to
the application the Workspace Manager would use to open fullPath , sets
type to a value or file name extension indicating the file’s type, and returns
YES upon success and NO otherwise. See also fullPathForApplication: .

hideOtherApplications

– (void)hideOtherApplications

Hides all applications other than the sender. See also launchApplication: .

1-654 OpenStep Programming Reference—September 1996

1

iconForFile:

– (NSImage *)iconForFile:(NSString *)fullPath

Returns an NSImage with the icon for the single file specified by fullPath .
See also iconForFiles: , iconForFileType: ,
fullPathForApplication: .

iconForFiles:

– (NSImage *)iconForFiles:(NSArray *)pathArray

Returns an NSImage with the icon for the files specified in pathArray , an
array of NSString s. If pathArray specifies one file, its icon is returned. If
pathArray specifies more than one file, an icon representing the multiple
selection is returned. See also iconForFile: , iconForFileType: ,
fullPathForApplication: .

iconForFileType:

– (NSImage *)iconForFileType:(NSString *)fileType

Returns an NSImage the icon for the file type specified by fileType . See also
iconForFile: , iconForFiles: , fullPathForApplication: .

launchApplication:

– (BOOL)launchApplication:(NSString *)appName

Instructs Workspace Manager to launch the application appName and returns
YES if the application was successfully launched and NO otherwise. See also
launchApplication:showIcon:autolaunch: ,
hideOtherApplications .

launchApplication:showIcon:autolaunch:

– (BOOL)launchApplication:(NSString *)appName
showIcon:(BOOL)showIcon autolaunch:(BOOL)autolaunch

NSWorkspace 1-655

1

Instructs Workspace Manager to launch the application appName displaying
the application’s icon if showIcon is YES and using the dock autolaunching
defaults if autolaunch is YES. Returns YES if the application was successfully
launched and NO otherwise. See also launchApplication: ,
hideOtherApplications .

mountNewRemovableMedia

– (NSArray *)mountNewRemovableMedia

Causes the Workspace Manager to poll the system’s drives for any disks that
have been inserted but not yet mounted, waits until the new disks have been
mounted, and returns a list of full path names to all newly mounted disks. See
also mountedRemovableMedia , checkForRemovableMedia ,
unmountAndEjectDeviceAtPath: .

mountedRemovableMedia

– (NSArray *)mountedRemovableMedia

Returns a list of the pathnames of all currently mounted removable disks. See
also mountNewRemovableMedia , checkForRemovableMedia ,
unmountAndEjectDeviceAtPath: .

noteFileSystemChanged

– (void)noteFileSystemChanged

Informs Workspace Manager that the file system has changed. See also
fileSystemChanged .

noteUserDefaultsChanged

– (void)noteUserDefaultsChanged

Informs Workspace Manager that the defaults database has changed. See also
userDefaultsChanged .

notificationCenter

– (NSNotificationCenter *)notificationCenter

1-656 OpenStep Programming Reference—September 1996

1

Returns the notification center for Workspace notifications. See also
NSNotificationCenter (Foundation Kit “Classes” chapter).

openFile:

– (BOOL)openFile:(NSString *)fullPath

Instructs Workspace Manager to open the file specified by fullPath using the
default application for its type; returns YES if file was successfully opened and
NO otherwise. See also openFile:fromImage:at:inView: ,
openFile:withApplication: ,
openFile:withApplication:andDeactivate: , openTempFile: .

openFile:fromImage:at:inView:

– (BOOL)openFile:(NSString *)fullPath fromImage:(NSImage *)anImage
at:(NSPoint)point inView:(NSView *)aView

Instructs Workspace Manager to open the file specified by fullPath using the
default application for its type. To provide animation prior to opening,
anImage should contain the file’s icon, and its image should be displayed at
point , using aView ’s coordinates. Returns YES if the file was successfully
opened and NO otherwise. See also openFile: .

openFile:withApplication:

– (BOOL)openFile:(NSString *)fullPath
withApplication:(NSString *)appName

Instructs Workspace Manager to open the file specified by fullPath using the
appName application. Returns YES if the file was successfully opened and NO
otherwise. See also openFile: .

openFile:withApplication:andDeactivate:

– (BOOL)openFile:(NSString *)fullPath
withApplication:(NSString *)appName andDeactivate:(BOOL)flag

Instructs Workspace Manager to open the file specified by fullPath using the
appName application, where flag indicates if the sending application should
be deactivated before the request is sent. Returns YES if the file was
successfully opened and NO otherwise. See also openFile: .

NSWorkspace 1-657

1

openTempFile:

– (BOOL)openTempFile:(NSString *)fullPath

Instructs Workspace Manager to open the temporary file specified by
fullPath using the default application for its type. Returns YES if file was
successfully opened and NO otherwise. See also openFile: .

performFileOperation:source:destination:
files:tag:

– (BOOL)performFileOperation:(NSString *)operation
source:(NSString *)source destination:(NSString *)destination
files:(NSArray *)files tag:(int *)tag

Requests the Workspace Manager to perform a file operation on a set of
files in the source directory specifying the destination directory if
needed, using tag as an identifier for asynchronous operations. Returns YES if
the operation succeeded and NO otherwise. See also
selectFile:inFileViewerRootedAtPath: .

selectFile:inFileViewerRootedAtPath:

– (BOOL)selectFile:(NSString *)fullPath
inFileViewerRootedAtPath:(NSString *)rootFullpath

Instructs Workspace Manager to select the file specified by fullPath opening
a new file viewer if a path is specified by rootFullpath . Returns YES if the
file was successfully selected and NO otherwise. See also
performFileOperation:source:destination: files:tag: .

slideImage:from:to:

– (void)slideImage:(NSImage *)image from:(NSPoint)fromPoint
to:(NSPoint)toPoint

Instructs Workspace Manager to animate a sliding image of image from
fromPoint to toPoint , specified in screen coordinates.

unmountAndEjectDeviceAtPath:

– (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path

1-658 OpenStep Programming Reference—September 1996

1

Unmounts and ejects the device at path . Returns YES if the unmount
succeeded and NO otherwise. See also checkForRemovableMedia .

userDefaultsChanged

– (BOOL)userDefaultsChanged

Returns whether a change to the defaults database has been registered with a
noteUserDefaultsChanged message since the last userDefaultsChanged
message.

2-659

Protocols 2

NSChangeSpelling

Protocol Description

An object in the responder chain that can correct a misspelled word
implements this protocol. See the description of the NSSpellChecker class
for more information.

Instance Methods

changeSpelling:

– (void)changeSpelling:(id)sender

Implement to replace the selected word in the receiver with a corrected version
from the Spelling panel. This message is sent by the NSSpellChecker
instance to the object whose text is being checked. To get the corrected spelling,
the receiver asks the sender for the string value of its selected cell.

Adopted by: NSText

Declared In: AppKit/NSSpellProtocol.h

2-660 OpenStep Programming Reference—September 1996

2

NSColorPickingCustom

Protocol Description

Together with the NSColorPickingDefault protocol,
NSColorPickingCustom provides a way to add color pickers—custom user
interfaces for color selection—to an application's NSColorPanel . The
NSColorPickingDefault protocol provides basic behavior for a color picker.
The NSColorPicker class adopts the NSColorPickingDefault protocol.
The easiest way to implement a color picker is to create a subclass of
NSColorPicker and use it as a base upon which to add the
NSColorPickingCustom protocol. See also NSColorPickingDefault ,
NSColorPicker .

Method Types

Instance Methods

currentMode

– (int)currentMode

Returns the color picker’s current mode (or submode, if applicable). The
returned value should be unique to your color picker. The return value can be
one of the following values:

• NSGrayModeColorPanel
• NSRGBModeColorPanel
• NSCMYKModeColorPanel

Adopted by: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Activity ClassMethod

Getting the Mode – currentMode
– supportsMode:

Gettting the View – provideNewView:

Setting the Current Color – setColor:

Protocols 2-661

2

• NSHSBModeColorPanel
• NSCustomPaletteModeColorPanel
• NSColorListModeColorPanel
• NSWheelModeColorPanel

provideNewView:

– (NSView *)provideNewView:(BOOL)firstRequest

Returns the view containing the color picker’s user interface. This message is
sent to the color picker whenever the color panel attempts to display it. The
argument indicates whether this is the first time the message has been sent; if
firstRequest is YES, the method should perform any initialization required
(such as lazily loading a nib file), or any custom initialization required for your
color picker.

setColor:

– (void)setColor:(NSColor *)aColor

Adjusts the color picker to make aColor the currently selected color. This
method is invoked on the current color picker each time NSColorPanel ’s
setColor: method is invoked. If aColor is actually different from the color
picker’s color (as it would be if, for example, the user dragged a color into the
color panel’s color well) this method could be used to update the color picker’s
color to reflect the change. See also setColor: (NSColorPanel).

supportsMode:

– (BOOL)supportsMode:(int)mode

Returns YES if the receiver supports the specified picking mode. This method
attempts to restore the user’s previously selected mode, and is invoked when
the NSColorPanel is first initialized. It is also invoked by NSColorPanel ’s
setMode: to find the color picker that supports a particular mode. See also
currentMode for a list of current modes.

2-662 OpenStep Programming Reference—September 1996

2

NSColorPickingDefault

Protocol Description

The NSColorPickingDefault protocol, together with the
NSColorPickingCustom protocol, provides an interface for adding color
pickers—custom user interfaces for color selection—to an application’s
NSColorPanel . The NSColorPickingDefault protocol provides basic
behavior for a color picker. The NSColorPickingCustom protocol provides
implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault
protocol. The simplest way to implement your own color picker is to create a
subclass of NSColorPicker , implementing the NSColorPickingCustom
protocol in that subclass. However, it’s possible to create a subclass of another
class, such as NSView, and use it as a base upon which to add the methods of
both NSColorPickingDefault and NSColorPickingCustom .

Color Picker Bundles

A class that implements the NSColorPickingDefault and
NSColorPickingCustom protocols needs to be compiled and linked in an
application’s object file. However, your application need not explicitly create
an instance of this class. Instead, your application’s file package should include
a directory named ColorPickers ; within this directory you should place a
directory MyPickerClass.bundle for each custom color picker your
application implements. This bundle should contain all resources required for
your color picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a
bundle is found in the ColorPickers directory. The class name is assumed to
be the bundle directory name minus the .bundle extension.

Adopted by: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocols 2-663

2

Color Picker Buttons

NSColorPanel lets the user select a color picker from a matrix of
NSButtonCell s. This protocol includes methods for providing and
manipulating the image that gets displayed on the button. See also
NSColorPickingCustom , NSColorPicker , NSColorPanel .

Method Types

Instance Methods

alphaControlAddedOrRemoved:

– (void)alphaControlAddedOrRemoved:(id)sender

Sent by the color panel when the opacity controls have been hidden or
displayed. If the color picker has its own opacity controls, it should hide or
display them, depending on whether the sender’s showsAlpha method
returns NO or YES.

attachColorList:

– (void)attachColorList:(NSColorList *)aColorList

Attaches the given color list to the receiver, if it isn’t already displaying the list.
You never need to inovke this method; it is invoked automatically by the
NSColorPanel when its attachColorList: method is invoked. Since

Activity ClassMethod

Initializing a Color Picker – initWithPickerMask:colorPanel:

Adding Button Images – insertNewButtonImage:in:
– provideNewButtonImage

Setting the Mode – setMode:

Using Color Lists – attachColorList:
– detachColorList:

Showing Opacity Controls – alphaControlAddedOrRemoved:

Responding to a Resize View – viewSizeChanged:

2-664 OpenStep Programming Reference—September 1996

2

NSColorPanel 's list mode manages NSColorList s, this method need only be
implemented by a custom color picker that manages NSColorList s itself. See
also detachColorList: .

detachColorList:

– (void)detachColorList:(NSColorList *)aColorList

Removes the given color list from the receiver, unless the receiver isn’t
displaying the list. You never need to invoke this method; it is invoked
automatically by the NSColorPanel when its detachColorList: method is
invoked. Since NSColorPanel 's list mode manages NSColorList s, this
method need only be implemented by a custom color picker that manages
NSColorList s itself. See also attachColorList: .

initWithPickerMask:colorPanel:

– (id)initWithPickerMask:(int)mask
colorPanel:(NSColorPanel *)colorPanel

Initializes the receiver for the specified mask and colorPanel . This method is
sent by the NSColorPanel to all implementors of the color picking protocols
when the application’s color panel is first initialized. If the color picker
responds to any of the modes represented in mask, it should perform its
initialization (if desired) and return self ; otherwise it should do nothing and
return nil . However, a custom color picker can instead delay initialization
until it receives a provideNewView: message. In order for your color picker
to receive this message, it must have a bundle in your application’s
“ColorPickers” directory (described in the Color Picker Bundles of the Protocol
Description above).

mask is determined by the argument to the NSColorPanel method
setPickerMask: . If no mask has been set, mask is
NSColorPanelAllModesMask . If your color picker supports any additional
modes, you should invoke the setPickerMask: method when your
application intializes to notify the NSColorPanel class. This method should
examine the mask and determine whether it supports any of the modes
included there. You may also check the value in mask to enable or disable any
subpickers or optional controls implemented by your color picker. Your color
picker may also retain colorPanel in an instance variable for future

Protocols 2-665

2

communication with the color panel. See the Color section of the Application
Kit’s Types and Constants chapter for more information on color-picker modes
and mask.

insertNewButtonImage:in:

– (void)insertNewButtonImage:(NSImage *)newImage
in:(NSButtonCell *)newButtonCell

Sets newImage as newButtonCell ’s image. newButtonCell is the
NSButtonCell object that lets the user choose the picker from the color panel.
This method should perform application-specific manipulation of the image
before it’s inserted and displayed by the button cell. See also
provideNewButtonImage .

provideNewButtonImage

– (NSImage *)provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in
the color panel. This is the same image that the color panel uses as an
argument when sending the insertNewButtonImage:in: message.

setMode:

– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel 's
setMode: method to ensure that the color picker reflects the current mode.
Most color pickers have only one mode, and thus don't need to do any work in
this method. Others, like the standard sliders picker, have multiple modes. The
standard mode values are

• NSGrayModeColorPanel
• NSRGBModeColorPanel
• NSCMYKModeColorPanel
• NSHSBModeColorPanel
• NSCustomPaletteModeColorPanel
• NSColorListModeColorPanel
• NSWheelModeColorPanel

2-666 OpenStep Programming Reference—September 1996

2

viewSizeChanged:

– (void)viewSizeChanged:(id)sender

Sent when the color picker’s superview has been resized in a way that might
affect the color picker. sender is the NSColorPanel that contains the color
picker. Use this method to perform special preparation when resizing the color
picker’s view.

NSDraggingDestination (Informal Protocol)

Protocol Description

The NSDraggingDestination protocol declares methods that the destination
(or recipient) of a dragged image must implement. The destination
automatically receives NSDraggingDestination messages as an image
enters, moves around inside, and then exits or is released within the
destination’s boundaries.

Note – Within this text the term dragging session means the entire process
during which an image is selected, dragged, released, and is absorbed or
rejected by the destination. A dragging operation is the action that the
destination takes in absorbing the image when it’s released. The dragging source
is the object that “owns” the image that’s being dragged. It’s specified as an
argument to the dragImage:... message, sent to a NSWindow or NSView,
that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is an NSImage object
that represents data that’s put on the pasteboard. Although a dragging
destination can access the NSImage (through a method described in the
NSDraggingInfo protocol), its primary concern is with the pasteboard data
that the NSImage represents—the dragging operation that a destination
ultimately performs is on the pasteboard data, not on the image itself.

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocols 2-667

2

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an
object must represent a portion of screen real estate; thus, only NSWindows and
NSViews can be destinations. Furthermore, you must announce the
destination-candidacy of an NSWindow or NSView by sending it a
registerForDraggedTypes: message. This method, defined in both classes,
registers the pasteboard types that the object will accept. During a dragging
session, a candidate destination will only receive NSDraggingDestination
messages if the pasteboard types for which it is registered matches a type that’s
represented by the image that’s being dragged.

Although NSDraggingDestination is declared as a protocol, the NSView
and NSWindow subclasses that you create to adopt the protocol need only
implement those methods that are pertinent. (The NSView and NSWindow
classes provide private implementations for all of the methods.) In addition, an
NSWindow or its delegate may implement these methods; the delegate’s
implementation takes precedent.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument:
sender , the object that invoked the method. Within its implementations of the
NSDraggingDestination methods, the destination can send
NSDraggingInfo messages to sender to get more information on the current
dragging session.

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is
sent a draggingEntered: message.

• While the image remains within the destination, a series of
draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent
and the sequence of NSDraggingDestination messages stops. If it re-
enters, the sequence begins again (with a new draggingEntered:
message).

2-668 OpenStep Programming Reference—September 1996

2

• When the image is released, it either slides back to its source (and breaks the
sequence) or a prepareForDragOperation: message is sent to the
destination, depending on the value that was returned by the most recent
invocation of draggingEntered: or draggingUpdated: .

• If the prepareForDragOperation: message returned YES, a
performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES,
concludeDragOperation: is sent.

Method Types

Instance Methods

concludeDragOperation:

– (void)concludeDragOperation:(id <NSDraggingInfo>)sender

Invoked when the dragging operation is complete (but only if the previous
performDragOperation: returned YES). The destination implements this
method to perform any tidying up that it needs to do. This is the last message
that’s sent from sender to the destination during a dragging session. See also
prepareForDragOperation: , performDragOperation: .

draggingEntered:

– (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

Activity ClassMethod

Before the Image is Released – draggingEntered:
– draggingExited:
– draggingUpdated:

After the Image is Released – concludeDragOperation:
– performDragOperation:
– prepareForDragOperation:

Protocols 2-669

2

Invoked when the dragged image enters the destination. Specifically, the
message is sent when the hot spot on the cursor that’s dragging the image
enters any portion of the destination’s bounds rectangle (if it’s an NSView) or
its frame rectangle (if it’s an NSWindow).

This method must return a single value that indicates which dragging
operation the destination will perform when the image is released. It should be
one of the operations specified in the value returned by sender ’s
draggingSourceOperationMask method (see the NSDragInfo protocol). If
none of the operations are appropriate, this method should return
NSDragOperationNone (this is the default response if the method isn’t
implemented by the destination). See the Drag Operation section of the
Application Kit’s Types and Constants chapter for a list of dragging operation
constants. See also draggingExited: , draggingUpdated: .

draggingExited:

– (void)draggingExited:(id <NSDraggingInfo>)sender

Invoked when the dragged image exits the destination (following, inversely,
the geometric specification given in the description of draggingEntered:).
See also draggingEntered: , draggingUpdated: .

draggingUpdated:

– (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender

Invoked periodically while the image is over the destination. The messages
continue until the image is either released or exits. The return value follows the
same rules as that for the draggingEntered: method. The default return
value (if this method isn’t implemented by the destination) is the value
returned by the previous draggingEntered: message.

Only one destination at at time receives a sequence of draggingUpdated:
messages. For example, if the cursor is within the bounds of two overlapping
NSViews that are both valid destinations, the uppermost NSView receives these
messages until the image is either released or exits. See also
draggingEntered: , draggingExited: .

performDragOperation:

 – (BOOL)performDragOperation:(id <NSDraggingInfo>)sender

2-670 OpenStep Programming Reference—September 1996

2

Gives the destination an opportunity to perform the dragging operation. This
method is invoked after the released image has been removed from the screen
(but only if the previous prepareForDragOperation: message returned
YES). The destination should implement this method to do the real work of
importing the data represented by the image. If the destination accepts the
data, it returns YES, otherwise it returns NO. The default (if the destination
doesn’t implement the method) is to return NO. See also
prepareForDragOperation: , concludeDragOperation: .

prepareForDragOperation:

– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender

Invoked when the image is released (but only if the most recent
draggingEntered: or draggingUpdated: message returned an acceptable
drag-operation value). This method returns YES if it will perform the drag
operation and NO if not. See also performDragOperation: ,
concludeDragOperation: .

NSDraggingInfo

Protocol Description

The NSDraggingInfo protocol declares methods that supply information
about a dragging session (see the NSDraggingDestination protocol, an
informal protocol of NSObject , for definitions of dragging terms). A view or
window first registers dragging types; it may then send NSDraggingInfo
protocol messages while dragging occurs to get details about that dragging
session.

NSDraggingInfo methods are designed to be invoked from within an object’s
implementation of the NSDraggingDestination protocol methods. An object
that conforms to NSDraggingInfo is passed as the argument to each of the
methods defined by NSDraggingDestination ; NSDraggingInfo messages

Adopted by: No OpenStep classes

Declared In: AppKit/NSDragging.h

Protocols 2-671

2

should be sent to this conforming object. The Application Kit supplies an
NSDraggingInfo object automatically so that you never need to create a class
that implements this protocol.

Method Types

Instance Methods

draggedImage

– (NSImage *)draggedImage

Returns the image object that’s being dragged. Don’t invoke this method after
the user has released the image, and don’t release the object that this method
returns. See also draggedImageLocation .

draggedImageLocation

– (NSPoint)draggedImageLocation

Returns the current location of the dragged image’s origin. The image moves in
lockstep with the cursor (the position of which is given by
draggingLocation) but may be positioned at some offset. The point that’s
returned is reckoned in the base coordinate system of the destination object’s
NSWindow. See also draggedImage .

Activity ClassMethod

Dragging-Session Information – draggingDestinationWindow
– draggingLocation
– draggingPasteboard
– draggingSequenceNumber
– draggingSource
– draggingSourceOperationMask

Image Information – draggedImage
– draggedImageLocation

Sliding the Image – slideDraggedImageTo:

2-672 OpenStep Programming Reference—September 1996

2

draggingDestinationWindow

– (NSWindow *)draggingDestinationWindow

Returns the destination’s NSWindow. See also draggingLocation ,
draggingPasteboard , draggingSequenceNumber , draggingSource ,
draggingSourceOperationMask .

draggingLocation

– (NSPoint)draggingLocation

Returns the current location of the cursor’s hot spot, reckoned in the base
coordinate system of the destination object’s NSWindow. See also
draggingDestinationWindow .

draggingPasteboard

– (NSPasteboard *)draggingPasteboard

Returns the pasteboard that holds the dragged data. See also
draggingDestinationWindow .

draggingSequenceNumber

– (int)draggingSequenceNumber

Returns a number that uniquely identifies the dragging session. See also
draggingDestinationWindow .

draggingSource

– (id)draggingSource

Returns the source, or “owner,” of the dragged image. Returns nil if the
source isn’t in the same application as the destination. See also
draggingDestinationWindow .

draggingSourceOperationMask

– (unsigned int)draggingSourceOperationMask

Protocols 2-673

2

Returns the dragging operation mask declared by the dragging source’s
draggingSourceOperationMaskForLocal: method. The elements in the
mask will be one or more of the following:

• NSDragOperationCopy
• NSDragOperationLink
• NSDragOperationGeneric
• NSDragOperationPrivate

If the user is holding down a modifier key during the drag, the value that
corresponds to the key (as shown in the table below) is AND ‘ed with the
source’s mask.

See also draggingSourceOperationMaskForLocal: (NSDraggingSource
protocol).

slideDraggedImageTo:

– (void)slideDraggedImageTo:(NSPoint)screenPoint

Slides the image to the given location in the screen coordinate system. This
method should only be invoked from within the destination’s implementation
of prepareForDragOperation: —in other words, after the user has released
the image but before it’s removed from the screen.

Table 2-1

Modifier Key Value

Control NSDragOperationLink

Alternate NSDragOperationCopy

Command NSDragOperationGeneric

2-674 OpenStep Programming Reference—September 1996

2

NSDraggingSource (Informal Protocol)

Protocol Description

NSDraggingSource declares methods that can (or must) be implemented by
the source object in a dragging session. (See the NSDraggingDestination
protocol for definitions of dragging terms.) This dragging source is specified as
an argument to the dragImage:... message, sent to an NSWindow or
NSView, that instigated the dragging session.

Of the methods declared below, only the
draggingSourceOperationMaskForLocal: method must be implemented.
The other methods are invoked only if the dragging source implements them.
All four methods are invoked automatically during a dragging session—you
never send an NSDraggingSource message directly to an object.

Method Types

Instance Methods

draggedImage:beganAt:

– (void)draggedImage:(NSImage *)image beganAt:(NSPoint)screenPoint

Invoked when the dragged image is displayed, but before it starts following
the mouse. screenPoint is the origin of the image in screen coordinates.

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Activity ClassMethod

Querying the Source – draggingSourceOperationMaskForLocal:
– ignoreModifierKeysWhileDragging

Informing the Source – draggedImage:beganAt:
– draggedImage:endedAt:deposited:

Protocols 2-675

2

draggedImage:endedAt:deposited:

– (void)draggedImage:(NSImage *)image endedAt:(NSPoint)screenPoint
deposited:(BOOL)didDeposit

Invoked after the dragged image has been released and the dragging
destination has been given a chance to operate on the data it represents.
screenPoint is the location of image’s origin when it was released reckoned
in screen coordinates. deposited indicates whether the destination accepted
the image.

draggingSourceOperationMaskForLocal:

-(unsigned int)draggingSourceOperationMaskForLocal:
(BOOL)isLocal

Returns a mask giving the operations that can be performed on the dragged
image’s data. This is the only NSDraggingSource method that must be
implemented by the source object. isLocal indicates whether the candidate
destination object (the window or view over which the dragged image is
poised) is in the same application as the source. This method should return a
mask, built by OR’ing together applicable combinations of the following
constants:

ignoreModifierKeysWhileDragging

 (BOOL)ignoreModifierKeysWhileDragging

Returns YES if modifier keys should have no effect on the type of operation
performed, and returns NO otherwise.

Drag Operation Meaning

NSDragOperationNone No operation possible

NSDragOperationCopy The data represented by the image can be copied

NSDragOperationLink The data can be shared

NSDragOperationGeneric The operation can be defined by the destination

NSDragOperationPrivate Private source/destination negotiation

NSDragOperationAll Combines all the above

2-676 OpenStep Programming Reference—September 1996

2

NSIgnoreMisspelledWords

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel
function properly. The Ignore button allows the user to accept a word that the
spelling checker believes is misspelled. In order for this action to update the
“ignored words” list for the document being checked, the
NSIgnoreMisspelledWords protocol must be implemented.

This protocol is necessary because a list of ignored words is useful only if it
pertains to the entire document being checked, but the spelling checker
(NSSpellChecker object) does not check the entire document for spelling at
once. The spelling checker returns as soon as it finds a misspelled word. Thus,
it checks only a subset of the document at any one time. The user usually
wants to check the entire document, and so usually several spelling checks are
run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per-document, even though the spelling
checks are not run per-document.

The NSIgnoreMisspelledWords protocol specifies a method,
ignoreSpelling: , which should be implemented like this:

– (void)ignoreSpelling:(id)sender
{
 [[NSSpellChecker sharedSpellChecker]
 ignoreWord:[[sender selectedCell] stringValue]
 inSpellDocumentWithTag:myDocumentTag];
}

The second argument to the NSSpellChecker method
ignoreWord:inSpellDocumentWithTag: is a tag that the
NSSpellChecker can use to distinguish the documents being checked. (See
the discussion of “Matching a List of Ignored Words With the Document It
Belongs To” in the description of the NSSpellChecker class.) Once the
NSSpellChecker has a way to distinguish the various documents, it can
append new ignored words to the appropriate list.

Adopted by: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocols 2-677

2

To make the ignored words feature useful, the application must store a
document’s ignored words list with the document. See the NSSpellChecker
class description for more information.

Instance Methods

ignoreSpelling:

– (void)ignoreSpelling:(id)sender

Implement to allow an application to ignore misspelled words on a document-
by-document basis. This message is sent by the NSSpellChecker instance to
the object whose text is being checked. To inform the NSSpellChecker that a
particular spelling should be ignored, the receiver asks the NSSpellChecker
for the string value of its selected cell. It then sends the NSSpellChecker an
ignoreWord:inSpellDocumentWithTag: message.

NSMenuActionResponder (Informal Protocol)

Protocol Description

This informal protocol allows your application to update the enabled or
disabled status of an NSMenuItem . It declares only one method,
validateItem: . By default, every time a user event occurs, NSMenu
automatically enables and disables each visible menu item based on criteria
described later in this specification. Implement validateItem: in cases
where you want to override NSMenu’s default enabling scheme. This is
described in more detail later.

There are two ways that NSMenuItem s can be enabled or disabled: Explicitly,
by sending the setEnabled: message, or automatically, as described below.
NSMenuItem s are updated automatically unless you send the message
setAutoenablesItems:NO to the NSMenu object. You should never mix the
two. That is, never use setEnabled: unless you have disabled the automatic
updating.

Category Of: NSObject

Declared In: AppKit/NSMenu.h

2-678 OpenStep Programming Reference—September 1996

2

Automatic Updating of NSMenuItems

Whenever a user event occurs, the NSMenu object updates the status of every
visible menu item. To update the status of a menu item, NSMenu tries to find
the object that responds to the NSMenuItem ’s action message. It searches the
following objects in the following order until it finds one that responds to the
action message.

• The NSMenuItem ’s target
• The key window’s first responder
• The key window’s delegate
• The main window’s first responder
• The main window’s delegate
• The NSApplication object
• The NSApplication ’s delegate
• The NSMenu’s delegate

If none of these objects responds to the action message, the menu item is
disabled. If NSMenu finds an object that responds to the action message, it then
checks to see if that object responds to the validateItem: message (the
method defined in this informal protocol). If validateItem: is not
implemented in that object, the menu item is enabled. If it is implemented, the
return value of validateItem: indicates whether the menu item should be
enabled or disabled.

For example, the NSText object implements the copy: method. If your
application has a Copy menu item that sends the copy: action message to the
first responder, that menu item is automatically enabled any time an NSText
object is the first responder of the key or main window. If you have an object
that might become the first responder and that object could allow users to
select something that they aren’t allowed to copy, you can implement the
validateItem: method in that object. validateItem: can return NO if the
forbidden items are selected and YES if they aren’t. By implementing
validateItem: , you can have the Copy menu item disabled even though its
target object implements the copy: method. If instead your object never
permits copying, then you would simply not implement copy: in that object,
and the item would be disabled automatically whenever the object is first
responder.

If you send a setEnabled: message to enable or disable a menu item when
the automatic updating is turned on, other objects might reverse what you
have done after another user event occurs. Using setEnabled: , you can never

Protocols 2-679

2

be sure that a menu item is enabled or disabled or will remain that way. If your
application must use setEnabled: , you must turn off the automatic enabling
of menu items (by sending setAutoEnablesItems:NO to NSMenu) in order
to get predictable results.

Instance Methods

validateItem:

– (BOOL)validateItem:(id <NSMenuItem>)aItem

Implemented to override the default action of updating an NSMenuItem .
Returns YES to enable the NSMenuItem , and returns NO to disable it.

NSMenuItem

Protocol Description

NSMenuItem defines objects that are used as command items in menus. How
these items appear depends on the host system's user interface. See the NSMenu
class specification for more information on menus.

Methods

action

-(SEL)action

Returns the menu item's action method selector.

hasSubmenu

- (BOOL)hasSubmenu

Returns YES if the menu item has a submenu.

Adopted By: NSMenuCell

Declared In: AppKit/NSMenuItem.h

2-680 OpenStep Programming Reference—September 1996

2

isEnabled

-(BOOL)isEnabled

Returns YES if the menu item is enabled, and NO if not.

keyEquivalent

-(NSString*)keyEquivalent

Returns the receiver's basic keyboard equivalent.

setAction:

-(void)setAction:(SEL)aSelector

Sets the menu item's action method selector to aSelector .

setEnabled:

- (void)setEnabled:(BOOL)flag

Enables the menu item if flag is YES, and disables the menu item if flag is
NO.

setKeyEquivalent:

-(void)setKeyEquivalent:(NSString*)aString

Sets the menu item's basic key equivalent to aString .

setTag:

- (void)setTag:(unsigned int)anInt

Sets the menu item's tag to anInt .

setTarget:

- (void)setTarget:(id)anObject

Sets the menu item's target to anObject .

Protocols 2-681

2

setTitle:

- (void)setTitle:(NSString*)aString

Sets the receiving menu item’s title to aString .

tag

-(unsignedint)tag

Returns the menu item's tag.

target

-(id)target

Returns the menu item's target.

title

-(NSString*)title

Returns the menu item's title.

NSNibAwaking (Informal Protocol)

Protocol Description

This informal protocol consists of a single method, awakeFromNib . It’s
implemented to receive a notification message that’s sent after objects have
been loaded from an Interface Builder archive.

When loadNibFile:owner: or a related method loads an Interface Builder
archive into an application, each custom object from the archive is first
initialized with an init message (initFrame: if the object is a kind of
NSView). Outlets are initialized via any set Variable: methods that are
available, where Variable is the name of an instance variable. (These methods

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

2-682 OpenStep Programming Reference—September 1996

2

are optional; the Objective C run time system automatically initializes outlets.)
Finally, after all the objects are fully initialized, they each receive an
awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed.
Therefore, it's possible for a set Variable: message to be sent to an object before
its companion objects have been unarchived. For this reason, set Variable:
methods should not send messages to other objects in the archive. However,
messages to other objects can safely be sent from within awakeFromNib —by
this point it's assured that all the objects are unarchived and fully initialized.

Typically, awakeFromNib is implemented for only one object in the archive,
the controlling or “owner” object for the other objects that are archived with it.
For example, suppose that a nib file contained two views that must be
positioned relative to each other at run time. Trying to position them when
either one of the views is initialized (in a set Variable: method) might fail,
since the other view might not be unarchived and initialized yet. However, it
can be done in an awakeFromNib method:

- (void)awakeFromNib
{
 NSRect viewFrame;

 [firstView getFrame:&viewFrame];
 [secondView moveTo:viewFrame.origin.x +

someVariable :viewFrame.origin.y];
}

There's no default awakeFromNib method; an awakeFromNib message is only
sent if an object implements it. The Application Kit declares a prototype for
this method, but doesn't implement it.

Instance Methods

awakeFromNib

– (void)awakeFromNib

Implemented to prepare an object for service after it has been loaded from an
Interface Builder archive—a so-called “nib file”. An awakeFromNib message is
sent to each object loaded from the archive, but only if it can respond to the
message, and only after all the objects in the archive have been loaded and

Protocols 2-683

2

initialized. When an object receives an awakeFromNib message, it’s already
guaranteed to have all its outlet instance variables set. There is no default
awakeFromNib method.

NSServicesRequests (Informal Protocol)

Protocol Description

This informal protocol consists of two methods,
writeSelectionToPasteboard:types: and
readSelectionFromPasteboard: . The first is implemented to provide data
to a remote service, and the second to receive any data the remote service
might send back. Both respond to messages that are generated when the user
chooses a command from the Services menu.

Instance Methods

readSelectionFromPasteboard:

– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Implemented to replace the current selection (that is, the text or objects that are
currently selected) with data from pboard . The data would have been placed
in the pasteboard by another application in response to a remote message from
the Services menu. A readSelectionFromPasteboard: message is sent to
the same object that previoustly received a
writeSelectionToPasteboard:types: message. There is no default
readSelectionFromPasteboard: method.

writeSelectionToPasteboard:types:

– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types

Category Of: NSObject

Declared In: AppKit/NSApplication.h

2-684 OpenStep Programming Reference—September 1996

2

Implemented to write the current selection to pboard . The selection should be
written as one or more the the data types listed in types . After writing the
data, this method should return YES. If for any reason it can’t write the data, it
should return NO. A writeSelectionToPasteboards:types: message is
sent to the first responder when the user chooses a command from the Services
menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:andReturnType: message (NSResponder ,
NSApplication). After this method writes the data to the pasteboard, a
remote message is sent to the application that provides the service that the user
requested. If the service provider supplies return data to replace the selection,
the first responder will then receive a readSelectionFromPasteboard:
message. There is no default version of this method.

NSTableDataSource (Informal Protocol)

Protocol Description

NSTableDataSource declares the methods that an NSTableView uses to
access the contents of its data source object. It determines how many rows to
display by sending a numberOfRowsInTableView: message, and accesses
individual values with the
tableView:objectValueForTableColumn:row: and
tableView:setObjectValue:forTableColumn:row: methods. A data
source must implement the first two methods to work with an NSTableView ,
but if it doesn't implement the third. The NSTableView simply provides read-
only access to its contents.

The NSTableView treats objects provided by its data source as values to be
displayed in NSCell objects. If these objects aren't of common value classes
such as NSString , NSNumber, and so on you'll need to create a custom
NSFormatter to display them. See the NSFormatter class specification for
more information.

Characteristic Description

Category Of: NSObject

Declared In: AppKit/NSTableView.h

Protocols 2-685

2

Suppose that an NSTableView 's column identifiers are set up as NSString s
containing the names of attributes for the column, such as *Last Name:, *City:,
and so on, and that the data source stores its records as an NSArray , called
records, of NSDictionary objects using those names as keys. In such a case,
this implementation of tableView:objectValueForTableColumn:row:
suffices to retrieve values for the table view:

- (id)tableView:(NSTableView
objectValueForTableColumn:(NSTableColumn
row:(int)rowIndex

{
id theRecord, theValue;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);
theRecord = [records objectAtIndex:rowIndex];
theValue = [theRecord objectForKey:[aTableColumn identifier]];
return theValue;

}

Here's the corresponding method for setting values:

- (void)tableView:(NSTableView *) tableView
setObjectValue:anObject
forTableColumn:(NSTableColumn *) aTableColumn
row:(int)rowIndex

{
id theRecord;
NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);
theRecord = [records objectAtIndex:rowIndex];
[theRecord setObject:anObject forKey:[aTableColumn identifier]];
return;
}

Finally, for completeness' sake, numberOfRowsInTableView: simply returns
the count of the NSArray :

- (int)numberOfRowsInTableView:(NSTableView *)aTableView
{

return [records count];
}

In each case, the NSTableView that sends the message is provided as
aTableView . A data source object that manages several sets of data can choose
the appropriate set based on which NSTableView sends the message.

2-686 OpenStep Programming Reference—September 1996

2

Instance Methods

numberOfRowsInTableView:

-numberOfRowsInTableView:(NSTableView *)TableView

Returns the number of records managed for aTableView by the data source
object. An NSTableView uses this method to determine how many rows it
should create and display.

tableView:objectValueForTableColumn:row:

- (id)tableView:(NSTableView *)tableView
objectValueForTableColumn:(NSTableColumn *)tableColumn
row:(int)row

Returns an attribute value for the record in aTableView at rowIndex .
aTableColumn contains the identifier for the attribute, which you get by using
NSTableColumn 's identifier method. For example, if aTableColumn stands
for the city that an employee lives in and rowIndex specifies the record for an
employee who lives in Portland, this method returns an object with a string
value of *Portland:. See the category description for an example.

tableView:setObjectValue:forTableColumn:row:

- (void)tableView:(NSTableView *)tableView
setObjectValue:(id)object
forTableColumn:(NSTableColumn *)tableColumn
row:(int)row

Sets an attribute value for the record in aTableView at rowIndex . anObject
is the new value, and aTableColumn contains the identifier for the attribute,
which you get by using NSTableColumn 's identifier method. See the category
description for an example.

3-1

Functions 3

Rectangle Drawing Functions

Optimize Drawing

NSEraseRect()

void NSEraseRect(NSRect aRect)

Erases the rectangle aRect by filling it with white. (This does not alter the
current drawing color.)

NSHighlightRect()

void NSHighlightRect(NSRect aRect)

Highlights or unhighlights aRect by switching light gray for white and vice
versa, when drawing on the screen. If not drawing to the screen, the rectangle
is filled with light gray.

NSRectClip()

void NSRectClip(NSRect aRect)

Intersects the current clipping path with the rectangle aRect , to determine a
new clipping path.

3-2 OpenStep Programming Reference—September 1996

3

NSRectClipList()

void NSRectClipList(const NSRect *rects, int count)

Takes an array of count number of rectangles and intersects the current
clipping path with each of them. The new clipping path is the graphic
intersection of all the rectangles and the original clipping path.

NSRectFill()

void NSRectFill(NSRect aRect)

Fills the rectangle referred to by aRect with the current color.

NSRectFillList()

void NSRectFillList(const NSRect *rects, int count)

Fills an array of count rectangles with the current color.

NSRectFillListWithGrays()

void NSRectFillListWithGrays(const NSRect *rects,
const float *grays, int count)

Fills each rectangle in the array rects with the gray whose value is stored at
the corresponding location in the array grays . Both arrays must be count
elements long. Avoid rectangles that overlap, because the order in which
they’ll be filled can’t be guaranteed.

Draw a Bordered Rectangle

NSDrawButton()

void NSDrawButton(NSRect aRect, NSRect clipRect)

Draws the bordered light gray rectangle whose appearance signifies a button
in the OpenStep user interface. aRect is the bounds for the button, but only
the area where aRect intersects clipRect is drawn.

Functions 3-3

3

NSDrawGrayBezel()

void NSDrawGrayBezel(NSRect aRect, NSRect clipRect)

Draws a bordered light gray rectangle, aRect , with the appearance of a
pushed-in button, clipped by intersecting with clipRect .

NSDrawGroove()

void NSDrawGroove(NSRect aRect, NSRect clipRect)

Draws a light gray rectangle aRect , clipped by intersecting with clipRect ,
whose border is a groove, giving the appearance of a typical box in the
OpenStep user interface.

NSDrawTiledRects()

NSRect NSDrawTiledRects(NSRect boundsRect, NSRect clipRect,
const NSRectEdge *sides, const float *grays, int count)

Draws unfilled rectangle boundsRect , clipped by clipRect , whose border is
defined by the parallel arrays sides and grays , both of length count . Each
element of sides specifies an edge of the rectangle, which is drawn with a
width of 1.0 using the corresponding gray level from grays . If the edges
array contains recurrences of the same edge, each is inset within the previous
edge.

NSDrawWhiteBezel()

void NSDrawWhiteBezel(NSRect aRect, NSRect clipRect)

Draws a white rectangle with a bezeled border. Only the area that intersects
clipRect is drawn.

NSFrameRect()

void NSFrameRect(NSRect aRect)

Draws a frame of width 1.0 around the inside of aRect , using the current
color.

3-4 OpenStep Programming Reference—September 1996

3

NSFrameRectWithWidth()

void NSFrameRectWithWidth(NSRect aRect, float frameWidth)

Draws a frame of width frameWidth around the inside of aRect , using the
current color.

Color Functions

Get Information About Color Space and Window Depth

NSAvailableWindowDepths()

const NSWindowDepth *NSAvailableWindowDepths(void)

Returns a zero-terminated list of available window depths. Available window
depths are

• NSTwoBitGrayDepth
• NSEightBitGrayDepth
• NSEightBitRGBDepth
• NSTwelveBitRGBDepth
• NSTwentyFourBitRGBDepth

NSBestDepth()

NSWindowDepth NSBestDepth(NSString *colorSpace, int bitsPerSample,
int bitsPerPixel, BOOL planar, BOOL *exactMatch)

Returns a window depth deep enough for the given number of colors, bits per
sample, bits per pixel, and if planar. Upon return, the variable pointed to by
exactMatch is YES if the window depth can accommodate all of the values
given for all of the parameters, and NO if not. See also
NSAvailableWindowDepths() .

NSBitsPerPixelFromDepth()

int NSBitsPerPixelFromDepth(NSWindowDepth depth)

Returns the number of bits per pixel for the given window depth . See
NSAvailableWindowDepths() for a list of available window depths.

Functions 3-5

3

NSBitsPerSampleFromDepth()

int NSBitsPerSampleFromDepth(NSWindowDepth depth)

Returns the number of bits per sample (bits per pixel in each color component)
for the given window depth . See NSAvailableWindowDepths() for a list of
window depths.

NSColorSpaceFromDepth()

NSString *NSColorSpaceFromDepth(NSWindowDepth depth)

Returns the name of the color space that matches the given window depth .
See the Graphics section of the Application Kit’s Types and Constants chapter
for more information on color-space names. See
NSAvailableWindowDepths() for a list of available window depths.

NSNumberOfColorComponents()

int NSNumberOfColorComponents(NSString *colorSpaceName)

Returns the number of color components in the named color space. The return
value will be 1 for NSCalibratedWhiteColorSpace ,
NSCalibratedBlackColorSpace , NSDeviceWhiteColorSpace , and
NSDeviceBlackColorSpace ; the return value will be 3 for
NSCalibratedRGBColorSpace , and NSDeviceRGBColorSpace ; the return
value will be 4 for NSDeviceCMYKColorSpace ; and the return value will be 0
for a incorrect colorSpaceName .

NSPlanarFromDepth()

BOOL NSPlanarFromDepth(NSWindowDepth depth)

Returns YES if the given window depth is planar, NO if not.

Read the Color at a Screen Position

NSReadPixel()

NSColor *NSReadPixel(NSPoint location)

3-6 OpenStep Programming Reference—September 1996

3

Returns the color of the pixel at the given location , which must be specified
in the current view’s coordinate system.

Text Functions

Filter Characters Entered into a Text Object

NSEditorFilter()

unsigned short NSEditorFilter(unsigned short theChar, int flags,
NSStringEncoding theEncoding)

Identical to NSFieldFilter() except that it passes on values corresponding
to Return, Tab, and Shift-Tab directly to the NSText object.

NSFieldFilter()

unsigned short NSFieldFilter(unsigned short theChar, int flags,
NSStringEncoding theEncoding)

Checks each character the user types into an NSText object’s text, allowing the
user to move the selection among text fields by pressing Return, Tab, or Shift-
Tab. Alphanumeric characters are passed to the NSText object for display. The
function returns either the ASCII value of the character typed, 0 (for illegal
characters or ones entered while a Command key is held down), or a constant
that the Text object interprets as a movement command. See also
NSEditorFilter() .

Calculate or Draw a Line of Text (in Text Object)

NSDrawALine()

int NSDrawALine(id self, NSLayInfo *layInfo)

Draws a line of text, using the global variables set by NSScanALine() . The
return value has no significance.

Functions 3-7

3

NSScanALine()

int NSScanALine(id self, NSLayInfo *layInfo)

Determines the placement of characters in a line of text. self refers to the text
object calling the function, and layInfo contains the line information. The
function returns 1 if a word’s length exceeds the width of a line and the text
object’s charWrap method returns NO. Otherwise, it returns 0. See the Text
section of the Application Kit’s Types and Constants chapter for the
NSLayInfo definition.

Calculate Font Ascender, Descender, and Line Height (in Text Object)

NSTextFontInfo()

void NSTextFontInfo(id fid, float *ascender, float *descender,
float *lineHeight)

Calculates, and returns by reference, the ascender, descender, and line height
values for the font object given by font .

Access Text Object’s Word Tables

NSDataWithWordTable()

NSData * NSDataWithWordTable(const unsigned char *smartLeft
const unsigned char *smartRight,
const unsigned char *charClasses, const NSFSM *wrapBreaks,
int wrapBreaksCount, const NSFSM *clickBreaks,
int clickBreaksCount, BOOL charWrap)

Given pointers to word table structures, records the structures in the returned
NSData object. The arguments are similar to those of NSReadWordTable() .

NSReadWordTable()

void NSReadWordTable(NSZone *zone, NSData *data,
unsigned char **smartLeft, unsigned char **smartRight,
unsigned char **charClasses, NSFSM **wrapBreaks,
int *wrapBreaksCount, NSFSM **clickBreaks,
int *clickBreaksCount, BOOL *charWrap)

3-8 OpenStep Programming Reference—September 1996

3

Given data , creates word tables in the memory zone specified by zone ,
returning (in the subsequent arguments) pointers to the various tables. The
integer pointer arguments return the length of the preceding array, and
charWrap indicates whether words whose length exceeds the text object’s line
length should be wrapped on a character-by-character basis.

Array Allocation Functions for Use by the NSText Class

NSChunkCopy()

NSTextChunk *NSChunkCopy(NSTextChunk *pc, NSTextChunk *dpc)

Copies the array pc to the array dpc and returns a pointer to the copy. See the
Text section of the Application Kit’s Types and Constants chapter for a
description of the NSTextChunk structure. See also NSChunkZoneCopy() .

NSChunkGrow()

NSTextChunk *NSChunkGrow(NSTextChunk *pc, int newUsed)

Increases the array identified by the pointer pc to a size of newUsed bytes. See
the Text section of the Application Kit’s Types and Constants chapter for a
description of the NSTextChunk structure. See also NSChunkZoneGrow() .

NSChunkMalloc()

NSTextChunk *NSChunkMalloc(int growBy, int initUsed)

Allocates initial memory for a structure whose first field is an NSTextChunk
structure and whose subsequent field is a variable-sized array. The amount of
memory allocated is equal to initUsed . If initUsed is 0, growBy bytes are
allocated. growBy specifies how much memory should be allocated when the
chunk grows. See the Text section of the Application Kit’s Types and Constants
chapter for a description of the NSTextChunk structure. See also
NSChunkRealloc() , NSChunkZoneMalloc() .

NSChunkRealloc()

NSTextChunk *NSChunkRealloc(NSTextChunk *pc)

Functions 3-9

3

Increases the amount of memory available for the array identified by the
pointer pc , as determined by the array’s NSTextChunk . See the Text section of
the Application Kit’s Types and Constants chapter for a description of the
NSTextChunk structure. See also NSChunkZoneRealloc() .

NSChunkZoneCopy()

NSTextChunk *NSChunkZoneCopy(NSTextChunk *pc, NSTextChunk *dpc,
NSZone *zone)

Similar to NSChunkCopy() , but uses the specified zone of memory.

NSChunkZoneGrow()

NSTextChunk *NSChunkZoneGrow(NSTextChunk *pc, int newUsed,
NSZone *zone)

Similar to NSChunkGrow() , but uses the specified zone of memory.

NSChunkZoneMalloc()

NSTextChunk *NSChunkZoneMalloc(int growBy, int initUsed,
NSZone *zone)

Similar to NSChunkMalloc() , but uses the specified zone of memory.

NSChunkZoneRealloc()

NSTextChunk *NSChunkZoneRealloc(NSTextChunk *pc, NSZone *zone)

Similar NSChunkRealloc() , but uses the specified zone of memory.

3-10 OpenStep Programming Reference—September 1996

3

Imaging Functions

Copy an Image

NSCopyBitmapFromGState()

void NSCopyBitmapFromGState(int srcGstate, NSRect srcRect,
NSRect destRect)

Copies the pixels in the rectangle srcRect to the rectangle destRect . The
source rectangle is defined in the graphics state designated by srcGstate , and
the destination is defined in the current graphics state.

NSCopyBits()

void NSCopyBits(int srcGstate, NSRect srcRect, NSPoint destPoint)

Copies the pixels in the rectangle srcRect to the location destPoint . The
source rectangle is defined in the current graphics state if srcGstate is
NSNullObject ; otherwise, in the graphics state designated by srcGstate .
The destPoint destination is defined in the current graphics state.

Render Bitmap Images

NSDrawBitmap()

void NSDrawBitmap(NSRect rect, int pixelsWide, int pixelsHigh,
int bitsPerSample, int samplesPerPixel, int bitsPerPixel,
int bytesPerRow, BOOL isPlanar, BOOL hasAlpha,
NSString *colorSpaceName, const unsigned char *const data[5])

Renders an image from a bitmap. rect is the rectangle in which the image is
drawn, and data is the bitmap data, stored in up to 5 channels unless
isPlanar is NO (in which case the channels are interleaved in a single array).

Functions 3-11

3

Attention Panel Functions

Create an Attention Panel without Running It Yet

NSGetAlertPanel()

id NSGetAlertPanel(NSString *title, NSString *msg,
NSString *defaultButton, NSString *alternateButton,
NSString *otherButton, ...)

Returns an NSPanel object that you can use in a modal session. Unlike
NSRunAlertPanel() , no button is displayed if defaultButton is NULL.
NSGetAlertPanel() doesn’t set up a modal event loop; instead, it returns a
panel that can be used to set up a modal session. A modal session is useful for
allowing the user to interrupt the program. During a modal session, you can
perform activities while the panel is displayed and check at various points in
your program whether the user has clicked one of the panel’s buttons. See also
NSRunAlertPanel() .

Create and Run an Attention Panel

NSRunAlertPanel()

int NSRunAlertPanel(NSString *title, NSString *msg,
NSString *defaultButton, NSString *alternateButton,
NSString *otherButton, ...)

Creates an attention panel that alerts the user to some consequence of a
requested action, and runs the panel in a modal event loop. title is the
panel’s title (by default, “Alert”); msg is the printf() -style message that’s
displayed in the panel; defaultButton (by default, “OK”) is the title for the
main button, also activated by the Return button; alternateButton and
otherButton give two more choices, which are displayed only if the
corresponding argument isn’t NULL. The trailing arguments are a variable
number of printf() -style arguments to msg. Return values are either
NSAlertDefaultReturn , NSAlertAlternateReturn ,
NSAlertOtherReturn , depending on which button is pushed; or
NSAlertErrorReturn if an error occurs when creating the panel.

3-12 OpenStep Programming Reference—September 1996

3

Release an Attention Panel

NSReleaseAlertPanel()

void NSReleaseAlertPanel(id panel)

Releases the specified alert panel. See also NSGetAlertPanel() .

Services Menu Functions

Registering Services Provider Applications

NSRegisterServicesProvider()

void NSRegisterServicesProvider(id provider, NSString *name)

Registers the given lightweight (that is, does not create an NSApplication
object) services provider , under the given name. See also
NSUnregisterServicesProvider() , servicesProvider
(NSApplication).

NSUnregisterServicesProvider()

void NSUnregisterServicesProvider(NSString *name)

Unregisters the lightweight (that is, does not create an NSApplication object)
services provider under the given name. See also
NSRegisterServicesProvider() , servicesProvider (NSApplication).

Determine Whether an Item Is Included in Services Menus

NSSetShowsServicesMenuItem()

int NSSetShowsServicesMenuItem(NSString *item, BOOL showService)

Functions 3-13

3

Determines (based on the value of showService) whether the item command
will be included in other applications’ Services menus. item describes a
service provided by this application, and should be the same string entered in
the “Menu Item:” field of the services file. This function returns 0 upon
success.

NSShowsServicesMenuItem()

BOOL NSShowsServicesMenuItem(NSString *item)

Returns YES if item is currently shown in Services menus.

3-14 OpenStep Programming Reference—September 1996

3

Programmatically Invoke a Service

NSPerformService()

BOOL NSPerformService(NSString *item, NSPasteboard *pboard)

Invokes a service found in the application’s Services menu. item is the name
of a Services menu item, in any language; a slash in this name represents a
submenu. pboard must contain the data required by the service, and when the
function returns, pboard will contain the data supplied by the service
provider.

Force Services Menu to Update Based on New Services

NSUpdateDynamicServices()

void NSUpdateDynamicServices(void)

Re-registers the services the application is willing to provide, by reading the
file with the extension .service in the application path or in the standard
path for services.

X-Windows Convenience Functions
This section lists convenience functions used to access window system facilities
when running OpenStep in the X11 environment. In general these routines are
designed to duplicate functions that Openstep programmers might have used
when programming OpenStep applications on other window system
platforms. Note that these routines do not represent elements of the OpenStep
specification.

NSWindowCurrentMouse()

void NSWindowCurrentMouse(NSWindow* self, float* rx, float* ry)

NSWindowStillDown()

BOOL NSWindowStillDown(NSWindow* self, NSEvent* nsEvent)

Functions 3-15

3

NSSetWindowLevel()

void NSSetWindowLevel(NSWindow* self, unsigned int level)

NSMouseScreenLocation()

NSPoint NSMouseScreenLocation(NSWindow* window)

NSHideAppsExcept()

void NSHideAppsExcept(unsigned long ctxtid)

NSActivateContextNumber()

void NSActivateContextNumber(unsigned long ctxtid)

NSActivateNextApp()

void NSActivateNextApp()

Other Application Kit Functions

Application Main Function

NSApplicationMain()

void NSApplicationMain(int argc, char *argv[])

The main function for OpenStep applications. Called from within main() . For
example:

void main(int argc, char *argv[]) {
NSApplicationMain(argc, argv);

}

: creates an autorelease pool, loads the main nib file, finds the principal class,
and creates the shared appliction.

3-16 OpenStep Programming Reference—September 1996

3

Play the System Beep

NSBeep()

void NSBeep(void)

Plays the system beep.

Functions 3-17

3

Return File-related Pasteboard Types

NSCreateFileContentsPboardType()

NSString *NSCreateFileContentsPboardType(NSString *fileType)

Returns a string naming a pasteboard type that represents a file’s contents,
based on the supplied string fileType . fileType should generally be the
extension part of a file name. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard pasteboard types is
attempted.

NSCreateFilenamePboardType()

NSString *NSCreateFilenamePboardType(NSString *filename)

Returns a string naming a pasteboard type that represents a a file name, based
on the supplied string filename .

NSGetFileType()

NSString *NSGetFileType(NSString *pboardType)

Returns the extension or file name from which the pasteboard type
pboardType was derived. nil is returned if pboardType isn’t a pasteboard
type created by NSCreateFileContentsPboardType() or
NSCreateFilenamePboardType() .

NSGetFileTypes()

NSArray *NSGetFileTypes(NSArray *pboardTypes)

Accepts an array of pasteboard types and returns an array of the unique
extensions and file names from the file-content and file-name types found
in pboardTypes . It returns nil if the input array contains no file-content or
file-name types.

3-18 OpenStep Programming Reference—September 1996

3

Draw a Distinctive Outline Around Linked Data

NSFrameLinkRect()

void NSFrameLinkRect(NSRect aRect, BOOL isDestination)

Draws a distinctive link outline just outside the rectangle aRect . To draw an
outline around a destination link, isDestination should be YES, otherwise
NO.

NSLinkFrameThickness()

float NSLinkFrameThickness(void)

Returns the thickness of the link outline so that the outline can be properly
erased by the application, or for other purposes.

Convert an Event Mask Type to a Mask

NSEventMaskFromType()

unsigned int NSEventMaskFromType(NSEventType type)

Returns the event mask corresponding to type (an enumeration constant). The
returned mask equals 1 left-shifted by type bits. See the Event Handling
section of the Application Kit’s Types and Constants chapter for a list of
NSEventType enumeration constants.

4-1

Types and Constants 4

Applications

Application Instance Identifier
id NSApp;

Represents the application’s NSApplication object.

Modal Session Information
typedef struct _NSModalSession *NSModalSession;

This structure stores information used by the system during a modal session.

Run Loop Status
enum {
 NSRunStoppedResponse,
 NSRunAbortedResponse,
 NSRunContinuesResponse
};

Predefined return values for runModalFor: and runModalSession: .

4-2 OpenStep Programming Reference—September 1996

4

Run Loop Modes
NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

Input-filter modes passed to NSRunLoop.

Boxes

Box Title Position
typedef enum _NSTitlePosition {
 NSNoTitle,
 NSAboveTop,
 NSAtTop,
 NSBelowTop,
 NSAboveBottom,
 NSAtBottom,
 NSBelowBottom
} NSTitlePosition;

This type’s constants represent the locations where an NSBox’s title is placed in
relation to the border (setTitlePosition: and titlePosition).

Buttons

Button Types
typedef enum _NSButtonType {
 NSMomentaryPushButton,
 NSPushOnPushOffButton,
 NSToggleButton,
 NSSwitchButton,
 NSRadioButton,
 NSMomentaryChangeButton,
 NSOnOffButton,

NSMomentaryLightButton
} NSButtonType;

These constants indicate the way NSButton s and NSButtonCell s behave
when pressed, and how they display their state. They are used by NSButton ’s
setType: method.

Types and Constants 4-3

4

Cells and Button Cells

Cell Types
typedef enum _NSCellType {
 NSNullCellType,
 NSTextCellType,
 NSImageCellType
} NSCellType;

Represent different types of NSCell objects. NSNullCellType means the cell
does not display. NSTextCellType displays text, and NSImageCellType
displays an image.These values are set and returned by NSCell ’s setType:
and type methods.

Cell Image Position
typedef enum _NSCellImagePosition {
 NSNoImage,
 NSImageOnly,
 NSImageLeft,
 NSImageRight,
 NSImageBelow,
 NSImageAbove,
 NSImageOverlaps
} NSCellImagePosition;

Represent the position of an NSButtonCell relative to its title. These values
are returned by NSButtonCell ’s imagePosition and setImagePosition:
methods.

Cell Attributes
typedef enum _NSCellAttribute {
 NSCellDisabled,
 NSCellState,
 NSPushInCell,
 NSCellEditable,
 NSChangeGrayCell,
 NSCellHighlighted,
 NSCellLightsByContents,
 NSCellLightsByGray,
 NSChangeBackgroundCell,

4-4 OpenStep Programming Reference—September 1996

4

 NSCellLightsByBackground,
 NSCellIsBordered,
 NSCellHasOverlappingImage,
 NSCellHasImageHorizontal,
 NSCellHasImageOnLeftOrBottom,
 NSCellChangesContents,
 NSCellIsInsetButton
} NSCellAttribute;

These constant values represent parameters that you can set and access
through NSCell ’s and NSButtonCell ’s setCellAttribute:to: and
cellAttribute: methods. Only the first five constants are used by NSCell ;
the others apply to NSButtonCell s only.

Cell Entry Types
enum {
 NSAnyType,
 NSIntType,
 NSPositiveIntType,
 NSFloatType,
 NSPositiveFloatType,

NSDoubleType,
 NSPositiveDoubleType

};

These constants represent numeric types that an NSCell can accept from the
user. These values are set and returned by NSCell ’s setEntryType: and
entryType methods.

Button Cell Masks
enum {
 NSNoCellMask,
 NSContentsCellMask,
 NSPushInCellMask,
 NSChangeGrayCellMask,
 NSChangeBackgroundCellMask
};

NSButtonCell uses these values to determine how to highlight a button cell
or show an ON state. These values are used by NSButtonCell ’s
showsStateBy , setShowsStateBy: , highlightsBy , and
setHighlightsBy: methods.

Types and Constants 4-5

4

Colors

Color Panel Modes
enum {
 NSGrayModeColorPanel,
 NSRGBModeColorPanel,
 NSCMYKModeColorPanel,
 NSHSBModeColorPanel,
 NSCustomPaletteModeColorPanel,
 NSColorListModeColorPanel,
 NSWheelModeColorPanel
};

These constants are tags that identify mode (or views) in the color panel.

Color Panel Mode Masks
enum {
 NSColorPanelGrayModeMask,
 NSColorPanelRGBModeMask,
 NSColorPanelCMYKModeMask,
 NSColorPanelHSBModeMask,
 NSColorPanelCustomPaletteModeMask,
 NSColorPanelColorListModeMask,
 NSColorPanelWheelModeMask,
 NSColorPanelAllModesMask
};

These bit masks determine the current mode (or view) of the color panel.

4-6 OpenStep Programming Reference—September 1996

4

Data Links
Note that these data link types are not part of the OpenStep specification.

Data Link Number
typedef int NSDataLinkNumber;

Returned by NSDataLink ’s linkNumber method as a persistent identifier of a
destination link.

Data Link Disposition
typedef enum _NSDataLinkDisposition {
 NSLinkInDestination,
 NSLinkInSource,
 NSLinkBroken
} NSDataLinkDisposition;

Returned by NSDataLink ’s disposition method to identify a link as a
destination link, a source link, or a broken link.

Data Link Update Mode
typedef enum _NSDataLinkUpdateMode {
 NSUpdateContinuously,
 NSUpdateWhenSourceSaved,
 NSUpdateManually,
 NSUpdateNever
} NSDataLinkUpdateMode;

Identifies when a link’s data is to be updated. Set by NSDataLink ’s
setUpdateMode: method, and returned by the updateMode method.

Drag Operations

Drag Operations
typedef enum _NSDragOperation {
 NSDragOperationNone,
 NSDragOperationCopy,
 NSDragOperationLink,

Types and Constants 4-7

4

 NSDragOperationGeneric,
 NSDragOperationPrivate,
 NSDragOperationAll
};

These constants identify different kinds of dragging operations. The following
table gives each constants meaning.

Event Handling

Event Types
typedef enum _NSEventType {
 NSLeftMouseDown,
 NSLeftMouseUp,
 NSRightMouseDown,
 NSRightMouseUp,
 NSMouseMoved,
 NSLeftMouseDragged,
 NSRightMouseDragged,
 NSMouseEntered,
 NSMouseExited,
 NSKeyDown,
 NSKeyUp,
 NSFlagsChanged,
 NSPeriodic,
 NSCursorUpdate
} NSEventType;

Each constant of NSEventType identifies an event type. See the NSEvent class
for more information.

Drag Operation Meaning

NSDragOperationNone No operation possible (rejection)

NSDragOperationCopy The data represented by the image can be copied

NSDragOperationLink The data can be shared

NSDragOperationGeneric The operation can be defined by the destination

NSDragOperationPrivate Private source/destination negotiation. The system
leaves the cursor alone until exit.

NSDragOperationAll Combines all the above

4-8 OpenStep Programming Reference—September 1996

4

Function Key Codes
enum {
 NSUpArrowFunctionKey = 0xF700,
 NSDownArrowFunctionKey = 0xF701,
 NSLeftArrowFunctionKey = 0xF702,
 NSRightArrowFunctionKey = 0xF703,
 NSF1FunctionKey = 0xF704,
 NSF2FunctionKey = 0xF705,
 NSF3FunctionKey = 0xF706,
 NSF4FunctionKey = 0xF707,
 NSF5FunctionKey = 0xF708,
 NSF6FunctionKey = 0xF709,
 NSF7FunctionKey = 0xF70A,
 NSF8FunctionKey = 0xF70B,
 NSF9FunctionKey = 0xF70C,
 NSF10FunctionKey = 0xF70D,
 NSF11FunctionKey = 0xF70E,
 NSF12FunctionKey = 0xF70F,
 NSF13FunctionKey = 0xF710,
 NSF14FunctionKey = 0xF711,
 NSF15FunctionKey = 0xF712,
 NSF16FunctionKey = 0xF713,
 NSF17FunctionKey = 0xF714,
 NSF18FunctionKey = 0xF715,
 NSF19FunctionKey = 0xF716,
 NSF20FunctionKey = 0xF717,
 NSF21FunctionKey = 0xF718,
 NSF22FunctionKey = 0xF719,
 NSF23FunctionKey = 0xF71A,
 NSF24FunctionKey = 0xF71B,
 NSF25FunctionKey = 0xF71C,
 NSF26FunctionKey = 0xF71D,
 NSF27FunctionKey = 0xF71E,
 NSF28FunctionKey = 0xF71F,
 NSF29FunctionKey = 0xF720,
 NSF30FunctionKey = 0xF721,
 NSF31FunctionKey = 0xF722,
 NSF32FunctionKey = 0xF723,
 NSF33FunctionKey = 0xF724,
 NSF34FunctionKey = 0xF725,
 NSF35FunctionKey = 0xF726,
 NSInsertFunctionKey = 0xF727,
 NSDeleteFunctionKey = 0xF728,
 NSHomeFunctionKey = 0xF729,

NSBeginFunctionKey = 0xF72A,

Types and Constants 4-9

4

 NSEndFunctionKey = 0xF72B,
 NSPageUpFunctionKey = 0xF72C,
 NSPageDownFunctionKey = 0xF72D,
 NSPrintScreenFunctionKey = 0xF72E,
 NSScrollLockFunctionKey = 0xF72F,
 NSPauseFunctionKey = 0xF730,
 NSSysReqFunctionKey = 0xF731,
 NSBreakFunctionKey = 0xF732,
 NSResetFunctionKey = 0xF733,
 NSStopFunctionKey = 0xF734,
 NSMenuFunctionKey = 0xF735,
 NSUserFunctionKey = 0xF736,
 NSSystemFunctionKey = 0xF737,
 NSPrintFunctionKey = 0xF738,
 NSClearLineFunctionKey = 0xF739,
 NSClearDisplayFunctionKey = 0xF73A,
 NSInsertLineFunctionKey = 0xF73B,
 NSDeleteLineFunctionKey = 0xF73C,
 NSInsertCharFunctionKey = 0xF73D,
 NSDeleteCharFunctionKey = 0xF73E,
 NSPrevFunctionKey = 0xF73F,
 NSNextFunctionKey = 0xF740,
 NSSelectFunctionKey = 0xF741,
 NSExecuteFunctionKey = 0xF742,
 NSUndoFunctionKey = 0xF743,
 NSRedoFunctionKey = 0xF744,
 NSFindFunctionKey = 0xF745,
 NSHelpFunctionKey = 0xF746,
 NSModeSwitchFunctionKey = 0xF747
};

Unicodes that identify function keys on the keyboard. OpenStep reserves the
range 0xF700-0xF8FF for this purpose. The availability of some keys is system-
dependent.

Function Key Mask
enum {
 NSAlphaShiftKeyMask,
 NSShiftKeyMask,
 NSControlKeyMask,
 NSAlternateKeyMask,
 NSCommandKeyMask,

4-10 OpenStep Programming Reference—September 1996

4

 NSNumericPadKeyMask,
 NSHelpKeyMask,
 NSFunctionKeyMask

};

Device-independent bit masks for evaluating event-modifier flags to determine
which modifier key (if any) was pressed.

Event Masks
enum {
 NSLeftMouseDownMask,
 NSLeftMouseUpMask,
 NSRightMouseDownMask,
 NSRightMouseUpMask,
 NSMouseMovedMask,
 NSLeftMouseDraggedMask,
 NSRightMouseDraggedMask,
 NSMouseEnteredMask,
 NSMouseExitedMask,
 NSKeyDownMask,
 NSKeyUpMask,
 NSFlagsChangedMask,
 NSPeriodicMask,
 NSCursorUpdateMask,
 NSAnyEventMask
};

Bit masks for determining event types.

Exceptions

Global Exception Strings
NSString *NSAbortModalException;
NSString *NSAbortPrintingException;
NSString *NSAppKitIgnoredException;
NSString *NSAppKitVirtualMemoryException;
NSString *NSBadBitmapParametersException;
NSString *NSBadComparisonException;
NSString *NSBadRTFColorTableException;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;

Types and Constants 4-11

4

NSString *NSBadRTFStyleSheetException;
NSString *NSBrowserIllegalDelegateException;
NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSDraggingException;
NSString *NSFontUnavailableException;
NSString *NSIllegalSelectorException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSPPDParseException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintOperationExistsException;/*NSPrintOperation.h */
NSString *NSPrintPackageException;
NSString *NSPrintingCommunicationException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSTIFFException;
NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSTypedStreamVersionException;
NSString *NSWindowServerCommunicationException;
NSString *NSWordTablesReadException;
NSString *NSWordTablesWriteException;

These global strings identify the exceptions returned by various operations in
the Application Kit. They are defined in NSErrors.h .

Fonts

Font Trait Masks
typedef unsigned int NSFontTraitMask;

Characterizes one or more of a font’s traits. It’s used as an argument type for
several of the methods in the NSFontManager class. You build a mask by
OR’ing together the following enumeration constants:

enum {
 NSItalicFontMask,
 NSBoldFontMask,

4-12 OpenStep Programming Reference—September 1996

4

 NSUnboldFontMask,
 NSNonStandardCharacterSetFontMask,
 NSNarrowFontMask,
 NSExpandedFontMask,
 NSCondensedFontMask,
 NSSmallCapsFontMask,
 NSPosterFontMask,
 NSCompressedFontMask,
 NSUnitalicFontMask

NSFixedPitchFontMask
};

These values are used by NSFontManager to identify font traits.

Glyphs
typedef unsigned int NSGlyph;

A type definition for numbers identifying font glyphs. It’s used as the
argument type for several of the methods in NSFont .

Font Panel Views
enum {
 NSFPPreviewButton,
 NSFPRevertButton,
 NSFPSetButton,
 NSFPPreviewField,
 NSFPSizeField,
 NSFPSizeTitle,
 NSFPCurrentField
};

Tags identifying views in the font panel.

Font Identity Matrix
const float *NSFontIdentityMatrix;

Identifies a font matrix that’s used for fonts displayed in an NSView object that
has an unflipped coordinate system.

Types and Constants 4-13

4

Font Manager Dictionary Keys
NSString *NSAFMAscender;
NSString *NSAFMCapHeight;
NSString *NSAFMCharacterSet;
NSString *NSAFMDescender;
NSString *NSAFMEncodingScheme;
NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMItalicAngle;
NSString *NSAFMMappingScheme;
NSString *NSAFMNotice;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMXHeight;

Global keys to access the values available in the Adobe Font Manager (AFM)
dictionary. You can convert the appropriate values (e.g., ascender, cap height)
to floating point values by using NSString ’s floatValue method.

Font Manager Tags
typedef enum _NSFontAction
 NSNoFontChangeAction
 NSViaPanelFontAction
 NSAddTraitFontAction
 NSSizeUpFontAction
 NSSizeDownFontAction
 NSHeavierFontAction
 NSLighterFontAction
 NSRemoveTraitFontAction
} NSFontAction

These tags represent font trait actions initiated by the Font Manager.

4-14 OpenStep Programming Reference—September 1996

4

Graphics
NSWindowDepth

typedef int NSWindowDepth;

This type gives the window-depth limit. Use the
NSAvailableWindowDepths() function to get a list of available window
depths. Use the functions NSBitsPerSampleFromDepth() ,
NSBitsPerPixelFromDepth() , NSPlanarFromDepth() , and
NSColorSpaceFromDepth() to extract information from a window depth.
The NSWindowDepth type is also used as an argument type for methods in the
NSScreen and NSWindow classes.

NSTIFFCompression

typedef enum _NSTIFFCompression {
 NSTIFFCompressionNone = 1,
 NSTIFFCompressionCCITTFAX3 = 3,
 NSTIFFCompressionCCITTFAX4 = 4,
 NSTIFFCompressionLZW = 5,
 NSTIFFCompressionJPEG = 6,
 NSTIFFCompressionNEXT = 32766,
 NSTIFFCompressionPackBits = 32773,
 NSTIFFCompressionOldJPEG = 32865
} NSTIFFCompression;

The constants defined in this type represent the various TIFF (tag image file
format) data compression schemes. They are defined in the
NSBitMapImageRep class and used in several methods of that class as well as
in the TIFFRepresentationUsingCompression:factor: method of NSImage.

Device Matching
enum {

NSImageRepMatchesDevice
};

NSImageRepMatchesDevice indicates that the value varies according to the
output device. It can be passed in (or received back) as the value of
NSImageRep’s bitsPerSample , pixelsWide , and pixelsHigh .

Types and Constants 4-15

4

Colorspace Names
NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSCustomColorSpace;

Predefined colorspace names. These strings are used as arguments in
NSDrawBitMap() and NSNumberOfColorComponents() , and are values
returned from NSColorSpaceFromDepth().

Gray Values
const float NSBlack;
const float NSDarkGray;
const float NSWhite;
const float NSLightGray;

Standard gray values for the 2-bit deep grayscale colorspace.

Device Dictionary Keys
NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

Keys to get designated values from device dictionaries.

Matrices

Matrix Modes
typedef enum _NSMatrixMode {
 NSRadioModeMatrix,
 NSHighlightModeMatrix,

4-16 OpenStep Programming Reference—September 1996

4

 NSListModeMatrix,
 NSTrackModeMatrix
} NSMatrixMode;

These constants represent NSMatrix operation modes. See the NSMatrix class
description for more information.

Notifications
Notifications are posted to all interested observers of a specific condition to
alert them that the condition has occurred. Global strings contain the actual
text of the notification. In the Application Kit, these are defined per class. See
the Foundation’s NSNotification and NSNotificationCenter for more
information.

Application
NSString *NSApplicationDidBecomeActiveNotification;
NSString *NSApplicationDidFinishLaunchingNotification;
NSString *NSApplicationDidHideNotification;
NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNotification;
NSString *NSApplicationDidUpdateNotification;
NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishLaunchingNotification;
NSString *NSApplicationWillHideNotification;
NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillTerminateNotification
NSString *NSApplicationWillUnhideNotification;
NSString *NSApplicationWillUpdateNotification;

Color List
NSString *NSColorListDidChangNotification;

Color Panel
NSString *NSColorPanelColorDidChangeNotification;

Types and Constants 4-17

4

Controls
NSString *NSControlTextDidBeginEditingNotification;
NSString *NSControlTextDidEndEditingNotification;
NSString *NSControlTextDidChangeNotification;

Image Representations
NSString *NSImageRepRegistryDidChangeNotification;

Split Views
NSString *NSSplitViewDidResizeSubviewsNotification;
NSString *NSSplitViewWillResizeSubviewsNotification;

Text
NSString *NSTextDidBeginEditingNotification;
NSString *NSTextDidEndEditingNotification;
NSString *NSTextDidChangeNotification;

Views
/* NSViewBoundsDidChangeNotification is sent whenever the views
bounds change and the frame does not. That is, it is sent whenever
the view's bounds are translated, scaled or rotated, but NOT when
the bounds change as a result of, for example, setFrameSize:. */

NSString *NSViewBoundsDidChangeNotification
NSString *NSViewFrameDidChangeNotification;
NSString *NSViewFocusDidChangeNotification;

Windows
NSString *NSWindowDidBecomeKeyNotification;
NSString *NSWindowDidBecomeMainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNotification;
NSString *NSWindowDidMiniaturizeNotification;
NSString *NSWindowDidMoveNotification;
NSString *NSWindowDidResignKeyNotification;
NSString *NSWindowDidResignMainNotification;

4-18 OpenStep Programming Reference—September 1996

4

NSString *NSWindowDidResizeNotification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;

Workspace
NSString *NSWorkspaceDidLaunchApplicationNotification;
NSString *NSWorkspaceDidMountNotification;
NSString *NSWorkspaceDidPerformFileOperationNotification;
NSString *NSWorkspaceDidTerminateApplicationNotification;
NSString *NSWorkspaceDidUnmountNotification;
NSString *NSWorkspaceWillLaunchApplicationNotification;
NSString *NSWorkspaceWillPowerOffNotification;
NSString *NSWorkspaceWillUnmountNotification;

Panels

Panel Buttons
enum {
 NSOKButton = 1,
 NSCancelButton = 0
};

Values returned by the standard panel buttons, OK and Cancel.

Alert Panel
enum {
 NSAlertDefaultReturn = 1,
 NSAlertAlternateReturn = 0,
 NSAlertOtherReturn = –1,
 NSAlertErrorReturn = –2
};

Values returned by the NSRunAlertPanel() function and by
runModalSession: when the modal session is run with a panel provided by
NSGetAlertPanel() .

Types and Constants 4-19

4

Page Layouts
enum {
 NSPLImageButton,
 NSPLTitleField,
 NSPLPaperNameButton,
 NSPLUnitsButton,
 NSPLWidthForm,
 NSPLHeightForm,
 NSPLOrientationMatrix,
 NSPLCancelButton,
 NSPLOKButton
};

Tags that identify buttons, fields, and other views of the Page Layout panel. Note
that these tags are not part of the OpenStep specification.

Pasteboards

Pasteboard Type Globals
NSString *NSStringPboardType;
NSString *NSColorPboardType;
NSString *NSFileContentsPboardType;
NSString *NSFilenamesPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTabularTextPboardType;
NSString *NSRTFPboardType;
NSString *NSTIFFPboardType;
NSString *NSDataLinkPboardType; //Defined in NSDataLink.h
NSString *NSSelectionPboardType; //Defined in NSSelection.h

Identifies the standard pasteboard types. These are used in a variety of
NSPasteboard methods and functions.

4-20 OpenStep Programming Reference—September 1996

4

Pasteboard Name Globals
NSString *NSDragPboard;
NSString *NSFindPboard;
NSString *NSFontPboard;
NSString *NSGeneralPboard;
NSString *NSRulerPboard;

Identifies the standard pasteboard names. Used in class method
pasteboardWithName: to get a pasteboard by name.

Printing

Print Table Status
typedef enum _NSPrinterTableStatus {
 NSPrinterTableOK,
 NSPrinterTableNotFound,
 NSPrinterTableError
} NSPrinterTableStatus;

These constants describe the state of a printer-information table stored by an
NSPrinter object. It is the argument type of the return value of
statusForTable: .

Page Orientation
typedef enum _NSPrintingOrientation {
 NSPortraitOrientation,
 NSLandscapeOrientation
} NSPrintingOrientation;

These constants represent the way a page is oriented for printing.

Page Order
typedef enum _NSPrintingPageOrder {
 NSDescendingPageOrder,
 NSSpecialPageOrder,
 NSAscendingPageOrder,
 NSUnknownPageOrder
} NSPrintingPageOrder;

Types and Constants 4-21

4

These constants describe the order in which pages are pooled for printing.
NSSpecialPageOrder tells the spooler not to rearrange pages. Set through
NSPrintOperation ’s setPageOrder: method and returned by its
pageOrder method.

Pagination Mode
typedef enum _NSPrintingPaginationMode {
 NSAutoPagination,
 NSFitPagination,
 NSClipPagination
} NSPrintingPaginationMode;

These constants represent the different ways an image is divided into pages
during pagination. Pagination can occur automatically, the image can be forced
onto a page, or it can be clipped to a page.

Print Panel Layout
enum {
 NSPPSaveButton,
 NSPPPreviewButton,
 NSFaxButton,
 NSPPTitleField,
 NSPPImageButton,
 NSPPNameTitle,
 NSPPNameField,
 NSPPNoteTitle,
 NSPPNoteField,
 NSPPStatusTitle,
 NSPPStatusField,
 NSPPCopiesField,
 NSPPPageChoiceMatrix,
 NSPPPageRangeFrom,
 NSPPPageRangeTo,
 NSPPScaleField,
 NSPPOptionsButton,
 NSPPPaperFeedButton,
 NSPPLayoutButton
};

Tags that identify text fields, controls, and other views in the Print panel.

4-22 OpenStep Programming Reference—September 1996

4

Printing Information Dictionary Keys
NSString *NSPrintAllPages;
NSString *NSPrintBottomMargin;
NSString *NSPrintCopies;
NSString *NSPrintFirstPage;
NSString *NSPrintHorizonalPagination;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintJobDisposition;
NSString *NSPrintJobFeatures;
NSString *NSPrintLastPage;
NSString *NSPrintLeftMargin;
NSString *NSPrintManualFeed;
NSString *NSPrintOrientation;
NSString *NSPrintPackageException;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintPaperFeed;
NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintPrinter;
NSString *NSPrintReversePageOrder;
NSString *NSPrintRightMargin;
NSString *NSPrintSavePath;
NSString *NSPrintScalingFactor;
NSString *NSPrintTopMargin;
NSString *NSPrintVerticalPagination;
NSString *NSPrintVerticallyCentered;

The keys in the mutable dictionary associated with NSPrintInfo . See
NSPrintInfo.h for types and descriptions of values.

Print Job Disposition Values
NSString *NSPrintCancelJob;
NSString *NSPrintFaxJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintSpoolJob;

These global constants define the disposition of a print job. See
NSPrintInfo ’s setJobDisposition: and jobDisposition .

Types and Constants 4-23

4

Fax Values (Platform Specific)

The following strings are not part of the OpenStep specification.

NSString *NSPrintFaxReceiverNames
NSString *NSPrintFaxReceiverNumbers
NSString *NSPrintFaxSendTime
NSString *NSPrintFaxUseCoverSheet
NSString *NSPrintFaxCoverSheetName
NSString *NSPrintFaxReturnReceipt
NSString *NSPrintFaxHighResolution
NSString *NSPrintFaxTrimPageEnds
NSString *NSPrintFaxModem
NSString *NSPrintFaxJob;

Save Panels
enum {
 NSFileHandlingPanelImageButton,
 NSFileHandlingPanelTitleField,
 NSFileHandlingPanelBrowser,
 NSFileHandlingPanelCancelButton,
 NSFileHandlingPanelOKButton,
 NSFileHandlingPanelForm,
 NSFileHandlingPanelHomeButton,
 NSFileHandlingPanelDiskButton,
 NSFileHandlingPanelDiskEjectButton
};

Tags that identify buttons, fields, and other views in the Save panel.

Scrollers

Scroller Arrow
typedef enum _NSScrollerArrow {
 NSScrollerIncrementArrow,
 NSScrollerDecrementArrow
} NSScrollerArrow;

These constants indicate the two types of scroller arrows. NSScroller ’s
drawArrow:highlight: method takes an NSScrollerArrow as the first
argument.

4-24 OpenStep Programming Reference—September 1996

4

Scroller Arrow Position
typedef enum _NSScrollArrowPosition {
 NSScrollerArrowsMaxEnd,
 NSScrollerArrowsMinEnd,
 NSScrollerArrowsNone
} NSScrollArrowPosition;

NSScroller uses these constants in its setArrowPosition: method to set
the position of the arrows within the scroller.

Scroller Parts
typedef enum _NSScrollerPart {
 NSScrollerNoPart,
 NSScrollerDecrementPage,
 NSScrollerKnob,
 NSScrollerIncrementPage,
 NSScrollerDecrementLine,
 NSScrollerIncrementLine,
 NSScrollerKnobSlot
} NSScrollerPart;

NSScroller uses these constants in its hitPart method to identify the part
of the scroller specified in a mouse event.

Usable Scroller Parts
typedef enum _NSScrollerUsablePart {
 NSNoScrollerParts,
 NSOnlyScrollerArrows,
 NSAllScrollerParts
} NSUsableScrollerParts;

These constants define the usable parts of an NSScroller object.

Scroller Width
const float NSScrollerWidth;

Identifies the default width of a vertical NSScroller object and the default
height of a horizontal NSScroller object.

Types and Constants 4-25

4

Text

Line Break Information
typedef struct _NSBreakArray {
 NSTextChunk chunk;
 NSLineDesc breaks[1];
} NSBreakArray;

Holds line-break information for an NSText object. It’s mainly an array of line
descriptors.

Line Character Array
typedef struct _NSCharArray {
 NSTextChunk chunk;
 unsigned char text[1];
} NSCharArray;

Holds the character array for the current line in the NSText object.

Character Filter Function
typedef unsigned short (*NSCharFilterFunc) (
 unsigned short charCode,
 int flags,
 NSStringEncoding theEncoding);

The character filter function analyzes each character the user enters in the
NSText object.

Finite-State Machine
typedef struct _NSFSM {
 const struct _NSFSM *next;
 short delta;
 short token;
} NSFSM;

A word definition finite-state machine structure used by an NSText object.

4-26 OpenStep Programming Reference—September 1996

4

Line Height Change Information
typedef struct _NSHeightChange {
 NSLineDesc lineDesc;
 NSHeightInfo heightInfo;
} NSHeightChange;

Associates line descriptors and line-height information in an NSText object.

Line Height Information
typedef struct _NSHeightInfo {
 float newHeight;
 float oldHeight;
 NSLineDesc lineDesc;
} NSHeightInfo;

Stores height information for each line of text in an NSText object.

Line Select and Draw Information
typedef struct _NSLay {
 float x;
 float y;
 short offset;
 short chars;
 id font;
 void *paraStyle;
 NSRun *run;
 NSLayFlags lFlags;
} NSLay;

Represents a single sequence of text in a line and records everything needed to
select or draw that piece.

typedef struct _NSLayArray {
 NSTextChunk chunk;
 NSLay lays[1];
} NSLayArray;

Holds the layout for the current line. Since the structure’s first field is an
NSTextChunk structure, NSLayArray s can be manipulated by the functions
that manage variable-sized arrays of records.

Types and Constants 4-27

4

typedef struct {
 unsigned int mustMove:1;
 unsigned int isMoveChar:1;
 unsigned int RESERVED:14;
} NSLayFlags;

Records whether a text lay in an NSText object needs special treatment (for
example, because of non-printing characters).

typedef struct _NSLayInfo {
 NSRect rect;
 float descent;
 float width;
 float left;
 float right;
 float rightIndent;
 NSLayArray *lays;
 NSWidthArray *widths;
 NSCharArray *chars;
 NSTextCache cache;
 NSRect *textClipRect;
 struct _lFlags {
 unsigned int horizCanGrow:1;
 unsigned int vertCanGrow:1;
 unsigned int erase:1;
 unsigned int ping:1;
 unsigned int endsParagraph:1;
 unsigned int resetCache:1;
 unsigned int RESERVED:10;
 } lFlags;
} NSLayInfo;

NSText ’s scanning and drawing functions use this structure to communicate
information about lines of text.

Line Descriptor
typedef short NSLineDesc;

Used to identify lines of text in the NSText object.

4-28 OpenStep Programming Reference—September 1996

4

Paragraph Properties
typedef enum _NSParagraphProperty {
 NSLeftAlignedParagraph,
 NSRightAlignedParagraph,

NSCenterAlignedParagraph,
 NSJustificationAlignedParagraph,
 NSFirstIndentParagraph,
 NSIndentParagraph,
 NSAddTabParagraph,
 NSRemoveTabParagraph,
 NSLeftMarginParagraph,
 NSRightMarginParagraph
} NSParagraphProperty;

The constants of this type identify specific paragraph properties for selected
text. NSCStringText ’s setSelProp:to: method takes this argument type.

Text Runs
typedef struct _NSRun {
 id font;
 int chars;
 void *paraStyle;
 int textRGBColor;
 unsigned char superscript;
 unsigned char subscript;
 id info;
 NSRunFlags rFlags;
} NSRun;

In an NSText object, this structure represents a single sequence of text with a
given format.

Text Run Array
typedef struct _NSRunArray {
 NSTextChunk chunk;
 NSRun runs[1];
} NSRunArray;

This structure holds the array of text runs in an NSText object. Since the first
field is an NSTextChunk structure you can manipulate the items in the array
with the functions that manage variable-sized arrays of records.

Types and Constants 4-29

4

Text Run Flags
typedef struct {
 unsigned int underline:1;
 unsigned int dummy:1;
 unsigned int subclassWantsRTF:1;
 unsigned int graphic:1;
 unsigned int forcedSymbol:1;
 unsigned int RESERVED:11;
} NSRunFlags;

The fields of this structure record whether a run in an NSText object contains
graphics, is underlined, or if an alternate character forced the use of a symbol.

Selection Points
typedef struct _NSSelPt {

 int cp; //Character position
 int line; // Offset of NSLineDesc in break table
 float x; //x coordinate
 float y; //y coordinate
 int c1st; //Position of first char in line
 float ht; //Line height
} NSSelPt;

Represents one end of a selection in an NSText object.

Tab Stops
typedef struct _NSTabStop {
 short kind;
 float x;
} NSTabStop;

This structure describes an NSText object’s tab stops.

Text Blocks
typedef struct _NSTextBlock {
 struct _NSTextBlock *next;
 struct _NSTextBlock *prior;
 struct _tbFlags {
 unsigned int malloced:1;

4-30 OpenStep Programming Reference—September 1996

4

 unsigned int PAD:15;
 } tbFlags;
 short chars;
 unsigned char *text;
} NSTextBlock;

A structure holds text characters in blocks no bigger than NSTextBlockSize
(see below). A linked list of these text blocks comprises the text for an NSText
object.

Text Block Size
enum {
 NSTextBlockSize = 512
};

The size, in bytes, of a text block.

Text Cache
typedef struct _NSTextCache {
 int curPos;
 NSRun *curRun;
 int runFirstPos;
 NSTextBlock *curBlock;
 int blockFirstPos;
} NSTextCache;

This structure describes the current text block and run, and the cursor position
in the text.

Text Chunks
typedef struct _NSTextChunk {
 short growby;
 int allocated;
 int used;
} NSTextChunk;

Text objects use this structure to implement variable-sized arrays of records.

Types and Constants 4-31

4

Text Filter Function
typedef char *(*NSTextFilterFunc) (
 id self,
 unsigned char * insertText,
 int *insertLength,
 int position);

A text filter function implements autoindenting and other features in an
NSText object.

Text Scanning and Drawing Functions
typedef int (*NSTextFunc) (
 id self,
 NSLayInfo *layInfo);

This is the type for an NSText object’s scanning and drawing function, as set
through NSCStringText ’s setScanFunc: and setDrawFunc: methods.

NSTextAlignment
typedef enum _NSTextAlignment {
 NSLeftTextAlignment,
 NSRightTextAlignment,
 NSCenterTextAlignment,
 NSJustifiedTextAlignment,
 NSNaturalTextAlignment
} NSTextAlignment;

The constants of this type determine text alignment. Used by NSCell ,
NSControl , NSForm, NSFormCell , and NSText methods.
NSNaturalTextAlignment indicates the default alignment for the text.

Text Style
typedef struct _NSTextStyle {
 float indent1st;
 float indent2nd;
 float lineHt;
 float descentLine;
 NSTextAlignment alignment;

4-32 OpenStep Programming Reference—September 1996

4

 short numTabs;
 NSTabStop *tabs;
} NSTextStyle;

NSText uses this structure to describe text layout and tab stops.

Line Width Array
typedef struct _NSWidthArray {
 NSTextChunk chunk;
 float widths[1];
} NSWidthArray;

Holds the character widths for the current line. Since the first field is an
NSTextChunk structure, you can manipulate the items in the array with the
functions that manage variable-sized arrays of records.

Left Tab
enum {
 NSLeftTab
};

Used by the NSText object’s tab functions.

Backspace, Carriage Return, Delete, and Backtab Key Codes
enum {
 NSBackspaceKey = 8,
 NSCarriageReturnKey = 13,
 NSDeleteKey = 0x7f,
 NSBacktabKey = 25
};

These character-code constants are used by the NSText object’s character filter
function.

Text Movement Key Codes
enum {
 NSIllegalTextMovement = 0,
 NSReturnTextMovement = 0x10,
 NSTabTextMovement = 0x11,
 NSBacktabTextMovement = 0x12,

Types and Constants 4-33

4

 NSLeftTextMovement = 0x13,
 NSRightTextMovement = 0x14,
 NSUpTextMovement = 0x15,
 NSDownTextMovement = 0x16
};

Movement codes describing types of movement between text fields.

Break Tables
const NSFSM *NSCBreakTable;
int NSCBreakTableSize;
const NSFSM *NSEnglishBreakTable;
int NSEnglishBreakTableSize;
const NSFSM *NSEnglishNoBreakTable;
int NSEnglishNoBreakTableSize;

These tables (with their associated sizes) are finite-state machines that
determine word wrapping in an NSText object.

Character Category Tables
const unsigned char *NSCCharCatTable;
const unsigned char *NSEnglishCharCatTable;

These tables define the character classes used in an NSText object’s break and
click tables.

Click Tables
const NSFSM *NSCClickTable;
int NSCClickTableSize;
const NSFSM *NSEnglishClickTable;
int NSEnglishClickTableSize;

NSText objects use these tables as finite-state machines that determine which
characters are selected when the user double-clicks.

Smart Cut and Paste Tables
const unsigned char *NSCSmartLeftChars;
const unsigned char *NSCSmartRightChars;
const unsigned char *NSEnglishSmartLeftChars;
const unsigned char *NSEnglishSmartRightChars;

4-34 OpenStep Programming Reference—September 1996

4

These tables are suitable as arguments for the NSCStringText methods
setPreSelSmartable: and setPostSelSmartTable: . When users paste
text into a text object, if the character to the left (right) side of the new word is
not in the left (right) table, an extra space is added to that side.

NSCStringText Internal State Structure

This is the structure returned by the cStringTextInternalState method of
NSCStringText , for use only by applications that need to access the internal
state of an NSCStringText object.

typedef struct _NSCStringTextInternalState {

//Pointer to state table that specifies word and line breaks.
const NSFSM *breakTable;

//Pointer to state table that defines word boundaries for a
//double-click selection.
const NSFSM *clickTable;

//Pointer to table that specifies which characters on the left
//end of a selection are treated as equivalent to a space.
const unsigned char *preSelSmartTable;

//Pointer to table that specifies which characters on the right
//end of a selection are treated as equivalent to a space.
const unsigned char *postSelSmartTable;

//Pointer to table that maps ASCII characters to character classes.
const unsigned char *charCategoryTable;

//Record of notification methods the delegate implements.
char delegateMethods;

//Function to check each character as it’s typed into the text.
NSCharFilterFunc charFilterFunc;

//Function to check text that’s being added to the NSCStringText
object.
NSTextFilterFunc textFilterFunc;

//Reserved for internal use
NSString *_string;

//Function that calculates the line of text.

Types and Constants 4-35

4

NSTextFunc scanFunc;

//Function that draws the line of text.
NSTextFunc drawFunc;

//Object that’s notified when the NSCStringText object is modified.
id delegate;

//Integer the delegate uses to identify the NSCStringText object.
int tag;

//Timed entry number for the vertical bar that marks the

//insertion point.
void *cursorTE;

//Pointer to first record in a linked list of text blocks.
NSTextBlock *firstTextBlock;

//Pointer to last record in a linked list of text blocks.
NSTextBlock *lastTextBlock;

//Pointer to array of format runs. By default, theRuns points
//to a single run of the default font.
NSRunArray *theRuns;

//Format run to use for the next characters entered.
NSRun typingRun;

//Pointer to the array of line breaks.
NSBreakArray *theBreaks;

//Line containing the end of the growing selection.
int growLine;

//Number of characters in the NSCStringText object.
int textLength;

//Bottom of the last line of text, relative to the origin of
bodyRect.
float maxY;

//Widest line of text. Only accurate after calcLine method is
invoked.
float maxX;

4-36 OpenStep Programming Reference—September 1996

4

//Rectangle in which the NSCStringText object draws.
NSRect bodyRect;

//Reserved for internal use.
float borderWidth;

//Number of clicks that created the selection.
char clickCount;

//Starting position of the selection.
NSSelPt sp0;

//Ending position of the selection.
NSSelPt spN;

//Left anchor position.
NSSelPt anchorL;

//Right anchor position.
NSSelPt anchorR;

//Maximum size of the frame rectangle.
NSSize maxSize;

//Minimum size of the frame rectangle.
NSSize minSize;

struct _tFlags {
#ifdef __BIG_ENDIAN__
//Reserved for internal use.
unsigned int _editMode:2;
unsigned int _selectMode:2;
unsigned int _caretState:2;

//True if any changes have been made to the text since the
//NSCStringText object became first responder
unsigned int changeState:1;

//True if the NSCStringText object wraps words whose length
//exceeds the line length on a character basis. False if
//such words are truncated at end of line.
unsigned int charWrap:1;

//True if the left mouse button (or any button if
//button functions are not differentiated) is down.
unsigned int haveDown:1;

Types and Constants 4-37

4

//True if the anchor’s position is at sp0.
unsigned int anchorIs0:1;

//True if the NSCStringText object’s width can grow or shrink.
unsigned int horizResizable:1;

//True if the NSCStringText object’s height can grow or shrink
unsigned int vertResizable:1;

//Reserved for internal use.
unsigned int overstrikeDiacriticals:1;

//True if the NSCStringText object uses one font for all
//its text.
unsigned int monoFont:1;

//True if the NSCStringText object doesn’t update the font
//panel automatically.
unsigned int disableFontPanel:1;

//True if the NSCStringText object is a subview of
//an NSClipView.
unsigned int inClipView:1;

#else
unsigned int inClipView:1;
unsigned int disableFontPanel:1;
unsigned int monoFont:1;
unsigned int overstrikeDiacriticals:1;
unsigned int vertResizable:1;
unsigned int horizResizable:1;
unsigned int anchorIs0:1;
unsigned int haveDown:1;
unsigned int charWrap:1;
unsigned int changeState:1;
unsigned int _caretState:2;
unsigned int _selectMode:2;
unsigned int _editMode:2;
#endif
} tFlags;

//Reserved for internal use.
void *_info;
void *_textStr;
} NSCStringTextInternalState;

4-38 OpenStep Programming Reference—September 1996

4

Views

Tracking Rectangle Tag
typedef int NSTrackingRectTag;

A unique identifier of a tracking rectangle assigned by NSView. See NSView’s
addTrackingRectangle:owner:userData:assumeInside: method.

Border Type
typedef enum _NSBorderType {
 NSNoBorder,
 NSLineBorder,
 NSBezelBorder,
 NSGrooveBorder
} NSBorderType;

Constants representing the four types of borders that can appear around
NSView objects.

Autoresizing Constants
enum {
 NSViewNotSizable,
 NSViewMinXMargin,
 NSViewWidthSizable,
 NSViewMaxXMargin,
 NSViewMinYMargin,
 NSViewHeightSizable,
 NSViewMaxYMargin
};

NSView uses these autoresize constants to describe the parts of a view (or its
margins) that are resized when the view’s superview is resized.

Types and Constants 4-39

4

Windows

Window Levels
enum {
 NSNormalWindowLevel = 0,
 NSFloatingWindowLevel = 3,
 NSDockWindowLevel = 5,
 NSSubmenuWindowLevel = 10,
 NSMainMenuWindowLevel = 20
};

These constants list the window-device tiers that the Application Kit uses.
Windows are ordered (or “layered”) within tiers: The uppermost window in
one tier can still be obscured by the lowest window in the next higher tier.

Window Styles
enum {
 NSBorderlessWindowMask,

NSTitledWindowMask,
 NSClosableWindowMask,
 NSMiniaturizableWindowMask,
 NSResizableWindowMask
};

Bitmap masks to determine window styles.

Size Globals
NSSize NSIconSize;
NSSize NSTokenSize;

These global constants give the dimensions of an icon and token.

4-40 OpenStep Programming Reference—September 1996

4

Workspaces

Workspace File Type Globals
NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

Identifies the type of file queried by the method
getInfoForFile:application:type: . The file type is passed back by
reference in this method’s last argument.

Workspace File Operation Globals
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceDuplicateOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceRecycleOperation;

Used as file-operation arguments in the
performFileOperation:source:destination:files:tag: method
(first argument).

Part 2 — Foundation Kit

5-1

Classes 5

The Foundation Kit contains the OpenStep root class NSObject , and other
classes represent basic data types such as byte arrays, character sets, and
strings; object collections such as sets, arrays, and dictionaries; and classes
representing system information such as time and dates. These classes provide
Application Kit support.

The following diagram shows the Foundation Kit classes and their inheritance
relationships. After the diagram, the class descriptions are arranged in
alphabetical order.

5-2 OpenStep Programming Reference—September 1996

5

Figure 5-1 Foundation Kit Classes

NSObject

NSArray

NSAssertionHandler

NSAutoreleasePool

NSBundle

NSCharacterSet

NSCoder

NSConditionLock

NSData

NSConnection

NSDeserializer

NSDictionary

NSEnumerator

NSException

NSInvocation

NSLock

NSMethodSignature

NSNotification

NSNotificationCenter

NSProcessInfo

NSMutableArray

NSMutableCharacterSet

NSArchiver

NSUnarchiver

NSMutableData

NSCalendarDate

NSMutableDictionary

NSRecursiveLock

NSRunLoop

NSScanner

NSSerializer

NSSet

NSString

NSThread

NSTimeZone

NSTimer

NSUserDefaults

NSValue

NSDate

NSProxy NSDistantObject

NSMutableSet

NSMutableString

NSCountedSet

NSTimeZoneDetail

NSNumber

NSArchiver 5-3

5

NSArchiver

Class Description

NSArchiver , a concrete subclass of NSCoder, defines an object that encodes
Objective C objects into an architecture-independent file storage format that
can be stored in a file. When objects are archived, their class information and
the values of their instance variables are written to the archive. NSArchiver ’s
companion class, NSUnarchiver , takes an archive file and decodes its contents
into a set of objects equivalent to the original one.

Archiving is typically initiated by sending an encodeRootObject: or
archiveRootObject:toFile: message to an archiver object. These
messages specify a single object that is the starting point for archiving. The
root object receives an encodeWithCoder: message (see the NSCoding
protocol) that allows it to begin archiving itself and the other objects that it’s
connected to. An object responds to an encodeWithCoder: message by
writing its instance variables to the archiver.

An object doesn’t have to archive the values of each of its instance variables.
Some values may not be important to reestablish and others may be derivable
from related state upon unarchiving. Other instance variables should be
written to the archive only under certain conditions, as explained in the
following.

NSArchiver overrides the inherited encodeRootObject: and
encodeConditionalObject: methods to support the conditional archiving
of members of a graph of objects. When an object receives an
encodeWithCoder: message, it should respond by unconditionally archiving
instance variables that are intrinsic to its nature, with the exceptions noted
above, and conditionally archiving those that are not. For example, an NSView
unconditionally archives its array of subviews using encodeObject: , but
conditionally archives its superview using encodeConditionalObject: .
The archiving system notes each reference to a conditional object, but doesn’t
actually archive the object unless some other object in the graph requests the

Characteristic Description

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

5-4 OpenStep Programming Reference—September 1996

5

object to be archived unconditionally. This ensures that an object is only
archived once despite multiple references to it in the object graph. When the
objects are extracted from the archive, the multiple references to objects are
resolved, and an equivalent graph of objects is reestablished. See also
NSUnarchiver , NSSerializer .

Method Types

Class Methods

archivedDataWithRootObject:

+ (NSData *)archivedDataWithRootObject:(id)rootObject

Creates and returns a data object after initializing an archiver with that data
object, and encoding the archiver with rootObject .

archivedRootObject:toFile:

+ (BOOL)archiveRootObject:(id)rootObjectToFile:(NSString *)path

Archives rootObject by encoding it as a data object in an archiver and
writing that data object to file path . Returns YES upon success, and returns NO
otherwise.

Activity Class Method

Initializing an NSArchiver – initForWritingWithMutableData:

Archiving data + archivedDataWithRootObject:
+ archivedRootObject:toFile:
– encodeArrayOfObjCType:count:at:
– encodeConditionalObject:
– encodeRootObject:

Getting data from the NSArchiver – archiverData

Substituting one class for another – classNameEncodedForTrueClassName:
– encodeClassName:intoClassName:

NSArchiver 5-5

5

Instance Methods

archiverData

– (NSMutableData *)archiverData

Returns the data object, in mutable form, that is associated with the receiving
archiver.

classNameEncodedForTrueClassName:

– (NSString *)classNameEncodedForTrueClassName:(NSString *)trueName

Returns the class name used to archive instances of the class trueName . See
also encodeClassName:intoClassName: .

encodeArrayOfObjCType:count:at:

– (void)encodeArrayOfObjCType:(const char *)itemType
count:(unsigned int)count at:(const void *)array

Encodes an array of count data elements of the same Objective C data type .
itemType can be some combination of the following type descriptors in the
following table.

Table 5-1 Type Descriptors

Descriptor Type

id @

Class #

SEL :

char c

unsigned char C

short s

unsigned short S

int i

unsigned int I

long l

5-6 OpenStep Programming Reference—September 1996

5

For example, if itemType were “{sic*@}”, a structure containing a short, an int,
a char, a char *, and an object would be encoded for each array element. See
also decodeArrayOfObjCType:count:at: (NSUnarchiver).

encodeClassName:intoClassName:

– (void)encodeClassName:(NSString *)trueName
intoClassName:(NSString *)inArchiveName

Encodes in the archive a substitute class name for the real class name
(trueName).

encodeConditionalObject:

– (void)encodeConditionalObject:(id)object

Encodes into the linearized data a conditional object that points back toward
a root object. If nil is specified for object , it encodes it as nil
unconditionally. This method raises an NSInvalidArgumentException if no
root object has been encoded.

unsigned long L

long long q

float f

double d

bitfield b

void v

undefined ?

pointer ^

char * *

array [<count><types>]

union (<types>)

structure {<types>}

Table 5-1 Type Descriptors

Descriptor Type

NSArray 5-7

5

encodeRootObject:

– (void)encodeRootObject:(id)rootObject

Encodes the rootObject at the start of the linearized data representing the
object graph. This method raises an NSInvalidArgumentException if the
root object has already been encoded.

initForWritingWithMutableData:

– (id)initForWritingWithMutableData:(NSMutableData *)mdata

Initializes an archiver, encoding stream and version information into mutable
data mdata . This method raises NSInvalidArgumentException if the
mdata argument is nil .

NSArray

Class Description

The NSArray class declares the programmatic interface to an object that
manages an immutable array of objects. (The complementary class
NSMutableArray manages modifiable arrays of objects.) NSArray ’s two
primitive methods—count and objectAtIndex: —provide the basis for all
the other methods in its interface. The count method returns the number of
elements in the array. objectAtIndex: gives you access to the array elements
by index value, with index values starting at 0.

The methods objectEnumerator and reverseObjectEnumerator also
permit sequential access of the elements of the array, differing only in the
direction of travel through the elements. These methods are provided so that
array objects can be traversed in a manner similar to that used for objects of
other collection classes, such as NSDictionary .

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSArray.h

5-8 OpenStep Programming Reference—September 1996

5

Generally, you instantiate an NSArray by sending one of the array...
messages to the NSArray class object. These methods return an NSArray
containing the elements you pass in as arguments. (Note that arrays can’t
contain nil objects.) These objects aren’t copied; rather, each object receives a
retain message before it’s added to the array. When an object is removed
from an array, it’s sent a release message.

NSArray provides methods for querying the elements of the array.
indexOfObject: searches the array for the object that matches its argument.
To determine whether the search is successful, each element of the array is sent
an isEqual: message, as declared in the NSObject protocol. Another
method, indexOfObjectIdenticalTo: , is provided for the less common
case of determining whether a specific object is present in the array.
indexOfObjectIdenticalTo: tests each element in the array to see whether
its id matches that of the argument.

The makeObjectsPerform: and makeObjectsPerform:withObject:
methods let you act on the individual objects in the array by sending them
messages. To act on the array as a whole, a variety of methods are defined. You
can create a sorted version of the array (sortedArrayUsingSelector: and
sortedArrayUsingFunction:context:), extract a subset of the array
(subarrayWithRange:), or concatenate the elements of an array of
NSString objects into a single string (componentsJoinedByString:). In
addition, you can compare two array objects using the isEqualToArray: and
firstObjectCommonWithArray: methods.

NSArray 5-9

5

Method Types

Activity Class Method

Allocating, initializing, and storing an
array

+ allocWithZone:
+ array
+ arrayWithContentsOfFile:
+ arrayWithObject:
+ arrayWithObjects:
– arrayByAddingObject:
– arrayByAddingObjectsFromArray:
– initWithArray:
– initWithContentsOfFile:
– initWithObjects:
– initWithObjects:count:
– writeToFile:atomically:

Querying the array – containsObject:
– count
– getObjects:
– getObjects:range:
– indexOfObject:
– indexOfObject:inRange:
– indexOfObjectIdenticalTo:
– indexOfObjectIdenticalTo:inRange:
– lastObject
– objectAtIndex:
– objectEnumerator
– reverseObjectEnumerator
– sortedArrayHint

Sending messages to elements – makeObjectsPerform:
– makeObjectsPerform:withObject:

Comparing arrays – firstObjectCommonWithArray:
– isEqualToArray:

Deriving new arrays – sortedArrayUsingFunction:context:
– sortedArrayUsingFunction:context:hint:
– sortedArrayUsingSelector:
– subarrayWithRange:

Joining string elements – componentsJoinedByString:

Creating a string description of the array – description
– descriptionWithLocale:
– descriptionWithLocale:indent:

5-10 OpenStep Programming Reference—September 1996

5

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Returns an uninitialized array object in zone . See also array .

array

+ (id)array

Returns an empty array object. See also arrayWithObject: ,
arrayWithObjects: , initWithObjects: .

arrayWithContentsOfFile:

+ (id)arrayWithContentsOfFile:(NSString *)path

Returns an array initialized with the contents of the file specified by path.
Returns nil if path does not contain an array, or if there is a file error. See also
initWithContentsOfFile: , writeToFile:atomically: ,
arrayWithObjects: .

arrayWithObject:

+ (id)arrayWithObject:(id)anObject

Returns an NSArray containing the single element anObject . Raises an
NSInvalidArgumentException if anObject is nil . See also
arrayWithObjects: , arrayByAddingObject: ,
arrayByAddingObjectsFromArray: , arrayWithContentsOfFile: ,
initWithArray: .

arrayWithObjects:

+ (id)arrayWithObjects:(id)firstObj,...

Returns an NSArray containing the objects in the argument list. The object list
is comma-separated and ends with nil . See also arrayWithObject: ,
arrayWithContentsOfFile: .

NSArray 5-11

5

Instance Methods

arrayByAddingObject:

– (NSArray *)arrayByAddingObject:(id)anObject

Returns an NSArray containing the receiver’s elements plus anObject at the
end of the array. See also arrayByAddingObjectsFromArray: .

arrayByAddingObjectsFromArray:

– (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)anotherArray

Returns an NSArray containing the receiver’s elements plus the elements from
anotherArray added to the end of the returned array. See also
arrayByAddingObject: .

componentsJoinedByString:

– (NSString *)componentsJoinedByString:(NSString *)separator

Returns a string that’s the result of interposing separator between the
elements of the receiver’s array. If the receiver’s length is 0, the null string
(@””) is returned.

containsObject:

– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the array, and returns NO otherwise. See
also indexOfObject: , count , objectAtIndex: , objectEnumerator ,
lastObject .

count

– (unsigned int)count

Returns the number of objects currently in the array. The default
implementation returns 0.

5-12 OpenStep Programming Reference—September 1996

5

description

– (NSString *)description

Returns a string object that represents the contents of the receiving array in
human-readable form. This method sends the message
descriptionWithLocale:nil indent:0 to each object in the array. See
also descriptionWithLocale: , descriptionWithLocale:indent: .

descriptionWithLocale:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary

Returns a string representation of the NSArray object. Included are the key
and values that represent the locale data from localeDictionary . This
method sends the message descriptionWithLocale:localeDictionary
indent:0 . See also description , descriptionWithLocale:indent: .

descriptionWithLocale:indent:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary
indent:(unsigned int)level

Returns a string representation of the NSArray object. Included are the key
and values that represent the locale data from localeDictionary . Elements
of the array are indented from the left margin by level + 1 multiples of four
spaces, to make the output more readable. See also description ,
descriptionWithLocale:indent: .

firstObjectCommonWithArray:

– (id)firstObjectCommonWithArray:(NSArray *)otherArray

Returns the first object from the receiver’s array that’s equal to an object in
otherArray . Returns nil if no common object is found. See also
isEqualToArray: .

getObjects:

- (void)getObjects:(id *)buf

NSArray 5-13

5

Returns the receiving array’s contents in buf . See also getObjects:range: .

getObjects:range:

- (void)getObjects:(id *)buf range:(NSRange)range

Returns the receiving array’s contents, within range , in buf . See also
getObjects: .

indexOfObject:

– (unsigned int)indexOfObject:(id)anObject

Returns the index of anObject , if found; otherwise, returns NSNotFound . This
method is similar to indexOfObjectIdenticalTo: , but instead of just
comparing the id s, this method sends an isEqual: message (see the
NSObject protocol) to each object in the array using the anObject as the
argument. If the objects in the array are of a class that overrides NSObject 's
default isEqual: , the index of the last object which "is equal" to the argument
will be returned (where "is equal" means whatever the class defines it to mean).
If NSObject 's default isEqual: method is not overriden by the array
elements class, then this method is equivalent to indexOfObject: , but is less
efficient. See also indexOfObjectIdenticalTo: .

indexOfObjectIdenticalTo:

– (unsigned int)indexOfObjectIdenticalTo:(id)anObject

Returns the index of anObject , if found; otherwise, returns NSNotFound . This
method checks the elements in the array from first to last by comparing their
id s. See also indexOfObject: , indexOfObjectIdenticalTo:inRange: .

indexOfObjectIdenticalTo:inRange:

- (unsigned)indexOfObjectIdenticalTo:(id)anObject
inRange:(NSRange)range

Searches the specifed array range for anObject by comparing id s. Returns
anObject ’s array index if found, otherwise NSNotFound is returned. See also
indexOfObjectIdenticalTo: , indexOfObject:inRange: .

5-14 OpenStep Programming Reference—September 1996

5

indexOfObject:inRange:

- (unsigned)indexOfObject:(id)anObject inRange:(NSRange)range

Searches the specifed array range for anObject . Returns anObject ’s array
index if found, otherwise NSNotFound is returned. Object equality is
determined by NSObject protocol’s isEqual: method. See also
indexOfObject: , indexOfObjectIdenticalTo:inRange: .

initWithArray:

– (id)initWithArray:(NSArray *)anotherArray

Initializes a newly allocated array object by placing in it the objects contained
in anotherArray . See also initWithContentsOfFile: ,
initWithObjects: .

initWithContentsOfFile:

- (id)initWithContentsOfFile:(NSString *)path

Initializes a newly allocated array with the contents of path . Returns nil if
path does not represent an array, or if there is a file error. See also
writeToFile:atomically: , arrayWithContentsOfFile: ,
initWithArray: .

initWithObjects:

– (id)initWithObjects:(id)firstObj,...

Initializes a newly allocated array object by placing in it the objects in the
argument list. The object list is comma-separated and ends with nil . This
method raises an NSInvalidArgumentException if any object in the list of
objects is nil . See also initWithObjects:count: , initWithArray: ,
initWithContentsOfFile: .

initWithObjects:count:

– (id)initWithObjects:(id *)objects count:(unsigned int)count

NSArray 5-15

5

Initializes a newly allocated array object by placing in it count objects from
the objects array. This method raises an NSInvalidArgumentException if
any objects in the objects array is nil . See also initWithObjects: .

isEqualToArray:

– (BOOL)isEqualToArray:(NSArray *)otherArray

Compares the receiving array object to otherArray . This method returns YES
if the receiver and otherArray contain the identical or equal objects at each
location (where identical means the same id s, and equal is defined by
NSObject protocol’s isEqual: method). Returns NO otherwise. See also
firstObjectCommonWithArray: .

lastObject

– (id)lastObject

Returns the last object in the array, or nil if the array is empty. See also
containsObject: , count .

makeObjectsPerform:

– (void)makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the array (last to first). See also
makeObjectsPerform:withObject: .

makeObjectsPerform:withObject:

– (void)makeObjectsPerform:(SEL)aSelector withObject:(id)anObject

Sends an aSelector message to each object in the array (last to first), with
anObject as an argument. See also makeObjectsPerform: .

objectAtIndex:

– (id)objectAtIndex:(unsigned int)index

Returns the object located at index . An array’s index starts at 0. This method
raises an NSRangeException if index is beyond the end of the array. See also
indexOfObject: , objectEnumerator .

5-16 OpenStep Programming Reference—September 1996

5

objectEnumerator

– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the array,
starting with the first element. See also NSEnumerator .

reverseObjectEnumerator

– (NSEnumerator *)reverseObjectEnumerator

Returns an enumerator object that lets you access each object in the array, from
the last element to the first. See also NSEnumerator .

sortedArrayHint

- (NSData *)sortedArrayHint

Returns a hint about the state of the array’s sort, which is used by
sortedArrayUsingFunction:context:hint: . Returns nil for uninteresting
hints. See also sortedArrayUsingFunction:context:hint: .

sortedArrayUsingFunction:context:

– (NSArray *)sortedArrayUsingFunction:(int(*)(id element1,
id element2,void *userData))comparator
context:(void *)context

Returns an array listing the receiver’s elements in ascending order as defined
by the comparison function comparator . context is passed to the
comparator function as its third argument. See also
sortedArrayUsingSelector: , subarrayWithRange: .

sortedArrayUsingFunction:context:hint:

- (NSArray *)sortedArrayUsingFunction:
(int (*)(id element1, id element2, void *userData))comparator
context:(void *)context
hint:(NSData *)hint

NSArray 5-17

5

Returns an array listing the receiver’s elements in ascending order as defined by
the comparison function comparator . context is passed to the comparator
argument as its third argument. If hint is nil , this method behaves identically to
sortedArrayUsingFunction:context: . See also sortedArrayHint .

sortedArrayUsingSelector:

– (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Returns an array listing the receiver’s elements in ascending order, as
determined by the comparison method specified by the selector comparator .
See also sortedArrayUsingFunction:context: , subarrayWithRange: .

subarrayWithRange:

– (NSArray *)subarrayWithRange:(NSRange)range

Returns an array containing the receiver’s elements that fall within the limits
specified by range . See also sortedArrayUsingSelector: .

writeToFile:atomically:

- (BOOL)writeToFile:(NSString *)path
atomically:(BOOL)useAuxiliaryFile

Writes the array to the file specified by path . If useAuxiliaryFile is YES, the
data is written to a backup file and then, assuming no errors occur, the backup
file is renamed atomically to the intended file name. See also
arrayWithContentsOfFile: , initWithContentsOfFile: .

5-18 OpenStep Programming Reference—September 1996

5

NSAssertionHandler

Class Description

An assertion is a statement about conditions during the execution of program
code, such as the relationship between variables, the state of a Boolean
variable, or the value of an expression. If the statement about the conditions
proves false, the assertion is said to have failed, and usually some action must
be taken to report the failed assertion. Application programmers wishing to
provide more detailed control over assertion failures than provided by the
macros defined below can use the methods of NSAssertionHandler to report
assertion failures.

With NSAssertionHandler each distinct thread of execution can have a
separate handler to deal with failed assertions in code. The fileName and
line arguments to the methods described below can be obtained by using the
__FILE__ and __LINE__ macros that are predefined in the C pre-processor.

The Foundation/NSExceptions.h header file contains a collection of
macros that can be used to state assertions within methods, and contains a
parallel collection of macros that can be used to state assertions within regular
C functions. If the condition tested in any of these macros fails, the current
assertion handler is invoked with one of the methods defined below,
depending on whether the macro is one of the NSAssertN or one of the
NSCAssertN macros. Separate macros have from one to five arguments. The
macros for dealing with assertion failures within methods are:

NSAssert1(condition, description, argument1);
NSAssert2(condition, description, argument1, argument2);
NSAssert3(condition, description, argument1, argument2,
argument3);
NSAssert4(condition, description, argument1, argument2,
argument3, argument4);
NSAssert5(condition, description, argument1, argument2, argument3,
argument4, argument5);

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSExceptions.h

NSAssertionHandler 5-19

5

In each case, condition is the statement to be tested, for example, index <
length ; description is a description of the reason for the failure (in the
form of a printf-style format NSString); and each argument N is an argument
to be formatted according to the description string.

The parallel set of macros for dealing with failed assertions from within C
functions have names of the form NSCAssert N instead of NSAssert N. The
arguments are otherwise the same as the NSAssert N macros.

Method Types

Class Methods

currentHandler

+ (NSAssertionHandler *)currentHandler

Returns the assertion handler for the current thread.

Instance Methods

handleFailureInFunction:file:lineNumber:
description:

– (void)handleFailureInFunction:(NSString *)functionName
file:(NSString *)fileNamelineNumber:(int)line
description:(NSString *)format,...

Activity Class Method

Getting the current handler + currentHandler

Handling failures – handleFailureInFunction:file:lineNumber:
description:
– handleFailureInMethod:object:file:lineNumber:
description:

5-20 OpenStep Programming Reference—September 1996

5

Logs an error message that includes functionName , the source file fileName
and the line number where the failure occurred, and a short description of
the failure described by format . It then raises an
NSInternalInconsistencyException .

handleFailureInMethod:object:file:lineNumber:
description:

– (void)handleFailureInMethod:(SEL)selector object:(id)object
file:(NSString *)fileName lineNumber:(int)line
description:(NSString *)format,...

Logs an error message that includes the method (selector) and object
associated with the failure, the source file fileName and line number in that
file where the failure occured, and a short description of the failure, described
by format . It then raises an NSInternalInconsistencyException .

NSAutoreleasePool

Class Description

The Foundation Kit uses the NSAutoreleasePool class to implement
NSObject ’s autorelease method. An autorelease pool simply contains other
objects, and when deallocated, sends a release message to each of those
objects. An object can be put into the same pool several times, and receives a
release message for each time it was put into the pool.

You use autorelease pools to limit the time an object remains valid after it’s
been “autoreleased”, that is, after it’s been sent an autorelease message or
has otherwise been added to an autorelease pool. Autorelease pools are created
using the usual alloc and init messages, and disposed of with release . An
autorelease pool should always be released in the same context that it was
created (invocation of a method or function, or body of a loop). You should
never send retain or autorelease messages to an autorelease pool.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSAutoreleasePool.h

NSAutoreleasePool 5-21

5

Autorelease pools are automatically created and destroyed in OpenStep
applications, so your code normally doesn’t have to worry about them. There
are two cases, though, where you should explicitly create and destroy your
own autorelease pools. If you’re writing a program that’s not based on the
Application Kit, such as a UNIX tool, there’s no built-in support for autorelease
pools; you must create and destroy them yourself. Also, if you need to write a
loop that creates many temporary objects, you should create an autorelease
pool in the loop to prevent too long a delay in the disposal of those objects.

Enabling the autorelease feature in a program that’s not based on the
Application Kit is easy. Many programs have a top-level loop where they do
most of their work. To enable the autorelease feature you create an autorelease
pool at the beginning of this loop and release it at the end. An autorelease
message sent in the body of the loop automatically puts its receiver into this
pool. The main() function might look like this:

int main(int argc, char *argv[])
{
 int i;

 /* Do whatever setup is needed. */
 for (i = 0; i < argc; i++) {
 NSString *fileContents;
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 fileContents = [[[NSString alloc]
 initWithContentsOfFile:argv[i]]autorelease];
 processFile(fileContents);
 [pool release];
 }

 /* Do whatever cleanup is needed. */
 exit(EXIT_SUCCESS);
}

Any object autoreleased inside the for loop, such as the fileContents string
object, is added to pool . When pool is released at the end of the loop those
objects added are also released.

Note that autoreleasing doesn’t work outside of the loop. This isn’t a problem,
since the program terminates shortly after the loop ends, and memory leaks
aren’t usually serious at that stage of execution. Your cleanup code shouldn’t
refer to any objects created inside the loop, though, since they may be
autoreleased in the loop and therefore released as soon as it ends.

5-22 OpenStep Programming Reference—September 1996

5

Nesting Autorelease Pools

You may need to manually create and destroy autorelease pools even in an
application that uses the Application Kit if you write loops that create many
temporary objects. For example, if you write a loop that iterates 1000 times and
invokes a method that creates 15 temporary objects, those 15,000 objects will
remain until the application’s autorelease pool is deallocated, possibly well
after they’re no longer needed.

You can create your own autorelease pools within the loop to prevent these
unwanted objects from remaining around. Autorelease pools nest themselves
on a per-thread basis, so that if you create your own pool, it adds itself to the
application’s default pool, forming a stack of autorelease pools. Likewise, if
you create another pool (within a nested loop, perhaps), it adds itself to the
first pool you created. autorelease automatically adds its receiver to the last
pool created, creating a nesting of autorelease contexts. The implications of this
are described in the following.

A method that creates autorelease pools looks much like the main() function
given above:

- (void)processString:(NSString *)aString
{
 int i;

 for (i = 0; i < 1000; i++) {
 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc]
init];
 NSString *thisLine;

 thisLine = [self lineNumbered:i fromString:aString];
 /* Do some work with thisLine. */
 [subpool release];
 }
 return;
}

If you assume that lineNumbered:fromString: returns a string object that’s
been autoreleased while subpool is in effect, that object is released with
subpool at the end of the loop. The work involving thisLine may create
other temporary objects, which are also released at the end of the loop. None of
these objects remains outside of this loop or the processString: method
unless they’ve been retained.

NSAutoreleasePool 5-23

5

Note that because an autorelease pool adds itself to the previous pool when
created, it doesn’t cause a memory leak in the face of an exception or other
sudden transfer out of the current context. If an exception occurs in the above
loop, or if the work in the loop involves immediately returning or breaking out
of the loop, the subpool is released by the application’s default pool or
whatever pool was in effect before the subpool was created, “unwinding” the
autorelease-pool stack up to the one that’s supposed to be active.

Guaranteeing the Foundation Ownership Policy

By manually creating an autorelease pool, you reduce the potential lifetime of
temporary objects to the lifetime of that pool. After an autorelease pool is
deallocated, you should regard as “disposed of” any object that was
autoreleased while that pool was in effect, and not send a message to that
object or return it to the invoker of your method. This method, for example, is
incorrect:

– findMatchingObject:anObject
{
 id match = nil;
 while (match == nil) {
 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc]
init];

 /* Do some searching that creates a lot of temporary objects.*/

 match = [self expensiveSearchForObject:anObject];
 [subpool release];
 }
 /* Danger!! The match object may not exist at this point! */
 [match setIsMatch:YES forObject:anObject];
 return match;
}

expensiveSearchForObject: is invoked while subpool is in effect, which
means that match , which may have been autoreleased, is released at the
bottom of the loop. Sending setIsMatch:forObject: after the loop could
cause the application to crash. Similarly, returning match allows the sender of
findMatchingObject: to send a message to it, also causing your application
to crash.

5-24 OpenStep Programming Reference—September 1996

5

If you must pull a temporary object out of a nested autorelease context, you
can do so by retaining the object within the context and then autoreleasing it
after the pool has been released. Here’s a correct implementation of
findMatchingObject: .

– findMatchingObject:anObject
{
 id match = nil;
 while (match == nil) {
 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc]
init];

 /* Do a search that creates a lot of temporary objects. */

 match = [self expensiveSearchForObject:anObject];
 if (match != nil) [match retain]; /* Keep match around. */
 [subpool release];
 }
 [match setIsMatch:YES forObject:anObject];
 return [match autorelease]; /* Let match go and return it. */
}

By retaining match while subpool is in effect and autoreleasing it after the
subpool has been released, match is effectively moved from subpool to the
pool that was previously in effect. This gives it a longer lifetime and allows it
to be sent messages outside the loop and to be returned to the invoker of
findMatchingObject: .

General Exception Conditions

An NSInvalidArgumentException is raised on any attempt to send either
retain or autorelease messages to an autorelease pool object.

NSBundle 5-25

5

Method Types

Class Methods

addObject:

+ (void)addObject:(id)anObject

Adds anObject to the active autorelease pool in the current thread.

Instance Methods

addObject:

– (void)addObject:(id)anObject

Adds anObject to the receiver.

NSBundle

Class Description

A bundle is a mechanism for grouping application resources into convenient
chunks. A typical use for a bundle is to group executable code together with
the resources used by that executable code. A major use of bundles is to handle
localization issues, as described below in “Localized Resources”.

Activity Class Method

Adding an object to the current pool + addObject:

Adding an object to a pool - addObject:

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSBundle.h

5-26 OpenStep Programming Reference—September 1996

5

An NSBundle is an object that corresponds to a directory (or folder in the
terminology of some operating systems) where application resources are
stored. The directory, in essence, “bundles” a set of resources used by an
application, and the NSBundle object makes those resources available to the
application. NSBundle is able to find requested resources in the directory and,
in some cases, dynamically load executable code. The term “bundle” is used
both for the object and for the directory it represents.

Bundled resources might include such things as:

• Images, for example, TIFF or EPS images, used by an application’s user
interface components

• Sounds

• Localized character strings

• Executable code

• User Interface resources—files describing the layout of user interface objects
and their relationships with other objects

Each resource within a bundle usually resides in a separate file.

Localized Resources

If an application is to be used in more than one part of the world, its resources
may need to be customized, or “localized”, for language, country, or cultural
region. An application may need, for example, to have separate Japanese,
English, French, Hindi, and Swedish versions of the character strings that label
menu commands.

Resource files specific to a particular language are grouped together in a
subdirectory of the bundle directory. The subdirectory has the name of the
language (in English) followed by a .lproj extension (for “language project”).
The application mentioned above, for example, would have Japanese.lproj ,
English.lproj , French.lproj , Hindi.lproj , and Swedish.lproj
subdirectories.

Each .lproj subdirectory in a bundle has the same set of files; all versions of
a resource file must have the same name.

NSBundle 5-27

5

Main Bundle

Every application is considered to have at least one bundle—its main
bundle—the directory where its executable file is located. If the application is
organized into a file package marked by a .app extension, the file package is
the main bundle.

Other Bundles

An application can be organized into any number of other bundles in addition
to the main bundle. For example, an application for managing PostScript
printers may have a bundle full of PostScript code to be downloaded to
printers. These other bundles usually reside inside the application file package,
but they can be located anywhere in the file system. Each bundle directory is
represented in the application by a separate NSBundle object. By convention,
bundle directories other than the main bundle end in a .bundle extension.

Dynamically Loadable Classes

Any bundle directory can contain a file with executable code. For the main
bundle, that file is the application executable that's loaded into memory when
the application is launched. The executable in the main bundle includes the
main() function and other code necessary to start up the application.

Executable files in other bundle directories hold class and category definitions
that the bundle object can dynamically load while the application runs. When
asked, the bundle returns class objects for the classes and categories stored in
the file. It waits to load the file until those classes are needed.

By using a number of separate bundles, you can split an application into
smaller, more manageable pieces. Each piece is loaded into memory only when
the code being executed requires it, so the application can start up faster than it
otherwise would. Assuming users will rarely use every part of an application,
the application will also consume less memory as it runs.

The file that contains dynamically loadable code must have the same name as
the bundle directory, but without the .bundle extension.

Since each bundle can have only one executable file, that file should be kept
free of localizable content. Anything that needs to be localized should be
segregated into separate resource files and stored in .lproj subdirectories.

5-28 OpenStep Programming Reference—September 1996

5

Bundle Notification

After a bundle dynamically loads its code, the bundle sends out the
NSBundleDidLoadNotification notification. This notification’s user
information dictionary contains an array of strings which are the names of the
classes loaded. The key for this dictionary entry is @"NSLoadedClasses" . See
also NSNotification .

Working with Bundles

Generally, you instantiate a bundle object by sending one of the
bundleForClass: , bundleWithPath: , or mainBundle methods to the
NSBundle class object. mainBundle gives you the NSBundle object
corresponding to the directory containing the application’s executable.

Method Types

Class Methods

bundleForClass:

+ (NSBundle *)bundleForClass:(Class)aClass

Activity Class Method

Initializing an NSBundle – initWithPath:

Getting an NSBundle + bundleForClass:
+ bundleWithPath:
+ mainBundle

Getting a bundled class – classNamed:
– principalClass

Finding a resource – pathForResource:ofType:
+ pathForResource:ofType:inDirectory:
– pathForResource:ofType:inDirectory:
– pathsForResourcesOfType:inDirectory:
– resourcePath

Getting the bundle directory – bundlePath

Managing localized resources – localizedStringForKey:value:table:

NSBundle 5-29

5

Returns the NSBundle object that dynamically loaded aClass , or the main
bundle object if aClass wasn’t dynamically loaded. See also
bundleWithPath: , mainBundle , initWithPath: .

bundleWithPath:

+ (NSBundle *)bundleWithPath:(NSString *)path

Returns an NSBundle object that’s initialized for the path directory. See also
bundleForClass: , mainBundle , initWithPath: .

mainBundle

+ (NSBundle *)mainBundle

Returns the NSBundle object that corresponds to the directory where the
application executable is located. See also bundleWithPath: .

pathForResource:ofType:inDirectory:

+ (NSString *)pathForResource:(NSString *)name
ofType:(NSString *)ext
inDirectory:(NSString *)bundlePath

Returns the path for the resource identified by name, having the specified
filename extension ext , and residing in bundlePath . See also
pathForResource:ofType:inDirectory: (instance method) for more
information.

Instance Methods

bundlePath

– (NSString *)bundlePath

Returns a string containing the full path name of the receiver’s bundle
directory.

classNamed:

– (Class)classNamed:(NSString *)className

5-30 OpenStep Programming Reference—September 1996

5

Ensures that the receiver is loaded. Returns the class object for the className
class, or nil if className isn’t one of the classes associated with the receiver.
This method ensures that any code in the bundle directory has been loaded
into memory, so the className class will be part of the executable image if
available. See also principalClass .

initWithPath:

– (id)initWithPath:(NSString *)path

Initializes a newly allocated NSBundle object to make it the NSBundle for the
path directory. path must be a full pathname or directory. If path does not
exist or the user doesn’t have access to it, the bundle is freed and nil is
returned. If the application already has a bundle object for path , this method
then frees the receiver and returns the existing object. It’s not necessary to
allocate and initialize an object for the main bundle. The mainBundle method
provides this capability. See also bundleForClass: , mainBundle .

localizedStringForKey:value:table:

– (NSString *)localizedStringForKey:(NSString *)key
value:(NSString *)value
table:(NSString *)tableName

Returns a localized version of the string designated by key . tableName
specifies the string table to search; if tableName is NULL, the file
Localizable.strings is used. value specifies the value to return if the key
or table can’t be found (or if key is NULL).

pathForResource:ofType:

– (NSString *)pathForResource:(NSString *)name
ofType:(NSString *)ext

Returns the path for the resource identified by name having the specified file
name extension ext , or returns nil if the resource is not found. To find the
resource this method first looks in the bundle directory for .lproj
subdirectories that match the user’s language preferences (as specified in the
Preferences application). Subdirectories are searched in order of user
preference. If ext (which can be NULL) does not repeat an extension already
added to name, it is added to name before searching begins.

NSBundle 5-31

5

When this method finds a .lproj directory for a preferred language, the
bundle first makes sure that the subdirectory contains the requested resource
file. If the resource is not located, the bundle looks in the .lproj directory of
the next most preferred language. If the file can’t be found, the bundle looks
for a nonlocalized version in the bundle directory. See also
pathForResource:ofType:inDirectory: .

pathForResource:ofType:inDirectory:

- (NSString *)pathForResource:(NSString *name)
ofType:(NSString *)ext inDirectory:(NSString *)subpath

Discovers and returns the full path name of resource name, with extension ext ,
within the given subpath . The preferred language's resource path is returned; if
the resource is not found then nil is returned.

ext may be nil in which case no extension is appended. subpath specifies the
subpath appended to Resources/ , and may be nil , meaning no subpath is
appended. The bundle directories (in the fully specified case) are searched in the
following order:

<bundle_path>/Resources/’subpath’/<language0>.lproj/’name’.’ext’
<bundle_path>/Resources/‘subpath'/<language1>.lproj/name.ext
...
<bundle_path>/Resources/‘subpath'/<languageN>.lproj/‘name'.‘ext'
<bundle_path>/‘subpath'/<language0>.lproj/‘name'.‘ext'
<bundle_path>/‘subpath'/<language1>.lproj/‘name'.‘ext'
...
<bundle_path>/‘subpath'/<languageN>.lproj/‘name'.‘ext'

<bundle_path> is the bundle resource path returned by resourcePath . See
also pathsForResourcesOfType:inDirectory: ,
pathForResource:ofType: .

pathsForResourcesOfType:inDirectory:

- (NSArray *)pathsForResourcesOfType:(NSString*)ext
inDirectory:(NSString *)subpath

Returns an array containing the paths to resources of type ext , located within
the given subpath . ext may be nil in which case the search returns all
resources. The returned array is in no particular order, and contains the full
paths of the resources matching the search criteria.

5-32 OpenStep Programming Reference—September 1996

5

subpath specifies the subpath appended to Resources/ , and may be nil . All
.lproj 's from the user's preferred language list are searched. The bundle
directories (in the fully specified case) are searched in the following order:

<bundle_path>/Resources/‘subpath'/<language0>.lproj/*.‘ext'
<bundle_path>/Resources/‘subpath'/<language1>.lproj/*.‘ext'
...
<bundle_path>/Resources/‘subpath'/<languageN>.lproj/*.‘ext'
<bundle_path>/‘subpath'/<language0>.lproj/*.‘ext'
<bundle_path>/‘subpath'/<language1>.lproj/*.‘ext'
...
<bundle_path>/‘subpath'/<languageN>.lproj/*.‘ext'

<bundle_path> is the bundle resource path returned by resourcePath . The
resulting array of strings can each be searched with rangeOfString: if a particular
substrings is needed. See also pathForResource:ofType:inDirectory: ,
pathForResource:ofType: .

principalClass

– (Class)principalClass

Returns the class object for the first class that’s dynamically loaded by the
NSBundle , or nil if the NSBundle can’t dynamically load any classes. See
also classNamed: .

resourcePath

- (NSString *)resourcePath

Returns the directory where pathForResource:ofType: , and other resource
path searching methods, looks for a bundle's resources. See also
pathForResource:ofType: ,
pathsForResourcesOfType:inDirectory: .

NSCalendarDate 5-33

5

NSCalendarDate

Class Description

NSCalendarDate is a public subclass of NSDate that defines concrete date
objects. These objects have time zones and format strings bound to them and
are especially suited for representing and manipulating dates according to
western calendrical systems.

By drawing on the behavior of the NSTimeZone class, NSCalendarDate
objects adjust their visible representations to reflect their associated time zones.
Because of this, you can track an NSCalendarDate object across different time
zones. You can also present date information from time-zone viewpoints other
than the one for the current locale.

Each NSCalendarDate object also has a calendar format string bound to it.
This format string contains date-conversion specifiers that are very similar to
those used in the standard C library function strftime() . By reference to this
format string, NSCalendarDate can interpret dates that are represented as
strings conforming to the format. Several methods allow you to specify formats
other than the one bound to the object, and setCalendarFormat: lets you
change the default format string for an NSCalendarDate object.

NSCalendarDate provides both class and instance methods for obtaining
initialized objects. Some of these methods allow you to initialize date objects
from strings while others initialize objects from sets of integers corresponding
the standard time values (months, hours, seconds, and so on). As always, you
are responsible for deallocating any objects obtained through an alloc... or
copy... method.

To retrieve conventional elements of a date, use the methods of the form
dayOfWeek , monthOfYear , and so on. For example, dayOfWeek returns a
number that indicates the day of the week (0 is Sunday). The monthOfYear
method returns a number from 1 to 12 that indicates the month.

Characteristic Description

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

5-34 OpenStep Programming Reference—September 1996

5

NSCalendarDate provides several methods for representing dates as strings.
These methods—description , descriptionWithLocale: ,
descriptionWithCalendarFormat: , and
descriptionWithCalendarFormat:timeZone: —take an implicit or
explicit format string.

NSCalendarDate performs date computations based on western calendar
systems, primarily the Gregorian. (The algorithms are derived from public
domain software described in “Calendrical Calculations,” a two-part series by
Nachum Dershowitz and Edward M. Reingold in the book Software—Practice
and Experience).

General Exceptions

NSCalendarDate will raise NSInvalidArgumentException in the general
case where numeric character strings to specify years, months, days, and so on,
are not valid numbers.

NSCalendarDate 5-35

5

Method Types

Activity Class Method

Getting and initializing an
NSCalendar date

+ calendarDate
+ dateWithString:calendarFormat:
+ dateWithString:calendarFormat:locale:
+ dateWithYear:month:day:hour:minute:second:
timeZone:
– initWithString:
– initWithString:calendarFormat:
– initWithString:calendarFormat:locale:
– initWithYear:month:day:hour:minute:second:
timeZone:

Retrieving date elements – dayOfCommonEra
– dayOfMonth
– dayOfWeek
– dayOfYear
– hourOfDay
– minuteOfHour
– monthOfYear
– secondOfMinute
– years:months:days:hours:minutes:
seconds:sinceDate:
– yearOfCommonEra

Providing adjusted dates – dateByAddingYears:month:day:hour:
minute:second:

Getting string descriptions of
dates

– description
– descriptionWithCalendarFormat:
– descriptionWithCalendarFormat:locale:
– descriptionWithLocale:

Getting and setting calendar
formats

– calendarFormat
– setCalendarFormat:

Getting and setting time zones – setTimeZone:
– timeZoneDetail

5-36 OpenStep Programming Reference—September 1996

5

Class Methods

calendarDate

+ (NSCalendarDate *)calendarDate

Returns an NSCalendarDate initialized to the current date and time. See also
dateWithString:calendarFormat: , initWithString: .

dateWithString:calendarFormat:

+ (NSCalendarDate *)dateWithString:(NSString *)description
calendarFormat:(NSString *)format

Returns an NSCalendarDate object initialized with the date specified in
description and interpreted according the the conversion specifiers in
format . Raises NSInvalidArgumentException if the description and
format do not correspond exactly (see the “Class description”). See also
initWithString:calendarFormat: .

dateWithString:calendarFormat:locale:

+ (NSCalendarDate *) dateWithString:(NSString *)description
calendarFormat:(NSString *)format
locale:(NSDictionary *)dictionary

Returns an NSCalendarDate object initialized with the date specified in
description and interpreted according the the conversion specifiers in
format . String components of the date are fetched from the locale
dictionary . This method raises NSInvalidArgumentException if the
description and format do not correspond exactly. See also
initWithString:calendarFormat:locale: .

dateWithYear:month:day:hour:minute:second:
timeZone:

+ (NSCalendarDate *)dateWithYear:(int)year
month:(unsigned int)month
day:(unsigned int)day
hour:(unsigned int)hour

NSCalendarDate 5-37

5

minute:(unsigned int)minute
second:(unsigned int)second
timeZone:(NSTimeZone *)aTimeZone

Returns an NSCalendarDate object initialized with integers that specify a
year (which must include the century), month , day , hour , minute , and
second . Also include a time-zone object or time-zone detail object
(aTimeZone) to have the date adjusted to a particular locale. If you specify
nil for a time zone, NSInvalidArgumentException is raised. (See the
methods grouped under "Retrieving Date Elements" for the proper ranges of
the date and time integers.) See also
initWithYear:month:day:hour:minute:second: timeZone: ,
NSTimeZone .

Instance Methods

dateByAddingYears:month:day:hour:
minute:second:

– (NSCalendarDate *)dateByAddingYears:(int)years
months:(int)months days:(int)days hours:(int)hours
minutes:(int)minutes seconds:(int)seconds

Returns an NSCalendarDate object with the years , months , days , hours ,
minutes , and seconds offsets specified as arguments and the correct time-
zone detail object for the computed date. These offsets are relative to the object
and can be positive or negative. This method preserves “clock time” during
transitions to and from Daylight Savings Time and in leap years.

calendarFormat

– (NSString *)calendarFormat

Returns the calendar format (a string of date-conversion specifiers) for the
receiving object. The default calendar format is “%Y-%m-%d %H:%M:%S %z”.
See also setCalendarFormat: .

dayOfCommonEra

– (int)dayOfCommonEra

5-38 OpenStep Programming Reference—September 1996

5

Returns the number of days since the beginning of the Common Era. See also
yearOfCommonEra .

dayOfMonth

– (int)dayOfMonth

Returns the day of the month (1 through 31) of the NSCalendarDate object.
See also dayOfWeek , dayOfYear .

dayOfWeek

– (int)dayOfWeek

Returns a number indicating the day of the week (0 [Sun] through 6 [Sat]) of
the NSCalendarDate object. See also dayOfMonth , dayOfYear .

dayOfYear

– (int)dayOfYear

Returns a number indicating the day of the year (1 through 366) of the
NSCalendarDate object. See also dayOfWeek , dayOfMonth .

description

– (NSString *)description

Returns a string description of the receiver’s date using the default format
string (%Y-%m-%d %H:%M:%S %z) and the locale and time-zone information
associated with the receiver. See also initWithString: ,
descriptionWithCalendarFormat: , calendarFormat .

descriptionWithCalendarFormat:

– (NSString *)descriptionWithCalendarFormat:(NSString *)format

Returns a string description of the receiver’s date that is formatted according
to the conversion specifiers in format and using the locale and time-zone
detail information associated with the receiver. See also
initWithString:calendarFormat: , description ,
descriptionWithCalendarFormat:locale: , calendarFormat .

NSCalendarDate 5-39

5

descriptionWithCalendarFormat:locale:

– (NSString *)descriptionWithCalendarFormat:(NSString *)format
locale:(NSDictionary *)locale

Returns a string description of the receiver’s date that is formatted according
to the conversion specifiers in format , represented according to the locale
information in locale , and adjusted according to the time-zone detail
information associated with the receiver. See also
initWithString:calendarFormat:locale: , description ,
calendarFormat .

descriptionWithLocale:

– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string description of the receiver’s date using the default format
string (%Y-%m-%d %H:%M:%S %z), with information localized according to the
locale information in locale , and using the time zone information associated
with the receiver. See also initWithString:calendarFormat:locale: .

hourOfDay

– (int)hourOfDay

Returns a number indicating the hour of the day (0 through 23) of the
NSCalendarDate object. See also minuteOfHour , secondOfMinute .

initWithString:

– (id)initWithString:(NSString *)description

Initializes and returns an NSCalendarDate object specified by description
in the international format for date representation (YYYY-MM-DD HH:MM:SS

HHMM, where HHMM is an of fset from GMT). See also
dateWithString:calendarFormat: ,
initWithString:calendarFormat: .

initWithString:calendarFormat:

– (id)initWithString:(NSString *)description
calendarFormat:(NSString *)format

5-40 OpenStep Programming Reference—September 1996

5

Initializes and returns an NSCalendarDate object specified as a string object
in description and interpreted according to the extended strftime()
date-conversion specifiers in format . Raises
NSInvalidArgumentException if the description and format do not
correspond exactly. See also dateWithString:calendarFormat: ,
initWithString:calendarFormat:locale: .

initWithString:calendarFormat:locale:

– (id)initWithString:(NSString *)description
calendarFormat:(NSString *)format
locale:(NSDictionary *)dictionary

Initializes and returns an NSCalendarDate object specified as a string object
in description and interpreted according to the extended strftime() date-
conversion specifiers in format . String components of the date are fetched
from the locale dictionary . Raises NSInvalidArgumentException if the
description and format do not correspond exactly. See also
dateWithString:calendarFormat:locale: , initWithString: .

initWithYear:month:day:hour:minute:second:
timeZone:

– (id)initWithYear:(int)year month:(unsigned int)month
day:(unsigned int)day
hour:(unsigned int)hour minute:(unsigned int)minute
second:(unsigned int)second timeZone:(NSTimeZone *)aTimeZone

Returns an NSCalendarDate object initialized with integers that specify a
year (which must include the century), month , day , hour , minute , and
second . Also include a time-zone object (aTimeZone) to have the date
adjusted for a particular locale. Raises an NSInvalidArgumentException if
you specify nil for a time zone. See the methods grouped under
"RetrievingDate Elements," for the proper ranges of the date and time integers.
See also dateWithYear:month:day:hour:minute:second: timeZone: .

minuteOfHour

– (int)minuteOfHour

NSCalendarDate 5-41

5

Returns a number indicating the minute of the hour (0 through 59) of the
NSCalendarDate object. See also secondOfMinute , hourOfDay ,
monthOfYear .

monthOfYear

– (int)monthOfYear

Returns a number indicating the month of the year (1 through 12) of the
NSCalendarDate object. See also hourOfDay , minuteOfHour ,
secondOfMinute .

secondOfMinute

– (int)secondOfMinute

Returns a number indicating the second of the minute (0 through 59) of the
NSCalendarDate object. See also hourOfDay .

setCalendarFormat:

– (void)setCalendarFormat:(NSString *)format

Sets the calendar format for the receiving object to format . See also
calendarFormat .

setTimeZone:

– (void)setTimeZone:(NSTimeZone *)aTimeZone

Sets the time-zone object associated with the NSCalendarDate object to
aTimeZone ..

timeZoneDetail

– (NSTimeZoneDetail *)timeZoneDetail

Returns the NSTimeZoneDetail object associated with the receiver. See also
setTimeZone: , NSTimeZoneDetail .

5-42 OpenStep Programming Reference—September 1996

5

yearOfCommonEra

– (int)yearOfCommonEra

Returns a number indicating the year, including the century, of the
NSCalendarDate object. See also dayOfCommonEra .

years:months:days:hours:minutes:
seconds:sinceDate:

- (void)years:(int *)yp months:(int *)mop
days:(int *)dp hours:(int *)hp
minutes:(int *)mp seconds:(int *)sp
sinceDate:(NSDate *)date

Returns the amount of time since the given date .

NSCharacterSet

Class Description

The NSCharacterSet class declares the programmatic interface to objects that
construct immutable descriptions of character sets in the Unicode character
encoding. Using NSCharacterSet objects, you can determine if a given
Unicode character belongs to a specified set. See NSMutableCharacterSet
for a class that constructs descriptions of character sets that can be modified
dynamically. NSCharacterSet ’s primitive methods are
characterIsMember: and bitmapRepresentation . Subclasses of
NSCharacterSet must implement these two methods.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

NSCharacterSet 5-43

5

NSCharacterSet objects can be thought of as loosely analogous to the is…
macros (such as isupper())available in the ctype collection of most standard
C libraries. NSCharacterSet objects, however, offer much greater flexibility
in that you can dynamically construct your own custom character sets against
which you can test characters.

Note – The term “bitmap” in the descriptions below does not refer to “bitmap
characters” in the sense of screen fonts for display. The “bitmaps” referred to
here are compact ordered bit set representations of Unicode character positions
or ranges of Unicode characters.

You create “standard” character sets—such as a set of alphanumerics, or a set
of decimal digits—by invoking the NSCharacterSet class object with one of
the methods grouped under “Creating a Standard Character Set” in the table
below. These methods provide convenient means to create a standard set
without needing to specify the character positons explicitly.

You can also create your own “custom” character sets by using one of the
methods grouped under “Creating a Custom Character Set” below. To create a
character set with multiple disjoint ranges, see the add… methods described in
NSMutableCharacterSet .

5-44 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

alphanumericCharacterSet

+ (NSCharacterSet *)alphanumericCharacterSet

Returns a character set containing the uppercase and lowercase alphabetic
characters (a–z, A–Z, other alphabetic characters such as é, É, ç, Ç, and so on)
and the decimal digit characters (0–9). See also controlCharacterSet .

characterSetWithBitmapRepresentation:

+ (NSCharacterSet *)characterSetWithBitmapRepresentation:
(NSData *)data

Returns a character set containing characters determined by the bitmap
representation data .

Activity Class Method

Creating a standard character set + alphanumericCharacterSet
+ controlCharacterSet
+ decimalDigitCharacterSet
+ decomposableCharacterSet
+ illegalCharacterSet
+ letterCharacterSet
+ lowercaseLetterCharacterSet
+ nonBaseCharacterSet
+ punctuationCharacterSet
+ uppercaseLetterCharacterSet
+ whitespaceAndNewlineCharacterSet
+ whitespaceCharacterSet

Creating a custom character set + characterSetWithBitmapRepresentation:
+ characterSetWithCharactersInString:
+ characterSetWithRange:

Getting a binary representation – bitmapRepresentation
– characterIsMember:
– invertedSet

NSCharacterSet 5-45

5

characterSetWithCharactersInString:

+ (NSCharacterSet *)characterSetWithCharactersInString:
(NSString *)aString

Returns a character set containing the characters in aString . If aString is
empty, an empty character set is returned. aString must not be nil .

characterSetWithRange:

+ (NSCharacterSet *)characterSetWithRange:(NSRange)aRange

Returns a character set containing characters whose Unicode values are given
by aRange .

controlCharacterSet

+ (NSCharacterSet *)controlCharacterSet

Returns a character set containing the control characters (characters with
decimal Unicode values 0 to 31 and 127 to 159).

decimalDigitCharacterSet

+ (NSCharacterSet *)decimalDigitCharacterSet

Returns a character set containing only decimal digit characters (0–9).

decomposableCharacterSet

+ (NSCharacterSet *)decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can
also be represented as composed character sequences.

illegalCharacterSet

+ (NSCharacterSet *)illegalCharacterSet

Returns a character set containing the illegal Unicode values.

5-46 OpenStep Programming Reference—September 1996

5

letterCharacterSet

+ (NSCharacterSet *)letterCharacterSet

Returns a character set containing the uppercase and lowercase alphabetic
characters (a–z, A–Z, other alphabetic characters such as é, É, ç, Ç, and so on).

lowercaseLetterCharacterSet

+ (NSCharacterSet *)lowercaseLetterCharacterSet

Returns a character set containing only lowercase alphabetic characters (a–z,
other alphabetic characters such as é, ç, and so on).

nonBaseCharacterSet

+ (NSCharacterSet *)nonBaseCharacterSet

Returns a set containing all characters which are not defined to be base
characters for purposes of dynamic character composition.

punctuationCharacterSet

+ (NSCharacterSet *)punctuationCharacterSet

Returns a character set containing all punctuation characters.

uppercaseLetterCharacterSet

+ (NSCharacterSet *)uppercaseLetterCharacterSet

Returns a character set containing only uppercase alphabetic characters (A–Z,
other alphabetic characters such as É, Ç, and so on).

whitespaceAndNewlineCharacterSet

+ (NSCharacterSet *)whitespaceAndNewlineCharacterSet

Returns a character set containing only whitespace characters (space and tab)
and the newline character. See also whitespaceCharacterSet .

NSCharacterSet 5-47

5

whitespaceCharacterSet

+ (NSCharacterSet *)whitespaceCharacterSet

Returns a character set containing only in-line whitespace characters (space
and tab). This set doesn’t contain the newline or carriage return characters. See
also whitespaceAndNewlineCharacterSet .

Instance Methods

bitmapRepresentation

– (NSData *)bitmapRepresentation

Returns an NSData object encoding the receiving character set in binary
format. This format is suitable for saving to a file or otherwise transmitting or
archiving.

characterIsMember:

– (BOOL)characterIsMember:(unichar)aCharacter

Returns YES if aCharacter is in the receiving character set, and returns NO if
it isn’t.

invertedSet

– (NSCharacterSet *)invertedSet

Returns a character set containing only characters that don’t exist in the
receiver.

5-48 OpenStep Programming Reference—September 1996

5

NSCoder

Class Description

NSCoder is an abstract class that declares the interface used by subclasses to
take objects from dynamic memory and code them into and out of some other
format. This capability provides the basis for archiving where objects and other
structures are stored on disk, and distribution where objects are copied to
different address spaces. See the NSArchiver and NSUnarchiver class
specifications for more information on archiving.

NSCoder operates on the basic C and Objective C types—int , float , id , and
so on (but excluding void * and union)—as well as on user-defined
structures and pointers to these types (see the type descriptors in the next
section).

NSCoder declares methods that a subclass can override if it wants:

• To encode or decode an object only under certain conditions, such when it is
an intrinsic part of a larger structure (encodeRootObject: and
encodeConditionalObject:)

• To allow decoded objects to be allocated from a specific memory zone
(setObjectZone:)

• To allow system versioning (systemVersion)

NSCoder differs from the NSSerializer and NSDeserializer classes in
that NSCoders aren’t restricted to operating on property list objects (objects of
the NSData , NSString , NSArray , and NSDictionary classes). Also, unlike
NSSerializer s, NSCoders store type information along with the data. Thus,
an object decoded from a stream of bytes will be of the same class as the object
that was originally encoded into the stream.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSCoder.h
Foundation/NSGeometry.h

NSCoder 5-49

5

Encoding and Decoding Objects

In OpenStep, coding is facilitated by methods declared in several places, most
notably the NSCoder class, the NSObject class, and the NSCoding protocol.

Objects are encoded and decoded by using the type descriptors in the
following table.d

Descriptor Type

id @

Class #

SEL :

char c

unsigned char C

short s

unsigned short S

int i

unsigned int I

long l

unsigned long L

long long q

float f

double d

bitfield b

void v

undefined ?

pointer ^

char * *

array [<count><types>]

union (<types>)

structure {<types>}

5-50 OpenStep Programming Reference—September 1996

5

For example, “{sic*@}” represents a structure containing a short, an int, a char,
a char *, and an object; the descriptor “[99b]” represents an array containing 99
bitfields.

The NSCoding protocol declares the two methods (encodeWithCoder: and
initWithCoder:) that a class must implement so that objects of that class can
be encoded and decoded. When an object receives an encodeWithCoder:
message, it should send a message to super to encode inherited instance
variables before it encodes the instance variables that its class declares. For
example, a fictitious MapView class that displays a legend and a map at
various magnifications, might implement encodeWithCoder: like this:

- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];//Unless superclass is NSObject
[coder encodeValuesOfObjCTypes:"si@", &mapName,

&magnification, &legendView];
}

Note – Do not send super the encodeWithCoder: or initWithCoder:
messages if the immediate superclass is NSObject . Doing so will result in an
error.

Objects are decoded in two steps. First, an object of the appropriate class is
allocated and then it’s sent an initWithCoder: message to allow it to
initialize its instance variables. Again, the object should first send a message to
super to initialized inherited instance variables, and then it should initialize
its own. MapView ’s implementation of this method looks like this:

- (id)initWithCoder:(NSCoder *)coder
{
 self = [super initWithCoder:coder];//Unless superclass

// is NSObject
 [coder decodeValuesOfObjCTypes:"si@", &mapName, &magnification,
 &legendView];
 return self;
}

Note the assignment of the return value of initWithCoder: to self in the
example above. This is done in the subclass because the superclass, in its
implementation of initWithCoder: may decide to return a object other than
itself.

NSCoder 5-51

5

There are other methods that allow an object to customize its response to
encoding or decoding. NSObject declares these methods:

See the NSObject class specification for more information. See also
NSArchiver , NSUnarchiver , NSSerializer , NSDeserializer .

Note – Because it’s an abstract class, most NSCoder methods raise an
NSInvalidArgumentException and return nil where appropriate.

Table 5-2 Customizing the Encoding and Decoding of Objects

Method Typical Use

classForCoder: Allows an object, when being encoded, to
substitute a class other than its own. For
example, the private subclasses of a class
cluster substitute the name of their public
superclass when being archived.

replacementObjectForCoder: Allows an object, when being encoded, to
substitute another object for itself. For
example, an object might encode itself into an
archive, but encode a proxy for itself if it’s
being encoded for distribution.

awakeAfterUsingCoder: Allows an object, when being decoded, to
substitute another object for itself. For
example, an object that represents a font
might, upon being decoded, release itself and
return an existing object having the same font
description as itself. In this way, redundant
objects can be eliminated.

5-52 OpenStep Programming Reference—September 1996

5

Method Types

Instance Methods

decodeArrayOfObjCType:count:at:

– (void)decodeArrayOfObjCType:(const char *)types
count:(unsigned)count
at:(void *)address

Activity Class Method

Encoding data – encodeArrayOfObjCType:count:at:
– encodeBycopyObject:
– encodeBytes:length:
– encodeConditionalObject:
– encodeDataObject:
– encodeObject:
– encodePropertyList:
– encodePoint:
– encodeRect:
– encodeRootObject:
– encodeSize:
– encodeValueOfObjCType:at:
– encodeValuesOfObjCTypes:

Decoding data – decodeArrayOfObjCType:count:at:
– decodeBytesWithReturnedLength:
– decodeDataObject
– decodeObject
– decodePropertyList
– decodePoint
– decodeRect
– decodeSize
– decodeValueOfObjCType:at:
– decodeValuesOfObjCTypes:

Managing zones – objectZone
– setObjectZone:

Getting a version – systemVersion
– versionForClassName:

NSCoder 5-53

5

Decodes data of Objective C types listed in types having count elements
residing at address . See the class description for a list of value types can be.

decodeBytesWithReturnedLength:

(void *) decodeBytesWithReturnedLength: (unsigned *) length

Decodes length number of bytes. See also encodeBytes:length: .

decodeDataObject

– (NSData *)decodeDataObject

Decodes and returns an NSData object. See also encodeDataObject: .

decodeObject

– (id)decodeObject

Decodes an Objective C object. See also encodeObject: .

decodePoint

– (NSPoint)decodePoint

Decodes a point structure. See also encodePoint: .

decodePropertyList

– (id)decodePropertyList

Decodes a property list (NSData , NSArray , NSDictionary , or NSString
objects). See also encodePropertyList: .

decodeRect

– (NSRect)decodeRect

Decodes a rectangle structure. See also encodeRect: .

5-54 OpenStep Programming Reference—September 1996

5

decodeSize

– (NSSize)decodeSize

Decodes a size structure. See also encodeSize: .

decodeValueOfObjCType:at:

– (void)decodeValueOfObjCType:(const char *)type at:(void *)address

Decodes data of the specified Objective C type into address . You are
responsible for releasing the resulting objects. type can be a type descriptor
described in the class description. See also encodeValueOfObjCType:at: .

decodeValuesOfObjCTypes:

– (void)decodeValuesOfObjCTypes:(const char *)types,...

Decodes values corresponding to the Objective C types listed in types into
the following argument list. You are responsible for releasing the resulting
objects. See the class description for an example, and a list of type descriptors
that types can be. See also encodeValuesOfObjCTypes: .

encodeArrayOfObjCType:count:at:

– (void)encodeArrayOfObjCType:(const char *)types
count:(unsigned int)count at:(const void *)array

Encodes data of Objective C types listed in types having count elements
residing at address array . See the class description for a list of type
descriptors that types can be. See also
encodeArrayOfObjCType:count:at: (NSArchiver).

encodeBycopyObject:

– (void)encodeBycopyObject:(id)anObject

Overridden by subclasses to encode the supplied Objective C object so that a
copy rather than a proxy of anObject is created upon decoding. NSCoder ’s
implementation simply invokes encodeObject: .

NSCoder 5-55

5

encodeBytes:length:

(void) encodeBytes:(void*)byteAddress (unsigned *)length

Encodes length number of bytes, located at byteAddress . See also
decodeBytesWithReturnedLength: .

encodeConditionalObject:

– (void)encodeConditionalObject:(id)anObject

Overridden by subclasses to conditionally encode the supplied Objective C
object. The object should be encoded only if it is an intrinsic member of the
larger data structure. NSCoder ’s implementation simply invokes
encodeObject: .

encodeDataObject:

– (void)encodeDataObject:(NSData *)data

Encodes the NSData object data . See also decodeDataObject .

encodeObject:

– (void)encodeObject:(id)anObject

Encodes the supplied Objective C object. See also decodeObject .

encodePoint:

– (void)encodePoint:(NSPoint)point

Encodes the supplied point structure. See also decodePoint .

encodePropertyList:

– (void)encodePropertyList:(id)aPropertyList

Encodes the supplied property list (NSData , NSArray , NSDictionary , or
NSString objects). See also decodePropertyList .

5-56 OpenStep Programming Reference—September 1996

5

encodeRect:

– (void)encodeRect:(NSRect)rect

Encodes the supplied rectangle structure. See also decodeRect .

encodeRootObject:

– (void)encodeRootObject:(id)rootObject

Overridden by subclasses to start encoding an interconnected group of
Objective C objects, starting with rootObject . NSCoder ’s implementation
simply invokes encodeObject: .

encodeSize:

– (void)encodeSize:(NSSize)size

Encodes the supplied size structure. See also decodeSize .

encodeValueOfObjCType:at:

– (void)encodeValueOfObjCType:(const char *)type
at:(const void *)address

Encodes data of the specified Objective C type residing at address . See the
class description for a list of type descriptors that type can be. See also
decodeValueOfObjCType:at: .

encodeValuesOfObjCTypes:

– (void)encodeValuesOfObjCTypes:(const char *)types,...

Encodes values corresponding to the Objective C types listed in types
argument list. See the class description for a list of type descriptors that type
can be. See also decodeValuesOfObjCTypes: ,
encodeValueOfObjCType:at: .

objectZone

– (NSZone *)objectZone

NSCoder 5-57

5

Returns the memory zone used by decoded objects. For instances of NSCoder,
this is the default memory zone, the one returned by
NSDefaultMallocZone() . See also setObjectZone: .

setObjectZone:

– (void)setObjectZone:(NSZone *)zone

Sets the memory zone used by decoded objects. Instances of NSCoder always
use the default memory zone, the one returned by NSDefaultMallocZone()
(see the FoundationKit’s “Functions” chapter), so ignore this method. See also
objectZone .

systemVersion

– (unsigned int)systemVersion

Returns the system version number as of the time the archive was created. The
default implementation returns 1000. See also versionForClassName: .

versionForClassName:

– (unsigned int)versionForClassName:(NSString *)className

Returns the version number of the class className as of the time it was
archived. The default implementation returns 0. See also systemVersion .

5-58 OpenStep Programming Reference—September 1996

5

NSConditionLock

Class Description

NSConditionLock objects are used to lock and unlock threads when specified
conditions occur. The user of an NSConditionLock object can lock when a
process enters a particular state and can set the state to something else when
releasing the lock. The states are defined by the lock’s user. NSConditionLock
is well suited to synchronizing different modules such as a producer and a
consumer where the two modules must share data, but the consumer must
sleep until a condition is met such as more data being available.

The NSConditionLock class provides four ways of locking its objects (lock ,
lockWhenCondition: , tryLock , and tryLockWhenCondition) and two
ways of unlocking (unlock and unlockWithCondition:). Any combination
of locking method and unlocking method is legal.

The following example shows how the producer-consumer problem might be
handled using condition locks. The producer need not wait for a condition, but
must wait for the lock to be made available so it can safely create shared data.
For example, a producer could use a lock this way:

/* create the lock only once */
id condLock = [NSConditionLock new];

[condLock lock];
/* Manipulate global data... */
[condLock unlockWithCondition:HAS_DATA];

Multiple consumer threads can then lock until there’s data available and
everyone is out of locked critical sections. In the following code sample, the
consumer sleeps until the producer invokes unlockWithCondition: with
the parameter HAS_DATA:

Characteristic Description

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

NSConditionLock 5-59

5

[condLock lockWhenCondition:HAS_DATA];
/* Manipulate global data if necessary... */
[condLock unlockWithCondition:(moreData ? HAS_DATA : NO_DATA)];

An NSConditionLock object doesn’t busy-wait, so it can be used to lock time-
consuming operations without degrading system performance.

The NSConditionLock , NSLock , and NSRecursiveLock classes all
implement the NSLocking protocol with various features and performance
characteristics; see the other class descriptions for more information.

Method Types

Instance Methods

condition

– (int)condition

Returns the receiver’s condition, the state that must be achieved before a
conditional lock can be acquired or released. This condition can be set with
intWithCondition: or unlockWithCondition: .

initWithCondition:

– (id)initWithCondition:(int)condition

Initializes a newly created NSConditionLock and sets its condition to
condition . This message should not be sent to an already initialized instance.
See also condition .

Activity Class Method

Initializing an NSConditionLock – initWithCondition:

Returning the condition – condition

Acquiring and releasing a lock – lockWhenCondition:
– unlockWithCondition:
– tryLock
– tryLockWhenCondition:

5-60 OpenStep Programming Reference—September 1996

5

lockWhenCondition:

– (void)lockWhenCondition:(int)condition

Waits until the lock isn’t in use, and the lock’s condition matches condition ,
then grabs the lock. The lock’s condition can be set with
initWithCondition: or unlockWithCondition: . The lock can
subsequently be released with unlockWithCondition: .

tryLock

– (BOOL)tryLock

Attempts to acquire a lock. Returns YES if successful and NO otherwise.

tryLockWhenCondition:

– (BOOL)tryLockWhenCondition:(int)condition

Attempts to acquire a lock when condition is met. Returns YES if successful
and NO otherwise.

unlockWithCondition:

– (void)unlockWithCondition:(int)condition

Releases the lock and sets lock state to condition .

NSConnection 5-61

5

NSConnection

Class Description

When objects in different threads can send messages to each other, these
objects have a connection. The NSConnection class describes objects that
manage a connection (typically, in another process), and defines instances that
manage each side of such a connection.

Each distinct thread of execution has one default connection defined. Any
given thread can have as many connections as desired, but a given connection
can be served by only one thread.

To set up a connection, some object in your application must be established as
what is known as a “root” object and registered with a name in the Network
Name Server. Such root objects can then be connected to by other threads, and
can receive messages sent to them from other threads. An easy way to establish
an object as a root object is to send the defaultConnection method to the
NSConnection class object to obtain a connection object. Then use
setRootObject: to establish the desired object as the object that will be
registered, followed by registerName: to make that object available to the
Network Name Server under the specified name.

To obtain a connection to an object registered elsewhere, you will generally
send the rootProxyForConnectionWithRegisteredName:host: method
to the NSConnection class object. This method returns a proxy to the remote
object. You should then use setProtocolForProxy: to inform the proxy
about the protocols the remote object responds to. To obtain the actual
connection object instead of the proxy, use the
connectionWithRegisteredName:host: method.

If the string @"*" is used where a hostname is required, it implies a lookup for
any server registered with the specified name on the local subnet. If nil is
supplied where a hostname is required, the name lookup occurs only on the
local host.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSConnection.h

5-62 OpenStep Programming Reference—September 1996

5

When an NSConnection object is deallocated, the notification
NSConnectionDeath is posted to the default notification center with that
NSConnection object.

Exceptions

NSConnection can raise NSInternalInconsistencyException for a
variety of reasons when it detects “impossible” situations. In addition,
NSConnection can raise NSInvalidArgumentException when a remote
method invocation sends an unknown selector.

NSConnection 5-63

5

Method Types

Class Methods

allConnections

+ (NSArray *)allConnections

Activity Class Method

Initializing a connection – init

Establishing a connection + connectionWithRegisteredName:host:
+ defaultConnection
+rootProxyForConnectionWithRegisteredName:
host:

Determining connections + allConnections
– invalidate
– isValid

Registering a connection – registerName:

Assigning a delegate – delegate
– setDelegate:

Getting and setting the root object – rootObject
– rootProxy
– setRootObject:

Request mode – addRequestMode:
– removeRequestMode:
– requestModes

Conversation queueing – independentConversationQueueing
– setIndependentConversationQueueing:

Timeouts – replyTimeout
– requestTimeout
– setReplyTimeout:
– setRequestTimeout:

Get statistics – statistics

Methods Implemented by the Delegate – makeNewConnection:sender:

5-64 OpenStep Programming Reference—September 1996

5

Returns an array containing all existing valid connections. See also isValid .

connectionWithRegisteredName:host:

+ (NSConnection *)connectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName

Registers and returns a connection with name on hostName , or returns nil if
no connection can be established. If hostName is specified, this method queries
the Network Name Server on hostName for the object registered under name.
If hostName is nil , this method queries the Network Name Server on the
local host. If hostName is “* ”, this method will query the Network Name
Server on each machine on the subnet until it finds an object under name.

defaultConnection

+ (NSConnection *)defaultConnection

Establishes and returns a default per-thread connection.

rootProxyForConnectionWithRegisteredName:host:

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:
(NSString *)name host:(NSString *)hostName

Registers a connection with name on hostName and returns its root proxy. See
also NSDistantObject .

Instance Methods

addRequestMode:

- (void)addRequestMode:(NSString *)rmode

Adds request mode rmode to the list of modes the connection honors. See also
removeRequestMode: , requestModes .

delegate

– (id)delegate

NSConnection 5-65

5

Returns the connection’s delegate.

independentConversationQueueing

–(BOOL)independentConversationQueueing

Returns conversationQueuing mode. The default value is NO. See also
setIndependentConversationQueueing: .

init

– (id)init

Initializes a newly allocated NSConnection suitable for a new registry and
new name.

invalidate

- (void)invalidate

Invalidates the receiving connection object. See also isValid .

isValid

– (BOOL)isValid

Identifies YES if the receiver is a valid connection, and returns NO otherwise.
See also invalidate .

registerName:

– (BOOL)registerName:(NSString *)name

Registers the connection with name on the local system and returns YES if the
registration was successful, NO otherwise.

removeRequestMode:

- (void)removeRequestMode:(NSString *)rmode

Removes rmode from the list of modes that the connection honors. See also
addRequestMode: , requestModes .

5-66 OpenStep Programming Reference—September 1996

5

replyTimeout

– (NSTimeInterval)replyTimeout

Returns the reply timeout time interval.

requestModes

- (NSArray *)requestModes

Returns the mode in which requests are honored. See also addRequestMode: .

requestTimeout

– (NSTimeInterval)requestTimeout

Returns the request timeout time interval. See also setRequestTimeout: ,
replyTimeout .

rootObject

– (id)rootObject

Returns the root object served (see the “Class Description”). See also
rootProxy .

rootProxy

– (NSDistantObject *)rootProxy

Returns an NSDistantObject proxy to the root object served by this
connection. See also rootObject .

setDelegate:

– (void)setDelegate:(id)anObject

Sets the connection’s delegate. See also delegate .

setIndependentConversationQueueing:

– (void)setIndependentConversationQueueing:(BOOL)flag

NSConnection 5-67

5

If flag is YES, unrelated requests are queued for later processing. This allows
a server to use distributed objects freely in its implementation without concern
for the consistency of its internal state. Note that this can cause deadlocks
among peers. See also independentConversationQueueing .

setReplyTimeout:

– (void)setReplyTimeout:(NSTimeInterval)interval

Sets the reply timeout to the time interval interval .

setRequestTimeout:

– (void)setRequestTimeout:(NSTimeInterval)interval

Sets the request timeout to the time interval interval .

setRootObject:

– (void)setRootObject:(id)anObject

Sets the root object being served to anObject ; if the root object already exists,
replaces it with anObject . Be aware that if the root object is replaced while a
connection is active, existing root proxies on the client side of the connection
will continue to communicate with the previous root object, while new proxies
will communicate with the newly established root object.

statistics

– (NSDictionary *)statistics

Returns statistics for this connection.

Methods Implemented by the Delegate

makeNewConnection:sender:

– (BOOL)makeNewConnection:(NSConnection *)connection
sender:(NSConnection *)ancestor

5-68 OpenStep Programming Reference—September 1996

5

Asks permission to create a new connection connection where ancestor is
the ancestral connection; returns YES if connection allowed.

NSCountedSet

Class Description

The NSCountedSet class declares the programmatic interface to an object that
manages a mutable set of objects. NSCountedSet provides support for the
mathematical concept of a counted set. A counted set, both in its mathematical
sense and in the OpenStep implementation of NSCountedSet , is an unordered
collection of elements, just as in a regular set, but the elements of the set aren’t
necessarily distinct. In the literature, a counted set is also knownas a bag.

Each new—that is, distinct—object inserted into an NSCountedSet object has
a counter associated with it. NSCountedSet keeps track of the number of
times objects are inserted and requires that objects are removed the same
number of times. OpenStep also provides the NSSet class for sets whose
elements are distinct—that is, there is only one instance of an object in an
NSSet even if the object has been added to the set multiple times.

Use set objects as an alternative to array objects when the order of elements is
not important, but performance in testing whether an object is contained in the
set is a consideration—while arrays are ordered, testing for membership is
slower than with sets.

Objects in a set must respond to hash and isEqual: methods. See the
NSObject protocol for details on hash and isEqual: . Each new distinct
object must provide a unique hash value.

Generally, you instantiate an NSCountedSet object by sending one of the
set… methods to the NSCountedSet class object, as described in NSSet . These
methods return an NSCountedSet object containing the elements (if any) you
pass in as arguments. Newly created instances of NSCountedSet created by

Characteristic Description

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

NSCountedSet 5-69

5

invoking the set method can be populated with objects using any of the
init… methods. The designated initializer for this class is
initWithObjects: (NSSet).

You add or remove objects from a counted set using the addObject: and
removeObject: methods.

An NSCountedSet may be queried using the objectEnumerator method,
which provides for traversing elements of the set one by one. The
countForObject: method returns the number of times the specified object
has been added to this set.

Method Types

Instance Methods

addObject:

– (void)addObject:(id)anObject

Adds anObject to the set, unless anObject is equal to some object already in
the set. In either case, the counter that’s returned by countForObject: is
incremented.

countForObject:

– (unsigned int)countForObject:(id)anObject

Activity Class Method

Initializing an NSCountedSet – initWithArray:
– initWithCapacity:
– initWithSet:

Adding objects – addObject:

Removing objects – removeObject:

Querying the NSCountedSet – countForObject:
– objectEnumerator

5-70 OpenStep Programming Reference—September 1996

5

Returns the number of times that an object equal to anObject has ostensibly
been added to the set. (This number is incremented by addObject: and
decremented by removeObject: .)

initWithArray:

– (id)initWithArray:(NSArray *)anArray

Initializes a newly allocated set object by placing in it the objects contained in
anArray .

initWithCapacity:

– (id)initWithCapacity:(unsigned int)numItems

Initializes a newly allocated set object, giving it enough memory to hold
numItems objects.

initWithSet:

– (id)initWithSet:(NSSet *)anotherSet

Initializes a newly allocated set object by placing in it the objects contained in
anotherSet .

objectEnumerator

– (NSEnumerator *)objectEnumerator

Returns an enumerator object that will access each object in the set only once,
regardless of its count.

removeObject:

– (void)removeObject:(id)anObject

Decrements the counter for the object if the set contains an object that’s equal
to anObject . If this causes the counter to reach zero, the object that’s equal to
anObject is removed from the set.

NSData 5-71

5

NSData

Class Description

The NSData class declares the interface to objects that contain bytes. NSData
objects hold a static collection of bytes; NSData ’s subclass, NSMutableData ,
defines objects that hold modifiable data. These two classes provide an object-
oriented approach to memory allocation, a facility that in procedural
programming is accessed through functions like malloc() . Furthermore, these
classes take advantage of operating system primitives when allocating large
blocks of memory.

NSData ’s two primitive methods—bytes and length —provide the basis for
all the other methods in its interface. The bytes method returns a pointer to
the bytes contained in the data object. length returns the number of bytes
contained in the data object.

NSData and NSMutableData objects are commonly used to hold the contents
of a file. The methods dataWithContentsOfFile: and
dataWithContentsOfMappedFile: return objects that represent a file’s
contents. The writeToFile:atomically: method enables you to write the
contents of a data object to a file.

NSData provides access methods for copying bytes from a data object into a
buffer. Use getBytes: to copy the entire contents of the object or
getBytes:length: to copy a subset, starting with the first byte.
getBytes:range: copies a range of bytes from a starting point within the
bytes themselves. You can also return a data object that contains a subset of the
bytes in another data object by using the subdataWithRange: method. Or,
you can use the description method to return an NSString representation
of the bytes in a data object.

For determining if two data objects are equal, NSData provides the
isEqualToData: method, which does a byte-for-byte comparison.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSData.h

5-72 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized object from zone . If zone is NULL, the
default alloction zone is used. See also data , NSAllocateObject() .

Activity Class Method

Allocating and initializing an
NSData object

+ allocWithZone:
+ data
+ dataWithBytes:length:
+ dataWithBytesNoCopy:length:
+ dataWithContentsOfFile:
+ dataWithContentsOfMappedFile:
– initWithBytes:length:
– initWithBytesNoCopy:length:
– initWithContentsOfFile:
– initWithContentsOfMappedFile:
– initWithData:

Accessing data – bytes
– description
– getBytes:
– getBytes:length:
– getBytes:range:
– subdataWithRange:

Querying a data object – isEqualToData:
– length

Storing data – writeToFile:atomically:

Deserializing data – deserializeAlignedBytesLengthAtCursor:
– deserializeBytes:length:atCursor:
– deserializeDataAt:ofObjCType:atCursor:context:
– deserializeIntAtCursor:
– deserializeIntAtIndex:
– deserializeInts:count:atCursor:
– deserializeInts:count:atIndex:

NSData 5-73

5

data

+ (id)data

Creates and returns an empty object. This method is declared primarily for
mutable subclasses of NSData . See also dataWithBytes:length: .

dataWithBytes:length:

+ (id)dataWithBytes:(const void *)bytes length:(unsigned int)length

Creates and returns an object containing length bytes of data copied from the
buffer bytes . See also dataWithBytesNoCopy:length: ,
initWithBytes:length: .

dataWithBytesNoCopy:length:

+ (id)dataWithBytesNoCopy:(void *)bytes length:(unsigned int)length

Creates and returns an object containing length bytes from the buffer bytes .
The NSData object will take over ownership of the bytes , and free() them
when the NSData object is deallocated. See also dataWithBytes:length: ,
initWithBytesNoCopy:length: .

dataWithContentsOfFile:

+ (id)dataWithContentsOfFile:(NSString *)path

Creates and returns an object by reading data from the file specified by path .
Returns nil if the file cannot be found. See also
dataWithContentsOfMappedFile: .

dataWithContentsOfMappedFile:

+ (id)dataWithContentsOfMappedFile:(NSString *)path

Creates and returns an object whose contents come from the mapped file path ,
assuming mapped files are available on the underlying operating system.
Returns nil if the file cannot be found. If mapped files are not available, this
method is identical to dataWithContentsOfFile: .

5-74 OpenStep Programming Reference—September 1996

5

Instance Methods

bytes

– (const void *)bytes

Returns a pointer to the object’s contents. This method returns read-only access
to the data. See also getBytes: .

description

– (NSString *)description

Returns an NSString object that contains a hexadecimal representation of the
receiver’s contents.

deserializeAlignedBytesLengthAtCursor:

– (unsigned int)deserializeAlignedBytesLengthAtCursor:
(unsigned int*)cursor

Returns the length of the serialized bytes at the location referenced by cursor .
If the bytes have been page-aligned, it also obtains the relevant “hole”
information and adjusts the cursor. An invocation of this method must have a
corresponding serializeAlignedBytesLength: invocation. See also
deserializeBytes:length:atCursor: ,
deserializeDataAt:ofObjCType:atCursor:context: .

deserializeBytes:length:atCursor:

– (void)deserializeBytes:(void *)buffer length:(unsigned int)bytes
atCursor:(unsigned int*)cursor

Deserializes bytes number of bytes in the buffer pointed at by buffer , places
them internally starting at cursor , and advances the cursor .

deserializeDataAt:ofObjCType:atCursor:context:

– (void)deserializeDataAt:(void *)data ofObjCType:(const char
*)type

atCursor:(unsigned int*)cursor
context:(id <NSObjCTypeSerializationCallBack>)callback

NSData 5-75

5

Deserializes the data pointed at by cursor , interpreting it by the Objective C
type specifier type and writing it to the memory location referenced by data .
If the data element is an object other than an instance of NSDictionary ,
NSArray , NSString , or NSData , a callback from object callback can provide
further definition of the object. All Objective C types are currently supported
except union and void * . Pointers refer to a single item.

deserializeIntAtCursor:

– (int)deserializeIntAtCursor:(unsigned int*)cursor

Deserializes and returns the integer encoded at cursor . Also advances the
cursor.

deserializeIntAtIndex:

– (int)deserializeIntAtIndex:(unsigned int)index

Deserializes and returns the integer encoded at offset index . Does not advance
the cursor.

deserializeInts:count:atCursor:

– (void)deserializeInts:(int *)intBuffer
count:(unsigned int)numInts
atCursor:(unsigned int*)cursor

Deserializes numInts integers encoded at the location referenced by cursor
and puts them in the buffer intBuffer . Also advances the cursor.

deserializeInts:count:atIndex:

– (void)deserializeInts:(int *)intBuffer
count:(unsigned int)numInts
atIndex:(unsigned int)index

Deserializes numInts integers encoded at offset index and puts them in the
buffer intBuffer . Does not advance the cursor.

getBytes:

– (void)getBytes:(void *)buffer

5-76 OpenStep Programming Reference—September 1996

5

Copies the receiver’s contents into buffer .

getBytes:length:

– (void)getBytes:(void *)buffer length:(unsigned int)length

Copies length bytes of the receiver’s contents into buffer .

getBytes:range:

– (void)getBytes:(void *)buffer range:(NSRange)aRange

Copies into buffer the portion of the receiver’s contents within aRange .
Raises NSRangeException if aRange is not within the range of the receiver’s
data.

initWithBytes:length:

– (id)initWithBytes:(const void *)bytes length:(unsigned int)length

Initializes a newly allocated NSData object by putting in it length bytes of
data copied from the buffer bytes . See also
initWithBytesNoCopy:length: , dataWithBytes:length: .

initWithBytesNoCopy:length:

– (id)initWithBytesNoCopy:(void *)bytes length:(unsigned int)length

Initializes a newly allocated NSData object by putting in it length bytes of
data from the buffer bytes . The NSData object will take over ownership of the
bytes , and free() them when the NSData object is deallocated. See also
initWithBytes:length: , dataWithBytesNoCopy:length: .

initWithContentsOfFile:

– (id)initWithContentsOfFile:(NSString *)path

Initializes a newly allocated NSData object by reading into it the data from the
file specified by path . Returns nil if path cannot be found.

NSData 5-77

5

initWithContentsOfMappedFile:

– (id)initWithContentsOfMappedFile:(NSString *)path

Initializes a newly allocated NSData object to contain the data residing in the
mapped file path , assuming mapped files are available on the underlying
operating system. If mapped files are not available, this method is identical to
initWithContentsOfFile: .

initWithData:

– (id)initWithData:(NSData *)data

Initializes a newly allocated NSData object by placing in it the contents of
another NSData object, data .

isEqualToData:

– (BOOL)isEqualToData:(NSData *)other

Compares the receiving object to other . If the contents of other are equal to
the contents of the receiver, this method returns YES, otherwise it returns NO.

length

– (unsigned int)length

Returns the number of bytes contained in the receiver.

subdataWithRange:

– (NSData *)subdataWithRange:(NSRange)aRange

Returns an object containing a copy of the receiver’s bytes that fall within the
limits specified by aRange . Raises an NSRangeException if aRange is not
within the range of the receiver’s data.

writeToFile:atomically:

– (BOOL)writeToFile:(NSString *)path
atomically:(BOOL)useAuxiliaryFile

5-78 OpenStep Programming Reference—September 1996

5

Writes the bytes in the receiving object to the file specified by path . If
useAuxiliaryFile is YES, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed atomically to the
intended file name.

NSDate

Class Description

NSDate is an abstract class that provides behavior for creating dates,
comparing dates, representing dates, computing time intervals, and similar
functionality. It presents a programmatic interface through which suitable date
objects are requested and returned. NSDate objects are lightweight and
immutable since they represent an invariant point in time. This class is
designed to provide the foundation for arbitrary calendrical representations.
Its subclass NSCalendarDate offers date objects that are suitable for
representing dates according to western calendrical systems.

“Date” as used here implies clock time as well. The standard unit of time for
date objects is a value typed as NSTimeInterval (a double) and expressed as
seconds. The NSTimeInterval type makes possible a wide and fine-grained
range of date and time values, giving accuracy within milliseconds for dates
10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute
reference date. This reference date is the first instant of January 1, 2001.
NSDate converts all date and time representations to and from
NSTimeInterval values that are relative to this absolute reference date. A
positive interval relative to a date represents a point in the future, a negative
interval represents a time in the past.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

NSDate 5-79

5

Conventional UNIX systems implement time according to the Network Time
Protocol (NTP) standard, which is based on Coordinated Universal Time. The
private implementation of NSDate follows the NTP standard. However, this
standard doesn’t account for leap seconds and therefore isn’t synchronized
with International Atomic Time (the most accurate).

Like various other Foundation Kit classes, NSDate lets you obtain operating
system functionality (dates and times) without depending on operating system
internals. It also provides a basis for the NSRunLoop and NSTimer classes,
which use concrete date objects to implement local event loops and timers.

NSDate ’s sole primitive method, timeIntervalSinceReferenceDate ,
provides the basis for all the other methods in the NSDate interface. It returns
a time value relative to an absolute reference date.

Using NSDate

The date objects dispensed by NSDate give you a diverse range of date and
time functionality. To obtain dates, send one of the date... messages to the
NSDate class object. One of the most useful is date itself, which returns a date
object representing the current date and time. You can get new date objects
with date and time values adjusted from existing date objects by sending
addTimeInterval: .

You can obtain relative date information by sending the timeInterval...
messages to a date object. For instance, timeIntervalSinceNow gives you
the time, in seconds, between the current time and the receiving date object.
Compare dates with the isEqualToDate: , compare: , laterDate: , and
earlierDate: methods and use the description method to obtain a string
object that represents the date in a standard international format.

5-80 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Allocates an unitialized NSDate in zone . Returns nil if allocation fails. See
also date , init .

Activity Class Method

Creating an NSDate Object + allocWithZone:
+ date
+ dateWithTimeIntervalSinceNow:
+ dateWithTimeIntervalSince1970:
+ dateWithTimeIntervalSinceReferenceDate:
+ distantFuture
+ distantPast
– init
– initWithString:
– initWithTimeInterval:sinceDate:
– initWithTimeIntervalSinceNow:
– initWithTimeIntervalSinceReferenceDate:

Converting to an NSCalendar
object

– dateWithCalendarFormat:timeZone:

Representing dates – description
– descriptionWithCalendarFormat:timeZone:locale:
– descriptionWithLocale:

Adding and getting intervals + timeIntervalSinceReferenceDate
– addTimeInterval:
– timeIntervalSince1970
– timeIntervalSinceDate:
– timeIntervalSinceNow
– timeIntervalSinceReferenceDate

Comparing dates – compare:
– earlierDate:
– isEqualToDate:
– laterDate:

NSDate 5-81

5

date

+ (NSDate *)date

Creates and returns an NSDate set to the current date and time. See also
dateWithTimeIntervalSinceNow: ,
dateWithTimeIntervalSince1970: ,
dateWithTimeIntervalSinceReferenceDate: ,
timeIntervalSinceReferenceDate , distantFuture , distantPast ,
init .

dateWithTimeIntervalSinceNow:

+ (NSDate *)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Creates and returns an NSDate set to seconds seconds from the current date
and time. See also timeIntervalSinceNow ,
dateWithTimeIntervalSince1970: ,
dateWithTimeIntervalSinceReferenceDate: .

dateWithTimeIntervalSince1970:

+ (NSDate *)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds

Creates and returns an NSDate set to to seconds seconds from the reference
date used by UNIX systems. Use a negative argument value to specify a date
and time before the reference date. See also timeIntervalSince1970 ,
dateWithTimeIntervalSinceNow: .

dateWithTimeIntervalSinceReferenceDate:

+ (NSDate *)dateWithTimeIntervalSinceReferenceDate:
(NSTimeInterval)seconds

Creates and returns an NSDate set to seconds seconds from the absolute
reference date (the first instant of 1 January, 2001). Use a negative argument
value to specify a date and time before the reference date. See also
timeIntervalSinceReferenceDate (class method),
timeIntervalSinceReferenceDate (instance method),
dateWithTimeIntervalSinceNow: .

5-82 OpenStep Programming Reference—September 1996

5

distantFuture

+ (NSDate *)distantFuture

Creates and returns an NSDate that represents a date in the distant future in
terms of centuries. You can use this object in your code as a control date, a
guaranteed outer temporal limit. See also distantPast .

distantPast

+ (NSDate *)distantPast

Creates and returns an NSDate that represents a date in the distant past in
terms of centuries. You can use this object in your code as a control date, a
guaranteed temporal boundary. See also distantFuture .

timeIntervalSinceReferenceDate

+ (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval between the system’s absolute reference date and the
current date and time. This value is less than zero until the first instant of 1
January 2001. See also timeIntervalSinceReferenceDate (instance
method), timeIntervalSince1970 , timeIntervalSinceDate: ,
timeIntervalSinceNow , date .

Instance Methods

addTimeInterval:

– (NSDate *)addTimeInterval:(NSTimeInterval)seconds

Returns an NSDate that’s set to a specified number of seconds relative to the
receiver. See also timeIntervalSinceReferenceDate (class method).

compare:

– (NSComparisonResult)compare:(NSDate *)anotherDate

NSDate 5-83

5

Compares the receiver’s date to that of anotherDate and returns
NSOrderedDescending if the receiver is temporally later,
NSOrderedAscending if the receiver is temporally earlier, and
NSOrderedSame if they are equal.

dateWithCalendarFormat:timeZone:

– (NSCalendarDate *)dateWithCalendarFormat:(NSString *)formatString
timeZone:(NSTimeZone *)timeZone

Returns an NSCalendarDate object bound to the format string
formatString and the time zone timeZone . If you specify nil after either or
both of these arguments, the default format string (@”%Y-%m-%d %H:-%M:-%S
%z) and time zone are used. See also description .

description

– (NSString *)description

Returns a string representation of the receiver. The representation conforms to
the international format YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM
represents the time-zone offset in hours and minutes from Greenwich Mean
Time (GMT). See also
descriptionWithCalendarFormat:timeZone:locale: ,
descriptionWithLocale: .

descriptionWithCalendarFormat:timeZone:locale:

– (NSString *)descriptionWithCalendarFormat:
(NSString *)formatString
timeZone:(NSTimeZone *)aTimeZone
locale:(NSDictionary *)localeDictionary

Returns a string representation of the receiver. The representation conforms to
formatString (a strftime -style date-conversion string) and is adjusted to
aTimeZone . Included are the keys and values that represent the locale data
from localeDictionary . See also description .

descriptionWithLocale:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary

5-84 OpenStep Programming Reference—September 1996

5

Returns a string representation of receiver (see description). Included are
the key and values that represent the locale data from localeDictionary .
See also descriptionWithCalendarFormat:timeZone:locale: .

earlierDate:

– (NSDate *)earlierDate:(NSDate *)anotherDate

Compares the receiver’s date to anotherDate and returns the one that’s
temporally earlier. See also laterDate: , compare: .

init

– (id)init

Initializes a newly allocated NSDate to the current date and time. See also
initWithString:, initWithTimeInterval:sinceDate: ,
initWithTimeIntervalSinceNow: ,
initWithTimeIntervalSinceReferenceDate: .

initWithString:

– (id)initWithString:(NSString *)description

Returns an NSDate with a date and time value specified by the international
string-representation format: YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM is a time zone offset in hours and minutes from Greenwich Mean
Time. See also init .

initWithTimeInterval:sinceDate:

– (NSDate *)initWithTimeInterval:(NSTimeInterval)seconds
sinceDate:(NSDate *)anotherDate

Returns an NSDate initialized relative to another date object by seconds (plus
or minus). See also init .

initWithTimeIntervalSinceNow:

– (NSDate *)initWithTimeIntervalSinceNow:(NSTimeInterval)seconds

NSDate 5-85

5

Returns an NSDate initialized relative to the current date and time by
seconds (plus or minus). See also init .

initWithTimeIntervalSinceReferenceDate:

– (id)initWithTimeIntervalSinceReferenceDate:
(NSTimeInterval)seconds

Returns an NSDate initialized relative to the reference date and time by
seconds (plus or minus). See also init .

isEqualToDate:

- (BOOL)isEqualToDate:(NSDate *)otherDate

Compares the receiver with otherDate . Returns YES if the dates are equal, and
returns NO otherwise.

laterDate:

– (NSDate *)laterDate:(NSDate *)anotherDate

Compares the receiver’s date to anotherDate and returns the one that’s
temporally later. See also earlierDate: , compare: .

timeIntervalSince1970

– (NSTimeInterval)timeIntervalSince1970

Returns the time interval between the receiver and the reference date used by
UNIX systems. See also timeIntervalSinceReferenceDate (class method).

timeIntervalSinceDate:

– (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate

Returns the interval between the receiver and anotherDate . See also
timeIntervalSinceReferenceDate (class method).

timeIntervalSinceNow

– (NSTimeInterval)timeIntervalSinceNow

5-86 OpenStep Programming Reference—September 1996

5

Returns the interval between the receiver and the current date and time. See
also timeIntervalSinceReferenceDate (class method).

timeIntervalSinceReferenceDate

– (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval between the receiver and the system’s absolute reference
date. This value is less than zero until the first instant of 1 January 2001. See
also timeIntervalSinceReferenceDate (class method).

NSDateFormatter

Class Description

Instances of NSDateFormatter format the textual representation of cells that
contain NSDates (including NSCalendarDate s), and convert textual
representations of dates and times into NSDates. You can express the
representation of dates and times very flexibly: “Thu 22 Dec 1994” is just as
acceptable as “12/22/94”. With natural-language processing for dates enabled,
users can also express dates colloquially, such as “today”, “the day after
tomorrow”, and “a month from today”.

To use an NSDateFormatter , allocate an instance of it and initialize it with
initWithDateFormat:allowNaturalLanguage: . In the first argument use
strftime-style conversion specifiers to compose the format string for textual
representation. (For more information on these specifiers, see
NSCalendarDate) Then use NSCell 's setFormatter: method to associate
the NSDateFormatter object with a cell. The value of a cell (NSCell) is
represented by an object, typically an NSDate object in this case. When this
value needs to be displayed or edited, the cell passes its object to the
NSDateFormatter instance, which returns the formatted string. When the
user enters a string, or when one is programmatically written in a cell (using
setStringValue:), the cell obtains the equivalent NSDate object from the
NSDateFormatter .

Inherits From: NSFormatter

Conforms To: NSCoding, NSCopying

Declared In: Foundation/NSDateFormatter.h

NSDateFormatter 5-87

5

NSControl provides delegation methods that permit you to validate cell
contents and to handle errors in formatting. See the specification of the
NSFormatter class for details.

When a cell with a NSDateFormatter is copied, the new cell retains the
NSDateFormatter object instead of copying it. You remove an
NSDateFormatter from a cell by specifying nil as the argument of
setFormatter: .

NSCell Methods for Date Formatting

Alternatively, you can associate an NSDateFormatter object with a cell using
an NSCell method. Send setEntryType: with an argument of NSDateType
to a cell to associate that cell with a NSDateFormatter . The date format string
is taken from the user default NSDateFormatString and natural-language
processing of dates is enabled. To determine if a cell can accept a date
conforming to the NSDateFormatString , send isEntryAcceptable: to the cell.

The NSDateFormatter approach is recommended over NSCell ‘s
setEntryType: because it allows you greater freedom in specifying the
representation of dates. However, NSCell ’s setEntryType: and
isEntryAcceptable: are OpenStep-compliant whereas the
NSDateFormatter API is an extension to OpenStep.

Instances of NSDateFormatter are immutable.

Method Types

Instance Methods

allowsNaturalLanguage

- (BOOL)allowsNaturalLanguage;

Activity Class Method

Initializing an NSDateFormatter – initWithDateFormat:allowNaturalLanguage:

Determining attributes – allowsNaturalLanguage
– dateFormat

5-88 OpenStep Programming Reference—September 1996

5

Returns YES if the NSDateFormatter attempts to process dates entered as a
vernacular string (for example “today”, and “day before yesterday”). Returns
NO if the NSDateFormatter does not do any natural-language processing of
these date expressions.

dateFormat

- (NSString *)dateFormat

Returns the date format string used by an NSDateFormatter object. See
NSCalendarDate for a list of the conversion specifiers permitted in date
format strings.

initWithDateFormat:allowNaturalLanguage:

- (id)initWithDateFormat:(NSString *)format
allowNaturalLanguage:(BOOL)flag;

Initializes and returns an NSDateFormatter instance that uses the date
format in its conversions. See NSCalendarDate for a list of the conversion
specifiers permitted in date format strings. Set flag to YES if you want the
NSDateFormatter to process dates entered as expressions in the vernacular
(for example, “tomorrow”); NSDateFormatter attempts natural-language
processing only after it fails to interpret an entered string according to format.
The following example creates a date formatter with the format string (as
example) “Mar 15 1994” and then associates the formatter with the cells of a
form (contactsForm).

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]
initWithDateFormat:@”%b %d %Y” allowNaturalLanguage:NO];

[[contactsForm cells] makeObjectsPerform:@selector(setFormatter:)
withObject:dateFormat];

NSDeserializer 5-89

5

NSDeserializer

Class Description

The NSDeserializer class declares methods that convert an abstract
representation of a property list (as contained in an NSData object) into a
graph of property list objects in memory. The NSDeserializer class object
itself provides these methods; you don’t create instances of NSDeserializer .

Options to these methods specify that container objects (arrays or dictionaries)
in the resulting graph be mutable or immutable; that deserialization begin at
the start of the data or from some position within it; or that deserialization
occur lazily, so that a property list is deserialized only if it is actually going to
be accessed. See the NSSerializer specification for more information on
serialization.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSSerialization.h

5-90 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

deserializePropertyListFromData:atCursor:
mutableContainers:

+ (id)deserializePropertyListFromData:(NSData *)data
atCursor:(unsigned int*)cursor mutableContainers:(BOOL)mutable

Returns a property list object corresponding to the abstract representation in
data at the location cursor . If mutable is YES and the object is a dictionary
or an array, the re-composed object is made mutable. Returns nil if the object
is not a valid one for property lists.

deserializePropertyListFromData:
mutableContainers:

+ (id)deserializePropertyListFromData:(NSData *)data
mutableContainers:(BOOL)mutable

Returns a property list object corresponding to the abstract representation in
data . If mutable is YES and the object is a dictionary or an array, the re-
composed object is made mutable. Returns nil if the data doesn’t represent a
property list.

Activity Class Method

Deserialization into property lists + deserializePropertyListFromData:atCursor:
mutableContainers:
+ deserializePropertyListFromData:
mutableContainers:
+ deserializePropertyListLazilyFromData:
atCursor:length:mutableContainers:

NSDictionary 5-91

5

deserializePropertyListLazilyFromData:
atCursor:length:mutableContainers:

+ (id)deserializePropertyListLazilyFromData:(NSData *)data
atCursor:(unsigned int*)cursor length:(unsigned int)length
mutableContainers:(BOOL)mutable

Returns a property list from data at location cursor . The deserialization
proceeds lazily. That is, if the data at the specified location has a length greater
than length , a proxy is substituted for the actual property list as long as the
constituent objects of that property list are not being accessed. If mutable is
YES and the object is a dictionary or an array, the recomposed object is made
mutable. Returns nil if the data doesn’t represent a property list.

NSDictionary

Class Description

The NSDictionary class declares the programmatic interface to objects that
manage immutable associations of keys and values. Use this class when you
need a convenient and efficient way to retrieve data associated with an
arbitrary key.

A key-value pair within an NSDictionary is called an entry. Each entry
consists of a string object that represents the key and another object (of any
class) that is that key’s value. You establish the entries when the
NSDictionary is created, and thereafter the entries can’t be modified. The
complementary class NSMutableDictionary defines objects that manage
modifiable collections of entries. See the NSMutableDictionary class
specification for more information.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

5-92 OpenStep Programming Reference—September 1996

5

Internally, an NSDictionary uses a hash table to organize its storage and to
provide rapid access to a value given the corresponding key. However, the
methods defined for this class insulate you from the complexities of working
with hash tables, hashing functions, or the hashed value of keys. These
methods take key values directly, not their hashed form.

Generally, you instantiate an NSDictionary by sending one of the
dictionary... messages to the class object. These methods return an
NSDictionary containing the associations specified as arguments to the
method. Each key argument is copied and the copy is added to the
NSDictionary . Each corresponding value object receives a retain message
to ensure that it won’t be deallocated prematurely.

NSDictionary ’s three primitive methods—count and objectForKey: and
keyEnumerator —provide the basis for all the other methods in its interface.
The count method returns the number of entries in the object;
objectForKey: returns the value associated with the given key; and
keyEnumerator returns an object that lets you step through entries in the
dictionary.

The other methods declared here operate by invoking one or more of these
primitives. The nonprimitive methods provide convenient ways of accessing
multiple entries at once. The description... methods and the
writeToFile:atomically: method cause an NSDictionary to generate a
description of itself and store it in a string object or a file.

NSDictionary 5-93

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized NSDictionary in zone .

Activity Class Method

Creating and initializing an
NSDictionary

+ allocWithZone:
+ dictionary
+ dictionaryWithContentsOfFile:
+ dictionaryWithObjects:forKeys:
+ dictionaryWithObjects:forKeys:count:
+ dictionaryWithObjectsAndKeys:
– initWithContentsOfFile:
– initWithDictionary:
– initWithObjectsAndKeys:
– initWithObjects:forKeys:
– initWithObjects:forKeys:count:

Accessing keys and values – allKeys
– allKeysForObject:
– allValues
– keyEnumerator
– objectEnumerator
– objectForKey:
– objectsForKeys:notFoundMarker:

Counting entries – count

Comparing dictionaries – isEqualToDictionary:

Storing dictionaries – description
– descriptionInStringsFileFormat
– descriptionWithLocale:
– descriptionWithLocale:indent:
– writeToFile:atomically:

5-94 OpenStep Programming Reference—September 1996

5

dictionary

+ (id)dictionary

Creates and returns an empty NSDictionary .

dictionaryWithContentsOfFile:

+ (id)dictionaryWithContentsOfFile:(NSString *)path

Creates and returns an NSDictionary from the keys and values found in the
file specified by path . Returns nil if path cannot be found, or if path ’s
contents don’t represent a dictionary property list.

dictionaryWithObjects:forKeys:

+ (id)dictionaryWithObjects:(NSArray *)objects
forKeys:(NSArray *)keys

Creates and returns an NSDictionary that associates objects from the
objects array with keys from the keys array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects is not equal to
the number of keys .

dictionaryWithObjects:forKeys:count:

+ (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys
count:(unsigned int)count

Creates and returns an NSDictionary containing count objects from the
objects array. The objects are associated with count keys taken from the
keys array.

dictionaryWithObjectsAndKeys:

+ (id)dictionaryWithObjectsAndKeys:(id)firstObject, ...

Creates and returns an NSDictionary that associates objects and keys from
the argument list. The list must be in form: object1 , key1 , object2 , key2 ,
..., nil . Raises NSInvalidArgumentException if any of the keys are nil , or
if any of the keys are not of the NSString class.

NSDictionary 5-95

5

Instance Methods

allKeys

– (NSArray *)allKeys

Returns an NSArray containing the receiver’s keys or an empty array if the
receiver has no entries.

allKeysForObject:

– (NSArray *)allKeysForObject:(id)object

Finds all occurrences of the value anObject in the receiver and returns an
array with the corresponding keys.

allValues

– (NSArray *)allValues

Returns an NSArray containing the dictionary’s values, or an empty array if
the dictionary has no entries.

count

– (unsigned)count

Returns the number of entries in the receiver.

description

– (NSString *)description

Returns a string that represents the contents of the receiver. The form of the
returned string is

{
key1 = key1description;
key2 = key2description;
...
}

5-96 OpenStep Programming Reference—September 1996

5

If the description is less than 80 characters long, the returned string is put on
one line. See also description (NSArray).

descriptionInStringsFileFormat

– (NSString *)descriptionInStringsFileFormat

Returns a string that represents the contents of the receiver. Key-value pairs are
appropriate for use in .strings files.

descriptionWithLocale:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary

Returns a string representation of the NSDictionary object. Included are the
key and values that represent the locale data from localeDictionary . See
also description .

descriptionWithLocale:indent:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary
indent:(unsigned int)level

Returns a string representation of the NSDictionary object. Included are the
key and values that represent the locale data from localeDictionary .
Elements are indented from the left margin by level + 1 multiples of four
spaces, to make the output more readable. See also description .

initWithContentsOfFile:

– (id)initWithContentsOfFile:(NSString *)path

Initializes a newly allocated NSDictionary using the keys and values found
in the file path . If path cannot be found, or path does not represent a
dictionary, this method returns nil . Returns self . See also propertyList
(NSString).

initWithDictionary:

– (id)initWithDictionary:(NSDictionary *)dictionary

NSDictionary 5-97

5

Initializes a newly allocated NSDictionary by placing in it the keys and
values contained in otherDictionary . Returns self .

initWithObjects:forKeys:

– (id)initWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Initializes a newly allocated NSDictionary by associating objects from the
objects array with keys from the keys array. Keys must be strings. This
method raises NSInvalidArgumentException if the number of objects is not
equal to the number of keys.

initWithObjects:forKeys:count:

– (id)initWithObjects:(id *)objects
forKeys:(id *)keys count:(unsigned)count

Initializes a newly allocated NSDictionary by associating count objects from
the objects array with an equal number of keys from the keys array. Raises
NSInvalidArgumentException if any of the objects or keys are nil .

initWithObjectsAndKeys:

– (id)initWithObjectsAndKeys:(id)firstObject,...

Initializes a newly allocated NSDictionary by placing in it the objects and
keys from the argument list. The list must be in form: object1 , key1 ,
object2 , key2 , ..., nil . Raises NSInvalidArgumentException if any of the
keys are nil , or if any of the keys are not of the NSString class.

isEqualToDictionary:

– (BOOL)isEqualToDictionary:(NSDictionary *)other

Compares the receiver to otherDictionary . If the contents of
otherDictionary are equal to the contents of the receiver, this method
returns YES. If not, it returns NO.

keyEnumerator

– (NSEnumerator *)keyEnumerator

5-98 OpenStep Programming Reference—September 1996

5

Returns an NSEnumerator for accessing each of the receiver’s keys. The
following code shows how this method is used

id keyEnumerator = [self keyEnumerator];
id key;
while (key = [keyEnumerator nextObject]){
...
};

See also objectEnumerator , NSEnumerator .

objectEnumerator

– (NSEnumerator *)objectEnumerator

Returns an NSEnumerator that lets you access each the receiver’s values. See
also keyEnumerator , NSEnumerator .

objectForKey:

– (id)objectForKey:(id)aKey

Returns an entry’s value given its key, or nil if no value is associated with
aKey.

objectsForKeys:notFoundMarker:

- (NSArray *)objectsForKeys:(NSArray *)keys
notFoundMarker:(id) marker

Given an array of keys , this method fills the corresponding array of
corresponding objects. If the object is not present, marker is used instead.
marker cannot be set to nil , because arrays can't contain nil. A common
marker is @"".

writeToFile:atomically:

– (BOOL)writeToFile:(NSString *)path
atomically:(BOOL)useAuxiliaryFile

NSDistantObject 5-99

5

Writes a textual description of the contents of the receiver to filename . If
useAuxiliaryFile is YES, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed to the intended file name.
See also description .

NSDistantObject

Class Description

The NSDistantObject class declares the programmatic interface to objects
that serve as proxies to remote real objects.

Your application does not in general need to explicitly create
NSDistantObject objects—they are created automatically when you create
NSConnection objects for a remote object.

Exceptions

NSDistantObject raises an NSInternalInconsistencyException for a
variety of exceptions resulting from internal consistency failures.

Characteristic Description

Inherits From: NSProxy

Conforms To: NSCoding
NSObject (NSProxy)

Declared In: Foundation/NSDistantObject.h

5-100 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

proxyWithLocal:connection:

+ (NSDistantObject *)proxyWithLocal:(id)target
connection:(NSConnection *)connection

Builds and returns a local proxy for a local object target , forming a remote
proxy on the other side of connection .

proxyWithTarget:connection:

+ (NSDistantObject *)proxyWithTarget:(id)target
connection:(NSConnection *)connection

Builds and returns a remote proxy where target is an object on the other side
of connection .

Instance Methods

connectionForProxy

– (NSConnection *)connectionForProxy

Returns the NSConnection instance used by the proxy.

Activity Class Method

Building a proxy + proxyWithLocal:connection:
+ proxyWithTarget:connection:

Initializing a proxy – initWithLocal:connection:
– initWithTarget:connection:

Specifying a protocol – setProtocolForProxy:

Returning the proxy’s connection – connectionForProxy

NSEnumerator 5-101

5

initWithLocal:connection:

– (id)initWithLocal:(id)target
connection:(NSConnection *)connection

Builds a local proxy for a local object target , forming a remote proxy on the
other side of connection . You may not retain or otherwise use this proxy.

initWithTarget:connection:

– (id)initWithTarget:(id)target
connection:(NSConnection *)connection

Builds a remote proxy where target is an object on the other side of
connection . It may deallocate and return nil if this target is already known
on the connection. This is the designated initializer for subclasses.

setProtocolForProxy:

– (void)setProtocolForProxy:(Protocol *)proto

Sets the proxy’s protocol to proto for efficiency.

NSEnumerator

Class Description

NSEnumerator is a simple abstract class whose instances enumerate
collections of other objects. Collection objects—such as NSSets, NSArray s, and
NSDictionary s—provide NSEnumerator objects that can traverse their
contents. You send nextObject repeatedly to an NSEnumerator to have it
return the next object in the collection. When there are no more objects to
return, nextObject returns nil .

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSUtilities.h

5-102 OpenStep Programming Reference—September 1996

5

Collection classes include methods that return an enumerator appropriate to
the type of collection. NSArray has two methods that return an
NSEnumerator object, objectEnumerator , and
reverseObjectEnumerator (the former traverses the array starting at its
first object, while the latter starts with the last object and continues backward
through the array to the first object). NSSet ’s objectEnumerator provides an
enumerator for sets. NSDictionary has two enumerator-providing methods:
keyEnumerator and objectEnumerator .

Note – Collections shouldn’t be modified during enumeration. NSEnumerator
imposes this restriction to improve enumeration speed.

Method Types

Instance Methods

allObjects

- (NSArray *)allObjects

Calls nextObject on the collection until the end of the collection is reached.
Returns the enumerated objects in an array.

nextObject

– (id)nextObject

Returns the next object in the collection being enumerated, for example, an
NSArray or NSDictionary). Returns nil when the collection has been
traversed.

Activity Class Method

Traversing a collection – allObjects
– nextObject

NSException 5-103

5

NSException

Class Description

The NSException class provides an object-oriented way for applications to
announce and react to exceptional conditions.

An exceptional condition is one that interrupts the normal flow of program
execution. Each application can interpret different types of conditions as
exceptional. For example, one application might view as exceptional the
attempt to save a file in a directory that’s write-protected. In this sense, an
exceptional condition can be equivalent to an error. Another application might
interpret the user’s keypress as an exceptional condition—an indication that a
long-running process should be aborted.

Raising an Exception

Once an exceptional condition is detected, it must be propagated to the routine
or routines that will handle it, a process referred to as “raising an exception.”
In the OpenStep exception handling system, exceptions are raised by
instantiating an exception object and sending it a raise message.

Exception objects encapsulate:

• A name—A short NSString that is used to uniquely identify the exception

• A reason—A longer NSString that contains a “human-readable” reason for
the exception—This reason object is printed when the exception object is
printed using the “%@” format.

• userInfo —An NSDictionary object that you can use to supply
application-specific data to the exception handler. For example, if a
function’s return value caused the exception to be raised, you could pass the

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

5-104 OpenStep Programming Reference—September 1996

5

return value to the exception handler through the userInfo dictionary. Or,
if the exception handler displays a panel in response to the exception,
userInfo could contain the text string to be displayed in the panel.

Handling an Exception

Sending a raise message to an exception object initiates the propagation of the
exception and passes data about it. Where and how the exception is handled
depends on where you send the message from. First, look at a simple case.

In general, a raise message is sent to an exception object within the domain
of an exception handler. An exception handler is a control structure created by
the macros NS_DURING, NS_HANDLER, and NS_ENDHANDLER.

Figure 5-2 Exception Handling Domain and Handler

The section of code between NS_DURING and NS_HANDLER is the exception
handling domain; the section between NS_HANDLER and NS_ENDHANDLER is
the local exception handler. The normal flow of program execution is marked
by the gray arrow; the code within the local exception handler is executed only

if (/*error*/) {

NS_HANDLER

NS_ENDHANDLER

NS_DURING

[NSException raise...];
}

return;

Function()

. . .

. . .

. . .

. . .

. . .

exception handling
domain

local exception
handler

NSException 5-105

5

if an exception is raised. Sending a raise message to an exception object
causes program control to jump to the first executable line following
NS_HANDLER, as indicated by the black arrow.

An exception can be raised directly within the exception handling domain, or
indirectly from one of the methods or functions invoked from the domain. No
matter how deeply in a call sequence an exception is raised, execution jumps to
the local exception handler (assuming there are no intervening exception
handlers, as discussed in the next section). In this way, exceptions raised at a
low level can be caught at a high level.

If an exception is raised and execution begins within the local exception
handler, it either continues until all appropriate statements are executed or the
exception is raised again to invoke the services of an encompassing exception
handler, as described in the next section.

If the exception isn’t raised again, execution within the local exception handler
continues until it leaves the local handler by:

• “Falling off the end”
• Calling NS_VALRETURN()
• Calling NS_VOIDRETURN

Note – A simple return from the exception-handling domain is not permitted.

“Falling off the end” is simply the normal execution pathway introduced
above. After all appropriate statements within the domain are executed (and
no exception is raised), execution continues on the line following
NS_ENDHANDLER. Alternatively, you can return control to the caller from
within the domain by calling NS_VALRETURN() or NS_VOIDRETURN,
depending on whether you need to return a value.

You can’t use goto or return() to exit an exception-handling domain—errors
will result. Nor can you use setjmp() and longjmp() if the jump entails
crossing an NS_DURING statement. Since in many cases you won’t know if the
code that your program calls has exception-handling domains within, it is
generally not recommended that you use setjmp() and longjmp() in your
application.

5-106 OpenStep Programming Reference—September 1996

5

Nested Exception Handlers

Exception handlers can be nested so that an exception raised in an inner
domain can be treated by the local exception handler and any number of
encompassing exception handlers. The following diagram illustrates the use of
nested exception handlers, and is discussed in the text that follows.

Figure 5-3 Nested Exception Handlers

An exception raised within Function3 ’s domain causes execution to jump to
its local exception handler. In a typical application, this exception handler
checks the values contained in the NSException object to determine the
nature of the exception. For exception types that it recognizes, the local handler
responds and then sends a raise message to the exception object to pass
notification of the exception to the handler above it (in this case, the handler in
Function2). Function2 ’s exception handler does the same and then raises
the exception to Function1’s handler. Finally, Function1 ’s handler re-raises

NS_HANDLER

NS_ENDHANDLER

NS_DURING

Function2();

. . .

. . .

. . .

. . .

Function1()

top-level exception handler

return;

. . .

Function3()

Function2()

[NSException raise...];
NS_HANDLER

NS_ENDHANDLER

NS_DURING

Function3();

. . .

. . .

. . .

. . .

return;

. . .

[NSException raise...];
NS_HANDLER

NS_ENDHANDLER

NS_DURING

. . .

. . .

. . .

. . .

return;

. . .

[NSException raise...];

[NSException raise...];

NSException 5-107

5

the exception. Since there’s no exception-handling domain above Function1 ,
the exception is transferred to a default top-level error handler. For
applications based on the Application Kit, this top-level handler invokes
NSApplication ’s reportException: method, which writes an error
message to the console.

An exception that’s re-raised appears to the next higher handler just as if the
initial exception had been raised within its own exception-handling domain.

Raising an Exception Outside of an Exception Handler

If an exception is raised outside of any exception handler, it’s intercepted by
the uncaught exception handler, a function set by
NSSetUncaughtExceptionHandler() and returned by
NSUncaughtExceptionHandler()(see the Foundation Kit’s “Functions”
chapter). You can change the way uncaught exceptions are handled by using
NSSetUncaughtExceptionHandler() to establish a different procedure as
the handler. However, because of the design of the Application Kit, it’s rare for
an exception to be raised outside of an exception handling domain. The
NSApplication object’s event loop itself is within an exception handling
domain. On each cycle of the loop, the NSApplication object retrieves an
event and sends an event message to the appropriate object in the application.
The code you write for custom objects and Application Kit objects is executed
within the context of the event loop’s exception handler.

Predefined Exceptions

OpenStep predefines a number of exception names. These exceptions are listed
in NSException.h ; for example:

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;

For a complete list of global exception names, see the “Types and Constants”
chapter. You can catch any of these exceptions from within your exception
handler by comparing the exception’s name with these predefined exception
names.

5-108 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

exceptionWithName:reason:userInfo:

+ (NSException *)exceptionWithName:(NSString *)name
reason:(NSString *)reason userInfo:(NSDictionary *)userInfo

Creates an exception object, assigning it name as its name, reason as its
human-readable explanation, and userInfo as arbitrary data that will
accompany the exception.

raise:format:

+ (volatile void)raise:(NSString *)name
format:(NSString *)format,...

Creates and raises an exception with name name and a reason constructed
from format and the following arguments in the manner of printf() . The
user-defined information is nil . Invokes raise as part of its implementation.

raise:format:arguments:

+ (volatile void)raise:(NSString *)name format:(NSString *)format
arguments:(va_list)argList

Activity Class Method

Creating and raising exceptions + exceptionWithName:reason:userInfo:
+ raise:format:
+ raise:format:arguments:
– initWithName:reason:userInfo:
– raise

Querying exceptions – name
– reason
– userInfo

NSException 5-109

5

Creates and raises an exception with name name and a reason constructed
from format and the arguments in argList , in the manner of vprintf() .
The user-defined information is nil . Invokes raise as part of its
implementation.

Instance Methods

initWithName:reason:userInfo:

– (id)initWithName:(NSString *)name reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo

Initializes a newly allocated exception object, assigning it name as its name,
reason as its human-readable explanation, and userInfo as arbitrary data
that will accompany the exception.

name

– (NSString *)name

Returns the exception’s name. See also
exceptionWithName:reason:userInfo: .

raise

– (volatile void)raise

Raises the exception, causing program flow to jump to the enclosing error
handler.

reason

– (NSString *)reason

Returns the exception’s reason. See also
exceptionWithName:reason:userInfo: .

userInfo

– (NSDictionary *)userInfo

5-110 OpenStep Programming Reference—September 1996

5

Returns the exception’s user-defined data. See also
exceptionWithName:reason:userInfo: .

NSFormatter

Class Description

NSFormatter is an abstract class that declares an interface for objects that
format the textual representation of cell contents. The Foundatition Kit
provides two concrete subclasses of NSFormatter : NSNumberFormatter and
NSDateFormatter .

Cells, which are instances of NSCell and its subclasses, can have any arbitrary
object as their content. However, when cells are to be displayed or edited, they
must convert this object to an NSString . If no formatting object is associated
with a cell, the cell displays its content by invoking the localized description
method of the object it contains. But if the cell has a formatting object, the cell
invokes this object's stringForObjectValue: method to obtain the correctly
formatted string. Conversely, when the user enters text into a cell, the cell
needs to convert the text to the underlying object; formatting objects handle
this conversion as well.

To use a formatting object, you must create an instance of
NSNumberFormatter , NSDateFormatter , or a custom NSFormatter
subclass and associate the object with a cell. The cell invokes the formatting
behavior of this instance every time it needs to display its object or have it
edited, and every time it needs to convert a textual representation to its object.

Instances of NSFormatter subclasses are immutable. In addition, when a cell
with a formatter object is copied, the new cell retains the formatter object
instead of copying it.

Note that NSCell provides two methods that operate almost the same as
instances of NSNumberFormatter and NSDateFormatter . One method,
setEntryType: , takes a constant that specifies date formatting (as specified
in the user defaults) or a typical numeric format (integer, float, positive float,

Inherits From: NSObject

Conforms To: NSCoding, NSCopying

Declared In: Foundation/NSFormatter.h

NSFormatter 5-111

5

double, and so on). With isEntryAcceptable: , you can ask a cell for the
type of value it expects. Another method,
setFloatingPointFormat:left:right: , allows you to specify the digits
that appear to the left and right of the decimal point. See the
NSNumberFormatter and NSDateFormatter for further details.

Delegation Methods for Validation and Error Handling

NSControl provides the delegation method control:isValidObject: for
validating the contents of cells embedded in controls (instances of
NSTextField and NSMatrix in particular). Validation checks for values that
are permissible as objects but that are undesirable in a given context, such as a
date field in which dates should never be in the future, or zip codes that are
valid for a certain state.

The method control:isValidObject: is invoked when the cursor leaves a
cell (that is, the associated control relinquishes first-responder status) but
before the string value of the cell's object is displayed. Return YES to allow
display of the string and NO to reject display and return the cursor to the cell.
The following example evaluates an object (an NSDate) and rejects it if the
date is in the future:

- (BOOL)control:(NSControl *)control isValidObject:(id)obj
{

if (control == contactsForm) {
if (![obj isKindOfClass:[NSDate class]]) return NO;
if ([[obj laterDate:[NSDate date]] isEqual:obj]) {

NSRunAlertPanel(@"Date not valid",
@"Reason: date in future", NULL, NULL, NULL);
return NO;

}
}
return YES;

}

NSControl also has delegation methods for handling errors returned in
implementations of NSFormatter 's
getObjectValue:forString:errorDescription: and
isPartialStringValid:newEditingString:errorDescription: .
These delegation methods are, respectively,
control:didFailToFormatString:errorDescription: and
control:didFailToValidatePartialString:errorDescription: .

5-112 OpenStep Programming Reference—September 1996

5

Making an NSFormatter Subclass

There are many possibilities for custom subclasses of NSFormatter . You
might find use for a custom formatter of telephone numbers, or a custom
formatter of part numbers. To subclass NSFormatter , you must, at the least,
override the two primitive methods stringForObjectValue: and
getObjectValue:forString:errorDescription: . In the first method
you convert the cell's object to a string representation; in the second method
you convert the string to the object associated with the cell.

If the string for editing is different than the string for display (for example, the
display version of a currency field should show a dollar sign but the editing
version shouldn't) implement editingStringForObjectValue: in addition
to stringForObjectValue: .

The method
isPartialStringValid:newEditingString:errorDescription:
allows you to edit the textual contents of a cell at each key press or to prevent
entry of invalid characters. You might apply this on-the-fly editing to things
like telephone numbers or social security numbers; the person entering data
only needs to enter the number since the formatter automatically inserts the
separator characters.

Method Types

Instance Methods

editingStringForObjectValue:

-(NSString *)editingStringForObjectValue:(id)anObject

Activity Class Method

Textual representation of cell
content

– editingStringForObjectValue:
– stringForObjectValue:

Object equivalent to textual
representation

– getObjectValue:forString:errorDescription:

Dynamic cell editing – isPartialStringValid:newEditingString:
errorDescription:

NSFormatter 5-113

5

The default implementation of this method invokes
stringForObjectValue: . When implementing a subclass, override this
method only when the string that users see and the string that they edit are
different. In your implementation, return an NSString that is used for editing,
following the logic recommended for implementing
stringForObjectValue: . As an example, you would implement this
method if you want the dollar signs in displayed strings removed for editing.
See also stringForObjectValue: .

getObjectValue:forString:errorDescription:

-(BOOL)getObjectValue:(id *)anObject
forString:(NSString *)string
errorDescription:(NSString **)error

The default implementation of this method raises an exception. In your
subclass implementation, return by reference the object anObject after
creating it from the string passed in. Return YES if the conversion from string
to cell-content object was successful and NO if any error prevented the
conversion. If you return NO, also return by indirection an NSString (in
error) that explains the reason why the conversion failed; the delegate (if any)
of the NSControl managing the cell can then respond to the failure in
control:didFailToFormatString:errorDescription: .

The following implementation example (which is paired with the
stringForObjectValue: example below) converts an NSString
representation of a dollar amount that includes the dollar sign; it uses an
NSScanner to convert this amount to a float after stripping out the initial
dollar sign.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
errorDescription:(NSString **)error

{
float floatResult;
NSScanner *scanner;
BOOL retval = NO;
NSString *err = nil;

scanner = [NSScanner scannerWithString:string];
if ([string hasPrefix:@"$"]) [scanner setScanLocation:1];
if ([scanner scanFloat:&floatResult]

 && ([scanner scanLocation] == [string length])) {
if (obj) {

5-114 OpenStep Programming Reference—September 1996

5

*obj = [NSNumber numberWithFloat:floatResult];
retval = YES;

}
else {

err = @"Couldn't convert to float";
}

}
if (error) {

*error = err;
}

 return retval;
}

See also stringForObjectValue: .

isPartialStringValid:newEditingString:
errorDescription:

-(BOOL)isPartialStringValid:(NSString *)partialString
newEditingString:(NSString **)newString
errorDescription:(NSString **)error

Since this method is invoked at each key press in the cell, it permits editing or
evaluation of cell text as it is typed. The text as currently typed
(partialString) is passed in. Evaluate this text according to the context, edit
the text if necessary, and return by reference any edited NSString in
newString . Return YES if partialString is acceptable and NO if
partialString is unacceptable. If you return NO and newString is nil ,
partialString minus the last character typed is displayed. If you return NO,
you can also return by indirection an NSString (in error) that explains the
reason why the validation failed. The delegate (if any) of the NSControl
managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription: .

stringForObjectValue:

-(NSString *)stringForObjectValue:(id)anObject

The default implementation of this method raises an exception. When
subclassing, return the NSString that textually represents the cell's object for
display and, if editingStringForObjectValue: is unimplemented, for

NSInvocation 5-115

5

editing. First test the passed-in object to see if it is of the correct class. If it is
not, return nil ; if it is of the correct class, return a properly formatted and, if
necessary, localized string.

The following implementation, which is paired with the
getObjectValue:forString:errorDescription: example above,
prefixes a two-digit float representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject
{

if (![anObject isKindOfClass:[NSNumber class]]) {
return nil;

}
return [NSString stringWithFormat:@"$%.2f", [anObject
 floatValue]];

}

NSInvocation

Class Description

Objects of the NSInvocation class provide a system-independent means to
construct message calls to other objects. An NSInvocation object constructs a
target object to which a message can be sent, a selector for that method, an
argument list for the selector, and a return value. NSInvocation objects
provide great flexibility in that the methods, method arguments, and targets of
the methods may be constructed dynamically.

The final sending of the message to the target object can be performed at any
time, independent of constructing the invocation. For example, methods could
be dispatched based on timer events. In addition, return values from the
methods are stored in the NSInvocation object and can be retrieved at any
later stage in processing.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: Foundation/NSInvocation.h

5-116 OpenStep Programming Reference—September 1996

5

Note – See NSMethodSignature for a description of how to construct method
signatures.

Method Types

Class Methods

invocationWithMethodSignature:

+ (NSInvocation *)invocationWithMethodSignature:
(NSMethodSignature *)sig

Returns an invocation object able to construct calls to objects using method
selectors with type signatures described by sig . Raises
NSInvalidArgumentException if sig is nil .

Instance Methods

argumentsRetained

– (BOOL)argumentsRetained

Activity Class Method

Creating invocations + invocationWithMethodSignature:

Managing invocation arguments – argumentsRetained
– getArgument:atIndex:
– getReturnValue:
– methodSignature
– retainArguments
– selector
– setArgument:atIndex:
– setReturnValue:
– setSelector:
– setTarget:
– target

Dispatching an invocation – invoke
– invokeWithTarget:

NSInvocation 5-117

5

Returns YES if arguments are retained, and returns NO otherwise. See also
retainArguments .

getArgument:atIndex:

– (void)getArgument:(void *)argumentLocation atIndex:(int)index

Copies the argument stored at index into the storage pointed to by
argumentLocation where 2 is the index of the first argument, 3 is the index
of the second argument, and so on. Raises NSInvalidArgumentException if
index is greater than the number of arguments (or less than -1), or if
arguments aren’t available. See also setArgument:atIndex: .

getReturnValue:

– (void)getReturnValue:(void *)retLoc

Copies the invocation’s return value into the storage pointed to by retLoc .
Raises NSInvalidArgumentException if index is greater than the number
of arguments, or if arguments aren’t available.

invoke

– (void)invoke

Causes the message encoded in the invocation to be dispatched to its target.

invokeWithTarget:

– (void)invokeWithTarget:(id)target

Causes the message encoded in the invocation to be dispatched to target .

methodSignature

– (NSMethodSignature *)methodSignature

Returns the invocation’s method signature object. See also
NSMethodSignature .

5-118 OpenStep Programming Reference—September 1996

5

retainArguments

– (void)retainArguments

By default, target and arguments are not retained, and C strings are not copied.
This method instructs the invocation to retain its arguments and target, and to

make copies of C strings. This method is invoked automatically by timers. This
method should be invoked whenever the dynamic scope of the invocation can
exceed its arguments. See also argumentsRetained .

selector

– (SEL)selector

Returns the invocation’s selector.

setArgument:atIndex:

– (void)setArgument:(void *)argumentLocation atIndex:(int)index

Sets the argument stored at index to the storage pointed to by
argumentLocation where 2 is the index of the first argument, 3 is the index
of the second, and so on. See also getArgument:atIndex: .

setReturnValue:

– (void)setReturnValue:(void *)retLoc

Sets the invocation’s return value to that indicated by retLoc .

setSelector:

– (void)setSelector:(SEL)selector

Sets the invocation’s selector to selector .

setTarget:

– (void)setTarget:(id)target

Sets the invocation’s target to target .

NSLock 5-119

5

target

– (id)target

Returns the invocation’s target; returns nil if there is no target.

NSLock

Class Description

An NSLock is used to protect critical regions of code. A lock is created once
and is subsequently used to protect one or more regions of code. If a region of
code is in use, an NSLock waits using the condition_wait() function, so the
thread doesn’t busy-wait. The following example shows the use of an NSLock
with the methods lock and unlock defined in the NSLocking protocol:

NSLock *theLock = [NSLock new]; // done once!
/* ... other code */
[theLock lock];
/* ... possibly a long time of fussing with global data... */
[theLock unlock];

The NSConditionLock , NSLock , and NSRecursiveLock classes all
implement the NSLocking protocol with various features and performance
characteristics; see the other class descriptions for more information.

Note – See also the NSLocking protocol.

Characteristic Description

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

5-120 OpenStep Programming Reference—September 1996

5

Method Types

Instance Methods

tryLock

– (BOOL)tryLock

Attempts to acquire a lock. Returns YES if successful and NO otherwise.
Returns immediately.

NSMethodSignature

Class Description

NSMethodSignature provides the programmatic interface to objects that
provide access to the “type signatures” of an object’s methods—that is, the
types of the arguments and return value. A method signature is used by the
distributed objects machinery to determine how to correctly encode method
names and arguments for the underlying interprocess communications. The
typical use of method signatures is when a message is sent to a remote object
via a proxy. If the proxy doesn’t know the types of arguments a remote object
will use, the proxy first has to query the remote object for its method signature
object, which specifies the types the method requires as arguments. The proxy
then knows how to encode the data it has been passed, and forward it correctly
to the real object.

Activity Class Method

Acquiring a lock – tryLock

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSMethodSignature.h

NSMethodSignature 5-121

5

Given a method signature, all other available instance methods query the
object for information about the signature, such as its return type, number of
arguments, stack frame size (obviously architecture-dependent), and so on.

See the NSInvocation for the class which can use method signature objects to
send messages to other objects.

Method Types

Instance Methods

argumentInfoAtIndex:

– (NSArgumentInfo)argumentInfoAtIndex:(unsigned)index

Returns information about the argument at index . Indices begin with 0. The
“hidden” arguments self and _cmd are indexed at 0 and 1; method-specific
arguments begin at index 2. If index is too large for the actual number of
arguments, NSInvalidArgumentException is raised. See also
NSArgumentInfo .

frameLength

– (unsigned)frameLength

Returns the number of bytes that the arguments, taken together, would occupy
on the stack.

getArgumentTypeAtIndex:

- (const char *)getArgumentTypeAtIndex:(unsigned)index

Activity Class Method

Querying a method signature – argumentInfoAtIndex:
– frameLength
– getArgumentTypeAtIndex:
– isOneway
– methodReturnLength
– methodReturnType
– numberOfArguments

5-122 OpenStep Programming Reference—September 1996

5

Returns the type of method argument index . Raises
NSInvalidArgumentException if index is out of bounds.

isOneway

– (BOOL)isOneway

Returns YES if the method is asynchronous (that is, it returns without waiting
for the receiver to finish processing it), and returns NO otherwise.

methodReturnLength

– (unsigned)methodReturnLength

Returns the number of bytes required by the return value.

methodReturnType

– (const char *)methodReturnType

Returns a string encoding the return type of the method. What the characters
in the string represent is usually defined by some implementation-dependent
runtime types.

numberOfArguments

– (unsigned)numberOfArguments

Returns the number of arguments recorded in the receiver. This will be at least
two, since it includes the “hidden” arguments self and _cmd, which are the
first two arguments passed to every method implementation.

NSMutableArray 5-123

5

NSMutableArray

Class Description

The NSMutableArray class declares the programmatic interface to objects that
manage a modifiable array of objects. This class adds insertion and deletion
operations to the basic array-handling behavior it inherits from NSArray .

The array operations that NSMutableArray declares are conceptually based
on these three methods:

addObject:
replaceObjectAtIndex:withObject:
removeLastObject

The other methods in its interface provide convenient ways of inserting an
object into a specific slot in the array and of removing an object based on its
identity or position in the array.

When an object is removed from a mutable array it receives a release
message, which can cause it to be deallocated. Note that if your program keeps
a reference to such an object, the reference may become invalid unless you
remember to send the object a retain message before it is removed from the
array. For example, the third statement in the following example could result in
a run-time error, except for the retain message in the first statement:

id anObject = [[anArray objectAtIndex:0] retain];
[anArray removeObjectAtIndex:0];
[anObject someMessage];

Implementing Subclasses of NSMutableArray

Although conceptually the interface to the NSMutableArray class is based on
the three methods listed previously, for performance reasons two
others—insertObject:atIndex: and removeObjectAtIndex: —also

Characteristic Description

Inherits From: NSArray : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSArray)
NSObject (NSObject)

Declared In: Foundation/NSArray.h

5-124 OpenStep Programming Reference—September 1996

5

directly access the object’s data. These two methods could be implemented
using the methods listed above but in doing so would incur unnecessary
overhead from the retain and release messages that objects would receive
as they are shifted to accommodate the insertion or deletion of an element.
Thus, if you create a subclass of NSMutableArray , you should override all
five primitive methods so that the other methods in NSMutableArray ’s
interface work properly.

NSMutableArray 5-125

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized NSMutableArray in zone . See also
arrayWithCapacity: , initWithCapacity: .

Activity Class Method

Creating and initializing an
NSMutableArray

+ allocWithZone:
+ arrayWithCapacity:
– initWithCapacity:

Adding objects – addObject:
– addObjectsFromArray:
– insertObject:atIndex:

Removing objects – removeAllObjects
– removeLastObject
– removeObject:
– removeObjectAtIndex:
– removeObjectIdenticalTo:
– removeObjectIdenticalTo:inRange:
– removeObject:inRange:
– removeObjectsFromIndices:numIndices:
– removeObjectsInArray:
– removeObjectsInRange:

Replacing objects – replaceObjectAtIndex:withObject:
– replaceObjectsInRange:withObjectsFromArray:
–
replaceObjectsInRange:withObjectsFromArray:
range:
– setArray:

Sorting elements – sortUsingFunction:context:
– sortUsingSelector:

5-126 OpenStep Programming Reference—September 1996

5

arrayWithCapacity:

+ (id)arrayWithCapacity:(unsigned int)aNumItems

Creates and returns an NSMutableArray , giving it enough allocated memory
to hold numItems objects. See also initWithCapacity: , allocWithZone: .

Instance Methods

addObject:

– (void)addObject:(id)anObject

Inserts anObject at the end of the array. Raises
NSInvalidArgumentException if anObject is nil . See also
addObjectsFromArray: .

addObjectsFromArray:

– (void)addObjectsFromArray:(NSArray *)anotherArray

Adds the objects contained in anotherArray to the end of the receiver’s
array. Raises NSInvalidArgumentException if any member of
anotherArray is nil . See also addObject: .

initWithCapacity:

– (id)initWithCapacity:(unsigned int)aNumItems

Initializes a newly allocated NSMutableArray , giving it enough memory to
hold numItems objects. See also arrayWithCapacity: .

insertObject:atIndex:

– (void)insertObject:(id)anObject atIndex:(unsigned int)index

Inserts anObject into the array at index . Raises
NSInvalidArgumentException if anObject is nil . Raises
NSRangeException if index is outside of the bounds of the array. See also
addObject: .

NSMutableArray 5-127

5

removeAllObjects

– (void)removeAllObjects

Sends the removeLastObject message to empty the array of all its elements,
from last to first. See also removeObject: , removeLastObject .

removeLastObject

– (void)removeLastObject

Removes the last object in the array and sends it a release message. Raises
NSRangeException if there are no objects in the array. See also
removeAllObjects , removeObject: .

removeObject:

– (void)removeObject:(id)anObject

Removes all occurrences of anObject . isEqual: is used to test for
anObject . See also removeAllObjects , removeLastObject ,
removeObjectAtIndex: , removeObjectIdenticalTo: ,
removeObjectsFromIndices:numIndices: , removeObjectsInArray: .

removeObjectAtIndex:

– (void)removeObjectAtIndex:(unsigned int)index

Removes the object at index and moves all elements beyond index up one
slot to fill the gap. Raises NSRangeException if index is outside of the
bounds of the array. See also removeObjectsFromIndices:numIndices: ,
removeObject: .

removeObjectIdenticalTo:

– (void)removeObjectIdenticalTo:(id)anObject

Removes all elements having the same id as anObject . See also
removeObject: .

5-128 OpenStep Programming Reference—September 1996

5

removeObjectIdenticalTo:inRange:

- (void)removeObjectIdenticalTo:(id)anObject
inRange:(NSRange)range

Searches the specified range removing all occurrences of anObject . See also
removeObject:inRange: , removeObjectIdenticalTo: .

removeObject:inRange:

- (void)removeObject:(id)anObject inRange:(NSRange)range

Searches the given array range for anObject , removing it if found. Raises an
exception if range yields an out of bounds index.See also
removeObjectIdenticalTo:inRange: , removeObjectsInRange: ,
replaceObjectsInRange:withObjectsFromArray: .

removeObjectsFromIndices:numIndices:

– (void)removeObjectsFromIndices:(unsigned int*)indices
numIndices:(unsigned int)count

Removes objects at the positions specified in the indices array, which has
count elements. Raises NSRangeException if any of the indices is outside
of the bounds of the array. This method is provided for efficiency reasons; it
will not work if the receiver is a proxy to an array in another process. See also
removeObjectAtIndex: , removeObject: .

removeObjectsInArray:

– (void)removeObjectsInArray:(NSArray *)otherArray

Removes from the receiver the objects found in otherArray . See also
removeObjectsFromIndices:numIndices: , removeObject: .

removeObjectsInRange:

- (void)removeObjectsInRange:(NSRange)range

Removes the given range of objects from the array. Raises an exception if range
yields an out of bounds index.See also removeObject:inRange: ,
replaceObjectsInRange:withObjectsFromArray: .

NSMutableArray 5-129

5

replaceObjectAtIndex:withObject:

– (void)replaceObjectAtIndex:(unsigned int)index
withObject:(id)anObject

Replaces the object at index with anObject . Raises
NSInvalidArgumentException if anObject is nil . Raises
NSRangeException if index is not within the bounds of the array. See also
setArray: .

replaceObjectsInRange:withObjectsFromArray:

- (void)replaceObjectsInRange:(NSRange)range
withObjectsFromArray:(NSArray *)otherArray

Replaces the given range of the receiving array’s objects with the contents of
otherArray . If range.length is 0, then this method inserts the contents of
otherArray at range.location . For example, if range is {5,0} and
otherArray contains 3 objects, then the current object at index 5 of the receiver
will be at index 8 after the message is sent. Raises an exception if range yields
an out of bounds index. See also
replaceObjectsInRange:withObjectsFromArray: range: ,
removeObjectsInRange: .

replaceObjectsInRange:withObjectsFromArray:
range:

- (void)replaceObjectsInRange:(NSRange)range
withObjectsFromArray:(NSArray *)otherArray
range:(NSRange)otherRange

Replaces the given range of the receiving array’s objects with the given
otherRange of otherArray . If range.length is 0, then this method inserts
the given otherRange of otherArray at range.location . For example, if
range is {5,0} and otherRange specifies 3 objects, then the current object at
index 5 of the receiver will be at index 8 after the message is sent.If
otherRange.length is 0, then this method behaves like
removeObjectsInRange: . Raises an exception if range yields an out of
bounds index. See also
replaceObjectsInRange:withObjectsFromArray: ,
removeObjectsInRange: .

5-130 OpenStep Programming Reference—September 1996

5

setArray:

– (void)setArray:(NSArray *)otherArray

Sets the receiver’s contents to the elements in otherArray . Raises
NSInvalidArgumentException if any member of otherArray is nil See
replaceObjectAtIndex:withObject: .

sortUsingFunction:context:

– (void)sortUsingFunction:(int (*)(id element1, id element2,
void *userData))comparator context:(void *)context

Sorts the receiver’s elements in ascending order as defined by the comparison
function comparator . context is passed as the function’s third argument.
See also sortUsingSelector: .

sortUsingSelector:

– (void)sortUsingSelector:(SEL)comparator

Sorts the receiver’s elements in ascending order as defined by the comparison
method comparator . See also sortUsingFunction:context: .

NSMutableCharacterSet

Class Description

The NSMutableCharacterSet class declares the programmatic interface to
objects that construct mutable descriptions of character sets in the Unicode
character encoding. Having constructed such character set descriptions using
methods described in the NSCharacterSet class, you can use the methods
described here to modify the character sets dynamically.

Characteristic Description

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCopying, NSMutableCopying
NSCoding, NSCopying, NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

NSMutableCharacterSet 5-131

5

Method Types

Instance Methods

addCharactersInRange:

– (void)addCharactersInRange:(NSRange)aRange

Adds the Unicode characters in aRange to the receiver.

addCharactersInString:

– (void)addCharactersInString:(NSString *)aString

Adds the characters in aString to those in the receiver.

formIntersectionWithCharacterSet:

– (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet

Modifies the receiver so that it contains only those characters that exist in both
the receiver and in otherSet .

formUnionWithCharacterSet:

– (void)formUnionWithCharacterSet:(NSCharacterSet *)otherSet

Modifies the receiver so that it contains all characters that exist in either the
receiver or otherSet , barring duplicates.

Activity Class Method

Adding and removing characters – addCharactersInRange:
– addCharactersInString:
– removeCharactersInRange:
– removeCharactersInString:

Combining character sets – formIntersectionWithCharacterSet:
– formUnionWithCharacterSet:

Inverting character set – invert

5-132 OpenStep Programming Reference—September 1996

5

invert

– (void)invert

Replaces all of the characters in the receiver with all the characters it didn’t
previously contain.

removeCharactersInRange:

– (void)removeCharactersInRange:(NSRange)aRange

Removes from the receiver the Unicode characters whose values are given by
aRange .

removeCharactersInString:

– (void)removeCharactersInString:(NSString *)aString

Removes from the receiver the characters in aString .

NSMutableData

Class Description

The NSMutableData class declares the programmatic interface to objects that
contain modifiable data in the form of bytes. This class inherits all read-only
access methods from its superclass, NSData , and declares only those methods
that permit the modification of the data.

Characteristic Description

Inherits From: NSData : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h

NSMutableData 5-133

5

NSMutableData ’s two primitive methods—mutableBytes and
setLength: —provide the basis for all the other methods in its interface. The
mutableBytes method returns a pointer for writing into the bytes contained
in the mutable data object. setLength: allows you to truncate or extend the
length of a mutable data object.

The appendBytes:length: and appendData: methods let you append
bytes or the contents of another data object to a mutable data object. You can
replace a range of bytes in a mutable data object with either zeroes by using
the resetBytesInRange: method, or with different bytes by using the
replaceBytesInRange:withBytes: method.

This class declares various serialization methods that enable architecture-
independent serialization of arbitrary Objective C types.

5-134 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized mutable data object from zone .

dataWithCapacity:

+ (id)dataWithCapacity:(unsigned int)numBytes

Creates and returns a mutable data object, initially allocating enough memory
to hold numBytes bytes.

Activity Class Method

Creating an NSMutableData object + allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
– initWithCapacity:
– initWithLength:

Adjusting capacity – increaseLengthBy:
– mutableBytes
– setLength:

Appending data – appendBytes:length:
– appendData:

Modifying data – replaceBytesInRange:withBytes:
– resetBytesInRange:

Serializing data – serializeAlignedBytesLength:
– serializeDataAt:ofObjCType:context:
– serializeInt:
– serializeInt:atIndex:
– serializeInts:count:
– serializeInts:count:atIndex:

NSMutableData 5-135

5

dataWithLength:

+ (id)dataWithLength:(unsigned int)length

Creates and returns a mutable data object, giving it enough memory to hold
length bytes. Fills the object with zeroes up to length .

Instance Methods

appendBytes:length:

– (void)appendBytes:(const void *)bytes length:(unsigned int)length

Appends length bytes to a mutable data object from the buffer bytes . See
also serializeAlignedBytesLength: .

appendData:

– (void)appendData:(NSData *)other

Appends the contents of the data object other to the receiver.

increaseLengthBy:

– (void)increaseLengthBy:(unsigned int)extraLength

Increases the length of a mutable data object by extraLength zero-filled
bytes.

initWithCapacity:

– (id)initWithCapacity:(unsigned int)capacity

Initializes a newly allocated mutable data object, giving it enough memory to
hold capacity bytes. Sets the length of the data object to 0.

initWithLength:

– (id)initWithLength:(unsigned int)length

Initializes a newly allocated mutable data object, giving it enough memory to
hold length bytes. Fills the object with zeroes up to length .

5-136 OpenStep Programming Reference—September 1996

5

mutableBytes

– (void *)mutableBytes

Returns a pointer to the bytes in a mutable data object, enabling you to modify
the bytes.

replaceBytesInRange:withBytes:

– (void)replaceBytesInRange:(NSRange)aRange
withBytes:(const void *)bytes

Replaces the receiver’s bytes located in aRange with bytes . Raises an
NSRangeException if aRange is not within the range of the receiver's data.

resetBytesInRange:

– (void)resetBytesInRange:(NSRange)aRange

Replaces the receiver’s bytes located in aRange with zeros. Raises an
NSRangeException if aRange is not within the range of the receiver's data.

serializeAlignedBytesLength:

– (void)serializeAlignedBytesLength:(unsigned int)length

Prepares bytes for an appendBytes:length: invocation by serializing them.
If the length of the bytes will cause extension past the page size, this method
encodes header information, creating a hole so that all bytes in the data object
are aligned on page boundaries.

serializeDataAt:ofObjCType:context:

– (void)serializeDataAt:(const void *)data
ofObjCType:(const char *)type
context:(id <NSObjCTypeSerializationCallBack>)callback

Serializes whatever data element is referenced by data , interpreting it by the
Objective C type specifier type .If the data element is an object other than an
instance of NSDictionary , NSArray , NSString , or NSData , further definition
of the object can occur through a callback from object callback . All Objective
C types are currently supported except union s and void * . Pointers refer to a
single item.

NSMutableData 5-137

5

serializeInt:

– (void)serializeInt:(int)value

Serializes the integer value by encoding it as a character representation.

serializeInt:atIndex:

– (void)serializeInt:(int)value atIndex:(unsigned int)index

Serializes the integer value by encoding it as a character representation and
replaces the encoded value at the specified index in the data.

serializeInts:count:

– (void)serializeInts:(int *)intBuffer count:(unsigned int)numInts

Serializes numInts count of integers in intBuffer by encoding each integer
as a character representation.

serializeInts:count:atIndex:

– (void)serializeInts:(int *)intBuffer count:(unsigned int)numInts
atIndex:(unsigned int)index

Serializes numInts count of integers in intBuffer by encoding each integer,
starting at the specified index , and replacing each corresponding integer
encoding serially.

setLength:

– (void)setLength:(unsigned int)length

Extends or truncates the length of a mutable data object by length bytes. If
the mutable data object is extended, the additional bytes are zero-filled.

5-138 OpenStep Programming Reference—September 1996

5

NSMutableDictionary

Class Description

The NSMutableDictionary class declares the programmatic interface to
objects that manage mutable associations of keys and values. With its two
efficient primitive methods—setObject:forKey: and
removeObject:forKey: —this class adds modification operations to the
basic operations it inherits from NSDictionary .

The other methods declared here operate by invoking one or both of these
primitives. The derived methods provide convenient ways of adding or
removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects
that make up the entry receive a release message, which can cause them to
be deallocated. Note that if your program keeps a reference to such objects, the
reference will become invalid unless you remember to send the object a
retain message before it is removed from the dictionary. For example, the
third statement following could result in a run-time error, except for the
retain message in the first statement:

id anObject = [[aDictionary objectForKey: theKey] retain];
[aDictionary removeObjectForKey: theKey];
[anObject someMessage];

Characteristic Description

Inherits From: NSDictionary : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSDictionary)
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

NSMutableDictionary 5-139

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized NSMutableDictionary in zone .

dictionaryWithCapacity:

+ (id)dictionaryWithCapacity:(unsigned int)aNumItems

Creates and returns an NSMutableDictionary , giving it enough allocated
memory to hold numEntries entries.

Instance Methods

addEntriesFromDictionary:

– (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary

Adds the entries from otherDictionary to the receiver.

initWithCapacity:

– (id)initWithCapacity:(unsigned int)aNumItems

Activity Class Method

Allocating and initializing + allocWithZone:
+ dictionaryWithCapacity:
– initWithCapacity:

Adding and removing entries – addEntriesFromDictionary:
– removeAllObjects
– removeObjectsForKeys:
– setObject:forKey:
– setDictionary:

5-140 OpenStep Programming Reference—September 1996

5

Initializes a newly allocated NSMutableDictionary , giving it enough
allocated memory to hold numEntries entries.

removeAllObjects

– (void)removeAllObjects

Empties the receiver of its entries.

removeObjectForKey:

– (void)removeObjectForKey:(id)theKey

Removes theKey and its associated value object from the dictionary. Raises
NSInvalidArgumentException if aKey is nil .

removeObjectsForKeys:

– (void)removeObjectsForKeys:(NSArray *)keyArray

Removes from the receiver one or more entries as identified by the keys in
keyArray . Raises NSInvalidArgumentException if aKey is nil .

setDictionary:

– (void)setDictionary:(NSDictionary *)otherDictionary

Sets the contents of the receiver to the keys and values in otherDictionary .

setObject:forKey:

– (void)setObject:(id)anObject forKey:(id)aKey

Adds an entry to the receiver, consisting of anObject and its corresponding
key aKey. Raises NSInvalidArgumentException if either anObject or
aKey is nil .

NSMutableSet 5-141

5

NSMutableSet

Class Description

The NSMutableSet class declares the programmatic interface to an object that
manages a mutable set of objects. NSMutableSet provides support for the
mathematical concept of a set. A set, both in its mathematical sense, and in the
OpenStep implementation of NSMutableSet , is an unordered collection of
distinct elements. OpenStep also provides the NSCountedSet class for a
mutable set that can contain multiple instances of the same element, and
provides the NSSet class for creating and managing immutable sets. In
general, you should use NSSet unless you really need a mutable set.

Use set objects as an alternative to array objects when the order of elements is
not important, but performance in testing whether an object is contained in the
set is a consideration—while arrays are ordered, testing for membership is
slower than with sets.

Note – Objects in a set must respond to hash and isEqual: methods. See the
NSObject protocol for details on hash and isEqual: .

Generally, you instantiate an NSMutableSet object by sending one of the
set... methods to the NSMutableSet class object, as described in the
method descriptions for NSSet . These methods return an NSMutableSet
object containing the elements (if any) you pass in as arguments. Newly
created instances of NSMutableSet created by invoking the set method can
be populated with objects using any of the init... methods.
initWithObjects: is the designated initializer for this class.

Objects are added to an NSMutableSet using addObject: , which adds a
single specified object to the set, addObjectsFromArray: , which adds all
objects from a specified array to the set, or by unionSet: , which adds all the
objects from another set to this set.

Characteristic Description

Inherits From: NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

5-142 OpenStep Programming Reference—September 1996

5

Objects are removed from an NSMutableSet using any of the methods
intersectSet: , minusSet: , removeAllObjects or removeObject: .

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized set object in zone .

setWithCapacity:

+ (id)setWithCapacity:(unsigned)numItems

Creates and returns a set object, giving it enough allocated memory to hold
numItems objects.

Instance Methods

addObject:

– (void)addObject:(id)object

Activity Class Method

Allocating and initializating an
NSMutableSet

+ allocWithZone:
+ setWithCapacity:
– initWithCapacity:

Adding objects – addObject:
– addObjectsFromArray:
– unionSet:

Removing objects – intersectSet:
– minusSet:
– removeAllObjects
– removeObject:

NSMutableSet 5-143

5

Adds object to the set, unless object is equal to some object already in the
set.

addObjectsFromArray:

– (void)addObjectsFromArray:(NSArray *)array

Adds to the set all the objects in array , by calling addObject: for each one.

initWithCapacity:

– (id)initWithCapacity:(unsigned)numItems

Initializes a newly allocated set object, giving it enough allocated memory to
hold numItems objects.

intersectSet:

– (void)intersectSet:(NSSet *)otherSet

Removes from the receiving set every object that’s not equal to any object in
otherSet , by calling removeObject: for each one.

minusSet:

– (void)minusSet:(NSSet *)otherSet

Removes from the receiving set every object that’s equal to some object in
otherSet , by calling removeObject: for each one.

removeAllObjects

– (void)removeAllObjects

Removes all set elements. This method doesn’t call removeObject: .

removeObject:

– (void)removeObject:(id)object

If any member of the receiving set is equal to object , this method removes
that object from the set.

5-144 OpenStep Programming Reference—September 1996

5

unionSet:

– (void)unionSet:(NSSet *)otherSet

Adds to the receiving set all the objects in otherSet , by calling addObject:
for each one.

NSMutableString

Class Description

NSMutableString (and NSString) declare the programmatic interface for
objects that create and manage mutable, representation-independent character
strings. For a more general overview of string classes, see the description of
NSString .

NSMutableString (and NSString) are abstract classes for string
manipulation. NSMutableString declares the interface to objects that inherit
all the capabilities of NSString objects, but in addition allow for modification
of the string data. NSString and NSMutableString provide factory methods
that return autoreleased instances of unspecified subclasses of strings.

You can instantiate an NSMutableString object by sending the
stringWithCapacity: or localizedStringWithFormat: method to the
NSMutableString class object. A newly allocated NSMutableString object
can also be initialized using the initWithCapacity: method, to set the
string to a specified capacity.

Characteristic Description

Inherits From: NSString : NSObject

Conforms To:
NSCoding, NSCopying,
NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

NSMutableString 5-145

5

Method Types

Class Methods

localizedStringWithFormat:

+ (id)localizedStringWithFormat:
(NSString *)format,...

Returns a string created by using format as a printf() style format string,
and the following arguments as values to be substituted into the format string.
The user’s default locale is used for format information.

stringWithCapacity:

+ (id)stringWithCapacity:(unsigned int)capacity

Returns an empty mutable string, using capacity as a hint for how much
initial storage to reserve.

Instance Methods

appendFormat:

– (void)appendFormat:(NSString *)format,...

Activity Class Method

Creating temporary strings + localizedStringWithFormat:
+ stringWithCapacity:

Initializing a mutable string – initWithCapacity:

Modifying a string – appendFormat:
– appendString:
– deleteCharactersInRange:
– insertString:atIndex:
– replaceCharactersInRange:withString:
– setString:

5-146 OpenStep Programming Reference—September 1996

5

Adds a constructed string to the receiver. The new characters are created by
using format as a printf() style format string, and the following arguments
as values to be substituted into the format string. Invokes
replaceCharactersInRange:withString: as part of its implementation.
See also appendString: .

appendString:

– (void)appendString:(NSString *)aString

Adds the characters of aString to the end of the receiver. Invokes
replaceCharactersInRange:withString: as part of its implementation.
See also insertString:atIndex: , appendFormat: .

deleteCharactersInRange:

– (void)deleteCharactersInRange:(NSRange)range

Removes from the receiver the characters in range . This method raises an
NSStringBoundsError exception if any part of range lies beyond the end of
the string. Invokes replaceCharactersInRange:withString: as part of
its implementation.

initWithCapacity:

– (id)initWithCapacity:(unsigned int)capacity

Initializes a newly allocated mutable string object, giving it enough allocated
memory to hold capacity characters. See also stringWithCapacity: .

insertString:atIndex:

– (void)insertString:(NSString *)aString atIndex:(unsigned)index

Inserts the characters of aString into the receiver, such that the new
characters begin at index and the existing characters from index to the end
are shifted by the length of aString . This method raises an
NSStringBoundsError exception if index lies beyond the end of the string.
Invokes replaceCharactersInRange:withString: as part of its
implementation. See also appendString: .

NSNotification 5-147

5

replaceCharactersInRange:withString:

– (void)replaceCharactersInRange:(NSRange)aRange
withString:(NSString *)aString

Inserts the characters of aString into the receiver, such that they replace the
characters in aRange . This method raises an NSStringBoundsError
exception if any part of aRange lies beyond the end of the string. See also
appendString: .

setString:

– (void)setString:(NSString *)aString

Replaces the characters of the receiver with those in aString .

NSNotification

Class Description

NSNotification objects provide a flexible way to transmit event information
between objects.

Message passing—invoking a method—is the standard way to convey
information between objects. However, this requires the object sending the
message know what the receiving object is. At times this explicit binding of
two objects is undesirable—most notably because it would tie two otherwise
independent subsystems. For these instances, a looser broadcast model is
introduced: An object posts a notification, which is dispatched to the
appropriate receivers through a notification center.

An object may post an NSNotification object (referred to as a notification
object or simply, a notification), which contains information about an object: the
notification’s name, its sender, and an optional dictionary containing other

Characteristic Description

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSNotification.h

5-148 OpenStep Programming Reference—September 1996

5

information. Other objects can register themselves as observers to receive
notification objects when they are posted. When the event happens, the
registered objects receive notifications. The object posting the
NSNotification object, the object the notification is about, and the observer
of the notification may all be different objects.

An NSNotificationCenter object registers observers for events and notifies
the observers if these events occur. An object may ask an
NSNotificationCenter object (also known as a notification center) to observe
an event regarding another object. If the event occurs, the posting object tells
the notification center to notify its observers that this condition has occurred.
The notification center then sends a notification to all observing objects. (See
the class specification of NSNotificationCenter for more on posting
notification objects.)

This notification model frees an object from concern about what objects may
want to observe it. An object involved with an event—or another object—may
simply post a notification about that event without knowing what objects—if
any—are observing the event. The notification center takes care of distributing
notifications to registered observers. Another benefit of this model is to allow
multiple objects to listen for notifications, an effect that might otherwise
require explicitly setting up an array.

You instantiate a notification object directly by sending the
notificationWithName:object: or
notificationWithName:object:userInfo: messages to the
NSNotification class object. You can also create notifications indirectly
through the NSNotificationCenter class using the
postNotificationName:object: and
postNotificationName:object:userInfo: convenience methods.

You can subclass NSNotification to contain information in addition to the
notification name, sender, and dictionary. NSNotification objects are
immutable objects.

The NSNotification class adopts the NSCopying protocol, making it
possible to treat notifications as context-independent values that can be copied
and reused. You can put notifications in an array and send the copy message
to that array, which recursively copies every item. This essentially allows
clients to deal with notifications as first class values that can be copied by
collections.

NSNotification 5-149

5

Method Types

Class Methods

notificationWithName:object:

+ (NSNotification *)notificationWithName:(NSString *)aName
object:(id)anObject

Returns a notification object that associates the name aName with the object
anObject .

notificationWithName:object:userInfo:

+ (NSNotification *)notificationWithName:(NSString *)aName
object:(id)anObject userInfo:(NSDictionary *)userInfo

Returns a notification object that associates the name aName with the object
anObject and the dictionary of arbitrary data userInfo . userInfo may be
nil .

Instance Methods

name

– (NSString *)name

Returns the name of the notification.

object

– (id)object

Activity Class Method

Creating notification objects + notificationWithName:object:
+ notificationWithName:object:userInfo:

Querying a notification object – name
– object
– userInfo

5-150 OpenStep Programming Reference—September 1996

5

Returns the object (such as the sender) that’s associated with this notification.

userInfo

– (NSDictionary *)userInfo

Returns a dictionary object associated with this notification. Returns nil if
there is no such object.

NSNotificationCenter

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially
a notification dispatch table. It notifies all observers of events meeting specific
criteria of notification and sender. This event information is encapsulated in
NSNotification objects, also known as notification objects, or simply,
notifications. Client objects register themselves as observers of a specific
notification originating in another object. When the condition occurs to signal a
notification, some object (which may or may not be the object observed) posts
an appropriate notification object to the notification center. See the class
specification of NSNotification for more on notification objects. The
notification center dispatches a message to each observer using the selector
provided by the observer, with the notification as the sole argument.

An object registers itself to observe notifications by the
addObserver:selector:name:object: method, specifying the object and
associated notification it wants to see. However, the observer need not specify
both of these parameters. If it specifies only the object, it will see all
notifications associated with that object. If the object specifies only a
notification name to observe, it will see that notification for any object
whenever it’s posted.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotification.h

NSNotificationCenter 5-151

5

The methods postNotificationName:object: and
postNotificationName:object:userInfo: are provided as convenience
methods, which both create and post notifications.

Each task has a default notification center. As an example of using the
notification center, suppose your program can perform a number of
conversions on text (for instance, MIF to RTF or RTF to ASCII). You have
defined a class of objects that perform those conversions, Convertor .
Convertor objects might be added or removed during program execution.
Your program has a client object that wants to be notified when convertors are
added or removed, allowing the application to reflect the available options in a
pop-up list. The client object would register itself as an observer by sending the
following messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(objectAddedToConvertorList:)
 name:@"NSConvertorAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(objectRemovedFromConvertorList:
 name:@"NSConvertorRemoved" object:nil];

When a user installs or removes a convertor, the Convertor object sends one
of the following messages to the notification center:

[[NSNotificationCenter defaultCenter]
 postNotificationName:@"NSConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]
 postNotificationName:@"NSConverterRemoved" object:self];

The notification center identifies all observers who are interested in the
NSConverterAdded or NSConverterRemoved notifications by invoking the
method they specified in the selector argument of
addObserver:selector:name:object: . In the case of our example
observer, the selectors are objectAddedToConvertorList: and
objectRemovedFromConvertorList: . Assume the Convertor class has an
instance method convertorName that returns the name of the Convertor
object. Then the objectAddedToConvertorList: method might have the
following implementation:

- (void)objectAddedToConvertorList:(NSNotification *)notification
{
 Convertor *addedConvertor = [notification object];

5-152 OpenStep Programming Reference—September 1996

5

 // Add this to our popup (it will only be added if not there)...
 [myPopUpButton addItem:[addedConvertor convertorName]];
}

The convertors don’t need to know anything about the pop-up list or any other
aspect of the user interface to your program.

Method Types

Class Methods

defaultCenter

+ (NSNotificationCenter *)defaultCenter

Returns the default notification center object; used for generic notifications.

Instance Methods

addObserver:selector:name:object:

– (void)addObserver:(id)anObserver
selector:(SEL)aSelector
name:(NSString *)notificationName object:(id)anObject

Registers anObserver and aSelector with the receiver so that anObserver
receives an aSelector message when a notification of name
notificationName is posted to the notification center by anObject . If

Activity Class Method

Accessing the default notification center + defaultCenter

Adding and removing observers – addObserver:selector:name:object:
– removeObserver:
– removeObserver:name:object:

Posting notifications – postNotification:
– postNotificationName:object:
– postNotificationName:object:userInfo:

NSNotificationCenter 5-153

5

anObject is nil , the observer will get posted whatever the object is. If aName
is nil , the observer will get posted for all notifications that match anObject .
See also removeObserver: .

postNotification:

– (void)postNotification:(NSNotification *)aNotification

Posts aNotification to the notification center. Raises
NSInvalidArgumentException if the name associated with
aNotification is nil .

postNotificationName:object:

– (void)postNotificationName:(NSString *)aName object:(id)anObject

Creates a notification object that associates aName and anObject and posts it
to the notification center.

postNotificationName:object:userInfo:

– (void)postNotificationName:(NSString *)aName
object:(id)anObject userInfo:(NSDictionary *)userInfo

Creates a notification object that associates aName and anObject and posts it
to the notification center. userInfo is a dictionary of arbitrary data that will
be passed with the notification. userInfo may be nil .

removeObserver:

– (void)removeObserver:(id)anObserver

Removes anObserver as the observer of any notifications from any objects. If
anObserver is nil , all observers are removed. See also
removeObserver:name:object: ,
addObserver:selector:name:object: .

removeObserver:name:object:

– (void)removeObserver:(id)anObserver
name:(NSString *)notificationName
object:anObject

5-154 OpenStep Programming Reference—September 1996

5

Removes anObserver as the observer of any notificationName
notifications from anObject . If notificationName is nil , then
anObserver is removed from observing any notifications from an anObject .
If anObject is nil , then anObserver is removed from observing
notificationName notifications from any object. If notificationName and
anObject are both nil , then this method removes anObserver as an
observer of any notifications from any objects (equivalent to
removeObserver:). See also removeObserver: ,
addObserver:selector:name:object: .

NSNotificationQueue

Class Description

NSNotificationQueue objects (or simply, notification queues) act as buffers
for notifications centers (instances of NSNotificationCenter). A notification
queue maintains notifications (instances of NSNotification) generally in a
First-In First-Out (FIFO). When a notification rises to the “top” of the queue,
the queue posts it to the notification center, which in turn dispatches the
notification to all objects registered as observers.

NSNotificationQueue contributes two important features to OpenStep’s
notification mechanism: asynchronous posting and the coalescing of
notifications. With NSNotificationCenter ’s postNotification: and its
variants, you can post a notification immediately to a notification center.
However, the invocation of the method is synchronous: before the posting
object can resume its thread of execution, it must wait until the notification
center dispatches the notification to all observers and returns. With
NSNotificationQueue ’s enqueueNotification:postingStyle: and
enqueueNotification:postingStyle:coalesceMask:forModes: ,
however, you can post a notification asynchronously by putting it on the
queue. These methods immediately return to the invoking object after putting
the notification in the queue.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotificationQueue.h

NSNotificationQueue 5-155

5

Posting to a notification queue can occur in one of three different styles. The
posting style is an argument to both enqueueNotification:... methods:

• NSPostWhenIdle . The notification is posted when the run loop is idle.

• NSPostASAP. The notification is posted as soon as possible.

• NSPostNow. The notification is posted immediately to the notification
center.

Note – See “Enqueuing with the Different Posting Styles,” following, for
details on and examples of enqueuing notifications with the three
postingStyle: constants.

What is the difference between enqueuing notifications with NSPostNow and
posting notifications (postNotification:)? Both post notifications
immediately (but synchronously) to the notification center. The difference is
that enqueueNotification:... (with NSPostNow as posting style)
coalesces notifications in the queue before posting while postNotification:
does not.

Coalescing is a process that removes notifications in the queue that are similar
to the notification just enqueued (or posted, if posting style is NSPostNow. The
notification queue scans the notifications in the queue for those with attributes
matching the new notification and removes them, except for the notification
that is topmost in the queue (closest to being posted). You indicate the criteria
for similarity by specifying the NSNotificationCoalescing constants in the
third argument of enqueueNotification:postingStyle:
coalesceMask:forModes: (logically OR them in if multiple):

• NSNotificationNoCoalescing . Do not coalesce notifications in the
queue.

• NSNotificationCoalescingOnName . Coalesce notifications with the
same name.

• NSNotificationCoalescingOnSender . Coalesce notifications with the
same sender.

Every thread has a default notification queue, which is associated with the
thread’s default notification center. You can create your own notification
queues, and have multiple queues per center and thread; but you can have
only one notification center per thread. NSNotificationQueue is a public,
concrete class; instances of it are mutable.

5-156 OpenStep Programming Reference—September 1996

5

Enqueuing with the Different Posting Styles

Any notification enqueued with the NSPostASAP posting style is posted to the
notification center when the code executing in the current run loop callout
completes. Callouts can be Application Kit event messages, file descriptor
changes, timers, or another asynchronous notification. You’d typically use the
NSPostASAP posting style for an expensive resource, like the Display
PostScript server. When many clients draw on the window buffer during a
callout, it is expensive to flush the buffer to the Display PostScript server after
every draw operation. In this case, each draw... method enqueues some
notification such as “FlushTheServer” with coalescing on name and sender
specified, and a posting style of NSPostASAP. As a result, only one of those
notifications is dispatched at the end of the current callout, and the window
buffer is flushed only once.

A notification enqueued with the NSPostWhenIdle posting style is posted
only when the run loop is in a wait state. In this state, there is nothing in the
run loop’s input channels, be it timers or other asynchronous notifications. A
typical example of enqueuing with the NSPostIdle posting style occurs when
the user types text, and the program displays the size of the text in bytes
somewhere. It would be very expensive and not very useful to update the
displayed size after each character the user types, especially if the user types
fast. In this case, the program enqueues a notification after each character
typed such as “ChangeTheDisplayedSize ” with coalescing turned on and a
posting style of NSPostWhenIdle . When the user stops typing, the single
“ChangeTheDisplayedSize ” notification in the queue (due to coalescing) is
posted when the run loop is in a wait state and the display is updated.

A notification enqueued with NSPostNow is posted immediately to the
notification center. You enqueue a notification with NSPostNow or post one
with NSNotificationCenter ’s postNotification: when you do not
require asynchronous calling behavior. For many programming situations,
synchronous behavior is not only allowable but desirable; you want the
notification center to return after dispatching so you can be sure that observing
objects have received the notification. Of course, you should enqueue with
NSPostNow rather than use postNotification: when there are similar
notifications in the queue that you want to remove through coalescing.

NSNotificationQueue 5-157

5

Method Types

Class Methods

defaultQueue

+ (NSNotificationQueue *)defaultQueue

Returns the default NSNotificationQueue object for the current thread. This
object always uses the default notification-center object for the same thread.

Instance Methods

dequeueNotificationsMatching:coalesceMask:

– (void)dequeueNotificationsMatching:(NSNotification *)notification
coalesceMask:(unsigned int)coalesceMask

Removes all notifications from the queue that match the notification ’s
attributes as specified by coalesceMask . The mask (set through
NSNotificationCoalescing constants) can specify notification name,
notification sender, or both name and sender.

enqueueNotification:postingStyle:

– (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle

Activity Class Method

Creating notification queues + defaultQueue
– init
– initWithNotificationCenter:

Inserting and removing
notifications from a queue

– dequeueNotificationsMatching:coalesceMask:
– enqueueNotification:postingStyle:
– enqueueNotification:postingStyle:coalesceMask:
forModes:

5-158 OpenStep Programming Reference—September 1996

5

Puts a notification in the queue that the queue will post to the notification
center at the time indicated by postingStyle . The notification queue posts in
all runloop modes, and it coalesces only notifications in the queue that match
both the name and sender of notification .

enqueueNotification:postingStyle:coalesceMask:
forModes:

– (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle
coalesceMask:(unsigned int)coalesceMask
forModes:(NSArray *)modes

Puts a notification in the queue that the queue will post to the notification
center at the time indicated by postingStyle , but only if the runloop is in a
mode identified by one of the string objects in the modes array. The notification
queue coalesces related notifications in the queue as specified by
coalesceMask . If modes is nil , all runloop modes are valid for posting.

init

– (id)init

Initializes and returns an NSNotificationQueue object that uses the default
notification-center object.

initWithNotificationCenter:

– (id)initWithNotificationCenter:
(NSNotificationCenter *)notificationCenter

Initializes and returns an NSNotificationQueue object that uses the
notification-center object specified in notificationCenter .

NSNumber 5-159

5

NSNumber

Class Description

NSNumber objects provide an object-oriented wrapper for the standard C-
language number data types (int , double , etc.). The Foundation Kit’s
collection classes can store only objects, so this class provides a way to prepare
numbers of various types for use with the collection classes.

NSNumber, which inherits from NSValue , provides methods for creating
number objects that contain data of a specified type. It also provides methods
for extracting data from a number object and casting the data to be of a
particular type. For determining whether two number objects are equal,
NSNumber provides the compare: method.

Characteristic Description

Inherits From: NSValue : NSObject

Conforms To: NSCoding, NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

5-160 OpenStep Programming Reference—September 1996

5

Method Types

NSNumber 5-161

5

Activity Class Method

Allocating and initializing + numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithInt:
+ numberWithLong:
+ numberWithLongLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:
– initWithBool:
– initWithChar:
– initWithDouble:
– initWithFloat:
– initWithInt:
– initWithLong:
– initWithLongLong:
– initWithShort:
– initWithUnsignedChar:
– initWithUnsignedInt:
– initWithUnsignedLong:
– initWithUnsignedLongLong:
– initWithUnsignedShort:

Accessing data – boolValue
– charValue
– descriptionWithLocale:
– doubleValue
– floatValue
– intValue
– longLongValue
– longValue
– shortValue
– stringValue
– unsignedCharValue
– unsignedIntValue
– unsignedLongLongValue
– unsignedLongValue
– unsignedShortValue

5-162 OpenStep Programming Reference—September 1996

5

Class Methods

numberWithBool:

+ (NSNumber *)numberWithBool:(BOOL) value

Creates and returns a number object representing value of the type BOOL.

numberWithChar:

+ (NSNumber *)numberWithChar:(char)value

Creates and returns a number object representing value of the type char .

numberWithDouble:

+ (NSNumber *)numberWithDouble:(double)value

Creates and returns a number object representing value of the type double .

numberWithFloat:

+ (NSNumber *)numberWithFloat:(float)value

Creates and returns a number object representing value of the type float .

numberWithInt:

+ (NSNumber *)numberWithInt:(int)value

Creates and returns a number object representing value of the type int .

numberWithLong:

+ (NSNumber *)numberWithLong:(long)value

Creates and returns a number object representing value of the type long .

Comparing data – compare:
– isEqualToNumber:

Activity Class Method

NSNumber 5-163

5

numberWithLongLong:

+ (NSNumber *)numberWithLongLong:(long long)value

Creates and returns a number object representing value of the type long
long .

numberWithShort:

+ (NSNumber *)numberWithShort:(short)value

Creates and returns a number object representing value of the type short .

numberWithUnsignedChar:

+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value

Creates and returns a number object representing value of the type unsigned
char .

numberWithUnsignedInt:

+ (NSNumber *)numberWithUnsignedInt:(unsigned int)value

Creates and returns a number object representing value of the type unsigned
int .

numberWithUnsignedLong:

+ (NSNumber *)numberWithUnsignedLong:(unsigned long)value

Creates and returns a number object representing value of the type unsigned
long .

numberWithUnsignedLongLong:

+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value

Creates and returns a number object representing value of the type unsigned
long long .

5-164 OpenStep Programming Reference—September 1996

5

numberWithUnsignedShort:

+ (NSNumber *)numberWithUnsignedShort:(unsigned short)value

Creates and returns a number object representing value of the type unsigned
short .

Instance Methods

boolValue

– (BOOL)boolValue

Returns the receiver’s value as a Boolean value.

charValue

– (char)charValue

Returns the receiver’s value as a character value.

compare:

– (NSComparisonResult)compare:(NSNumber *)otherNumber

Compares the receiver to otherNumber , using ANSI C rules for type coercion,
and returns an NSComparisonResult (see the “Searching” section of the
Foundation Kit’s Types and Constants chapter).

descriptionWithLocale:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary

Returns a string representation of the NSSet object, including the keys and
values that represent the locale data from localeDictionary .

doubleValue

– (double)doubleValue

NSNumber 5-165

5

Returns the receiver’s value as a double-precision floating-point value.

floatValue

– (float)floatValue

Returns the receiver’s value as a single-precision floating-point value.

initWithBool:

- (id)initWithBool:(BOOL)value

Initializes the receiving number object to value .

initWithChar:

- (id)initWithChar:(char)value

Initializes the receiving number object to value . See also
initWithUnsignedChar: .

initWithDouble:

- (id)initWithDouble:(double)value

Initializes the receiving number object to value . See also initWithFloat: .

initWithFloat:

- (id)initWithFloat:(float)value

Initializes the receiving number object to value See also initWithDouble: .

initWithInt:

- (id)initWithInt:(int)value

Initializes the receiving number object to value . See also
initWithUnsignedInt: .

5-166 OpenStep Programming Reference—September 1996

5

initWithLong:

- (id)initWithLong:(long)value

Initializes the receiving number object to value . See also
initWithUnsignedLong: .

initWithLongLong:

- (id)initWithLongLong:(long long)value

Initializes the receiving number object to value . See also
initWithUnsignedLongLong: .

initWithShort:

- (id)initWithShort:(short)value

Initializes the receiving number object to value . See also
initWithUnsignedShort: .

initWithUnsignedChar:

- (id)initWithUnsignedChar:(unsigned char)value

Initializes the receiving number object to value . See also initWithChar: .

initWithUnsignedInt:

- (id)initWithUnsignedInt:(unsigned int)value

Initializes the receiving number object to value . See also initWithInt: .

initWithUnsignedLong:

- (id)initWithUnsignedLong:(unsigned long)value

Initializes the receiving number object to value . See also initWithLong: .

initWithUnsignedLongLong:

- (id)initWithUnsignedLongLong:(unsigned long long)value

NSNumber 5-167

5

Initializes the receiving number object to value . See also
initWithLongLong: .

initWithUnsignedShort:

- (id)initWithUnsignedShort:(unsigned short)value

Initializes the receiving number object to value . See also initWithShort: .

intValue

– (int)intValue

Returns the receiver’s value as a integer value.

isEqualToNumber:

- (BOOL)isEqualToNumber:(NSNumber *)otherNumber

Returns YES if otherNumber is equal to the receiver, and returns NO otherwise.

longLongValue

– (long long)longLongValue

Returns the receiver’s value as a long long double-precision floating-point
value.

longValue

– (long)longValue

Returns the receiver’s value as a long double-precision floating-point value.

shortValue

– (short)shortValue

Returns the receiver’s value as a short integer value.

5-168 OpenStep Programming Reference—September 1996

5

stringValue

– (NSString *)stringValue

Returns the receiver’s value as a string contained in an NSString object.

unsignedCharValue

– (unsigned char)unsignedCharValue

Returns the receiver’s value as an unsigned char value.

unsignedIntValue

– (unsigned int)unsignedIntValue

Returns the receiver’s value as an unsigned integer value.

unsignedLongLongValue

– (unsigned long long)unsignedLongLongValue

Returns the receiver’s value as an unsigned long long double-precision
floating-point value.

unsignedLongValue

– (unsigned long)unsignedLongValue

Returns the receiver’s value as an unsigned long double-precision floating-
point value.

unsignedShortValue

– (unsigned short)unsignedShortValue

Returns the receiver’s value as an unsigned short integer value.

NSObject 5-169

5

NSObject

Class Description

NSObject is the root class of all ordinary Objective C inheritance hierarchies;
it has no superclass. Its interface derives from two sources: the methods it
declares directly and those declared in the NSObject protocol. Its interface is
divided in this way so that objects inheriting from other root classes (notably
NSProxy) can stand in for ordinary objects without having to inherit from
NSObject . The following discussion makes no distinction between the
methods declared in this class and those declared in the NSObject protocol.

From NSObject , other classes inherit a basic interface to the run-time system
for the Objective C language. It is through NSObject that instances of all
classes obtain their ability to behave as objects. Among other things, the
NSObject class provides inheriting classes with a framework for creating,
initializing, deallocating, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its
position in the inheritance hierarchy, and for forwarding messages to other
objects. For example, to ask an object what class it belongs to, you would send
it a class message. To find out whether it implements a particular method,
you would send it a respondsToSelector: message.

The NSObject class is an abstract class; programs use instances of classes that
inherit from NSObject , but never of NSObject itself. See also the NSObject
protocol (Application Kit’s Types and Constants chapter).

Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance
variable, inherited from the NSObject class. isa identifies the object’s class; it
points to a structure that is compiled from the class definition. Through isa ,
an object can find whatever information it needs at run time—such as its place

Characteristic Description

Inherits From: none (NSObject is the root class)

Conforms To: NSObject

Declared In: Foundation/NSObject.h
Foundation/NSRunLoop.h

5-170 OpenStep Programming Reference—September 1996

5

in the inheritance hierarchy, the size and structure of its instance variables, and
the location of the method implementations it can perform in response to
messages.

Because all ordinary objects inherit directly or indirectly from the NSObject
class, they all have this variable. The defining characteristic of an “object” is
that its first instance variable is an isa pointer to a class structure.

The installation of the class structure—the initialization of isa —is one of the
responsibilities of the alloc and allocWithZone: methods, the same
methods that create (allocate memory for) new instances of a class. In other
words, class initialization is part of the process of creating an object; it’s not left
to the methods (such as init) that initialize individual objects with their
particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it’s an
instance object or a class object. For example, it should be possible to ask either
an instance or a class whether it can respond to a particular message. So that
this won’t mean implementing every NSObject method twice, once as an
instance method and again as a class method, the run-time system treats
methods defined in the root class in a special way: Instance methods defined in
the root class can be performed both by instances and by class objects.

A class object has access to class methods—those defined in the class and those
inherited from the classes above it in the inheritance hierarchy—but generally
not to instance methods. However, the run-time system gives all class objects
access to the instance methods defined in the root class. Any class object can
perform any root instance method, provided it doesn’t have a class method
with the same name.

For example, a class object could be sent messages to perform NSObject ’s
respondsToSelector: and performSelector:withObject: instance
methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])
 [MyClass performSelector:method withObject:self];

NSObject 5-171

5

When a class object receives a message, the run-time system looks first at the
receiver’s set of class methods. If it fails to find a class method that can
respond to the message, it looks at the set of instance methods defined in the
root class. If the root class has an instance method that can respond (as
NSObject does for respondsToSelector: and
performSelector:withObject:), the run-time system uses that
implementation and the message succeeds.

Note that the only instance methods available to a class object are those
defined in the root class. If MyClass in the example above had reimplemented
either respondsToSelector: or performSelector:withObject: , those
new versions of the methods would be available only to instances. The class
object for MyClass could perform only the versions defined in the NSObject
class. Of course, if MyClass had implemented respondsToSelector: or
performSelector:withObject: as class methods rather than instance
methods, the class would perform those new versions.

5-172 OpenStep Programming Reference—September 1996

5

Method Types

Activity Class Method

Initializing the class + initialize
+ load

Creating and destroying instances + alloc
+ allocWithZone:
+ new
– copy
+ copyWithZone:
– dealloc
– init
– mutableCopy
+ mutableCopyWithZone:

Identifying classes + class
+ superclass

Testing class functionality + instancesRespondToSelector:

Testing protocol conformance + conformsToProtocol:

Obtaining method information + instanceMethodForSelector:
– methodForSelector:
– methodSignatureForSelector:

Describing objects + description

Posing + poseAsClass:

Error handling – doesNotRecognizeSelector:

Sending deferred messages + cancelPreviousPerformRequestsWithTarget:
selector:object:
– performSelector:object:afterDelay:

Forwarding messages – forwardInvocation:

Archiving – awakeAfterUsingCoder:
– classForArchiver
– classForCoder
– replacementObjectForArchiver:
– replacementObjectForCoder:
+ setVersion:
+ version

NSObject 5-173

5

Class Methods

alloc

+ (id)alloc

Returns a new instance of the receiving class. The isa instance variable of the
new object is initialized to a data structure that describes the class; memory for
all other instance variables is set to 0. A version of the init method should be
used to complete the initialization process. For example:

id newObject = [[TheClass alloc] init];

Other classes shouldn’t override alloc to add code that initializes the new
instance. Instead, class-specific versions of the init method should be
implemented for that purpose. Versions of the new method can also be
implemented to combine allocation and initialization. See also
allocWithZone: , new.

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Returns a new, uninitialized instance of the receiving class in zone . The isa
instance variable of the new object is initialized to a data structure that
describes the class; memory for all other instance variables is set to 0. A
version of the init method should be used to complete the initialization
process. For example:

id newObject = [[TheClass alloc] init];

Other classes shouldn’t override alloc to add code that initializes the new
instance. Instead, class-specific versions of the init method should be
implemented for that purpose. Versions of the new method can also be
implemented to combine allocation and initialization. See also
allocWithZone: , new.

When one object creates another, it’s often a good idea to make sure they’re
both allocated from the same region of memory. The zone (see the NSObject
protocol) method can be used for this purpose; it returns the zone where the
receiver is located. For example:

id myCompanion = [[TheClass allocFromZone:[self zone]] init];

5-174 OpenStep Programming Reference—September 1996

5

See also alloc , new.

cancelPreviousPerformRequestsWithTarget:
selector:object:

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget
selector:(SEL)aSelector object:(id)anObject

Cancels previous perform requests having the same target and argument as
determined by isEqual: , and having the same selector. This method removes
timers only in the current run loop, not all run loops. See also isEqual:
(NSObject protocol), performSelector:object:afterDelay: , NSTimer ,
NSRunLoop.

class

+ (Class)class

Returns self . Since this is a class method, it returns the class object. When a
class is the receiver of a message, it can be referred to by name. In all other
cases, the class object must be obtained through this, or a similar method. For
example, here SomeClass is passed as an argument to the isKindOfClass:
method (see NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

See also class (NSObject protocol), superclass .

conformsToProtocol:

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol , and NO if it doesn’t.
A class is said to “conform to” a protocol if it adopts the protocol or inherits
from another class that adopts it. Protocols are adopted by listing them within
angle brackets after the interface declaration. Here, for example, MyClass
adopts the imaginary AffiliationRequests and Normalization
protocols:

@interface MyClass : Object <AffiliationRequests, Normalization>

NSObject 5-175

5

A class also conforms to any protocols that are incorporated in the protocols it
adopts or inherits. Protocols incorporate other protocols in the same way that
classes adopt them. For example, here the AffiliationRequests protocol
incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

When a class adopts a protocol, it must implement all the methods the protocol
declares. If it adopts a protocol that incorporates another protocol, it must also
implement all the methods in the incorporated protocol or inherit those
methods from a class that adopts it. In the previous example, MyClass must
implement the methods in the AffiliationRequests and Normalization
protocols and, in addition, either inherit from a class that adopts the Joining
protocol or implement the Joining methods itself.

When these conventions are followed and all the methods in adopted and
incorporated protocols are in fact implemented, the conformsToProtocol:
(see NSObject protocol) test for a set of methods becomes roughly equivalent
to the respondsToSelector: (see NSObject protocol) test for a single
method. However, conformsToProtocol: judges conformance solely on the
basis of the formal declarations in source code, as illustrated previously. It
doesn’t check to see whether the methods declared in the protocol are actually
implemented. It’s the programmer’s responsibility to see that they are. The
protocol object required as this method’s argument can be specified using the
@protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

copyWithZone:

+ (id)copyWithZone:(NSZone *)zone

Returns a copy of the receiver, allocated within zone . The default
implemenation returns self . See also mutableCopyWithZone: , copy ,
NSZone.

description

+ (NSString *)description

Subclasses override this method to return a human-readable string
representation of the contents of the receiver. NSObject ’s implementation
simply prints the name of the receiver’s class.

5-176 OpenStep Programming Reference—September 1996

5

initialize

+ (void)initialize

Initializes the class before it is used (that is, before it receives its first message).
The run-time system sends an initialize message to each class just before
the class, or any class that inherits from it, is sent its first message from within
the program. Each class object receives the initialize message just once.
Superclasses receive it before subclasses do. For example, if the first message
your program sends is this,

[NSApplication sharedApplication]

the run-time system will generate these three initialize messages,

[NSObject initialize];
[NSResponder initialize];
[NSApplication initialize];

since NSApplication is a subclass of NSResponder , and NSResponder is a
subclass of NSObject . All the initialize messages precede the new
message and are sent in the order of inheritance, as shown. If your program
later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the run-time system will generate these additional initialize messages,

[NSView initialize];
[NSText initialize];

since the NSText class inherits from NSObject , NSResponder , and NSView.
The instancesRespondToSelector: message is sent only after all these
classes are initialized. Note that the initialize messages to NSObject and
NSResponder aren’t repeated; each class is initialized only once. You can
implement your own versions of initialize to provide class-specific
initialization as needed.

Because initialize methods are inherited, it’s possible for the same method
to be invoked many times, once for the class that defines it and once for each
inheriting class. To prevent code from being repeated each time the method is
invoked, it can be bracketed as shown in the example below

NSObject 5-177

5

+ initialize
{
 if (self == [MyClass class]) {
 /* put initialization code here */
 }
 return self;
}

Since the run-time system sends a class just one initialize message, the test
shown in the previous example should prevent code from being invoked more
than once. However, if for some reason an application also generates
initialize messages, a more explicit test may be needed:

+ initialize
{
 static BOOL tooLate = NO;
 if (!tooLate) {
 /* put initialization code here */
 tooLate = YES;
 }
 return self;
}

See also init , class .

instanceMethodForSelector:

+ (IMP)instanceMethodForSelector:(SEL)aSelector

Locates and returns the address of the implementation of the aSelector
instance method. Use this method to ask the class object for the
implementation of an instance method. To ask the class for the implementation
of a class method, use the instance method methodForSelector: instead of
this one. instanceMethodForSelector: , and the function pointer it returns,
are subject to the same constraints as those described for
methodForSelector: . See also methodForSelector: ,
methodSignatureForSelector: , instancesRespondToSelector: .

instancesRespondToSelector:

+ (BOOL)instancesRespondToSelector:(SEL)aSelector

5-178 OpenStep Programming Reference—September 1996

5

Returns YES if instances of the class are capable of responding to aSelector
messages, and NO if they’re not. To ask the class whether it, rather than its
instances, can respond to a particular message, use the
respondsToSelector: instance method instead. See also
respondsToSelector: (NSObject protocol).

load

+ (void)load

Sent to classes that are added to the Objective-C runtime. Usually received
before initialize . The order in which load messages are sent to classes is
unspecified.

mutableCopyWithZone:

+ (id)mutableCopyWithZone:(NSZone *)zone

Returns a writeable copy of the receiver, allocated within zone . The default
implemenation returns self . See also copyWithZone: , mutableCopy ,
NSZone (Foundation Kit Types and Constants).

new

+ (id)new

Allocates a new instance of the receiving class, sends it an init message, and
returns the initialized object returned by init . This method is simply a
convenient cover for the alloc and init methods. Like alloc , new initializes
the isa instance variable of the new object so that it points to the class data
structure. It then invokes the init method to complete the initialization
process.

Unlike alloc , new is sometimes reimplemented in subclasses to invoke a
class-specific initialization method. If the init method includes arguments,
they’re typically reflected in the new method as well. For example:

+ newArg:(int)tag arg:(struct info *)data
{
 return [[self alloc] initArg:tag arg:data];
}

NSObject 5-179

5

However, there’s little point in implementing a new... method if it’s simply a
shorthand for alloc and init... , like the one shown above. Often new...
methods will do more than just allocation and initialization. In some classes,
they manage a set of instances, returning the one with the requested properties
if it already exists, allocating and initializing a new one only if necessary. For
example:

+ newArg:(int)tag arg:(struct info *)data
{
 id theInstance;

 if (theInstance = findTheObjectWithTheTag(tag))
 return theInstance;
 return [[self alloc] initArg:tag arg:data];
}

Although it’s appropriate to define new new... methods in this way, the
alloc and allocFromZone: methods should never be augmented to include
initialization code. See also init , alloc , allocWithZone: .

poseAsClass:

+ (void)poseAsClass:(Class)aClassObject

Causes the receiving class to “pose as” its superclass, the aClassObject class.
The receiver takes the place of aClassObject in the inheritance hierarchy; all
messages sent to aClassObject will actually be delivered to the receiver. The
receiver must be defined as a subclass of aClassObject . It can’t declare any
new instance variables of its own, but it can define new methods and override
methods defined in the superclass. The poseAsClass: message should be
sent before any messages are sent to aClassObject and before any instances
of aClassObject are created.

This facility allows you to add methods to an existing class by defining them in
a subclass and having the subclass substitute for the existing class. The new
method definitions will be inherited by all subclasses of the superclass. Care
should be taken to ensure that this doesn’t generate errors. A subclass that
poses as its superclass still inherits from the superclass. Therefore, none of the
functionality of the superclass is lost in the substitution. Posing doesn’t alter
the definition of either class.

5-180 OpenStep Programming Reference—September 1996

5

Posing is useful as a debugging tool, but category definitions are a less
complicated and more efficient way of augmenting existing classes. Posing
admits only two possibilities that are absent for categories:

• A method defined by a posing class can override any method defined by its
superclass. Methods defined in categories can replace methods defined in
the class proper, but they cannot reliably replace methods defined in other
categories. If two categories define the same method, one of the definitions
will prevail, but there’s no guarantee which one.

• A method defined by a posing class can, through a message to super ,
incorporate the superclass method it overrides. A method defined in a
category can replace a method defined elsewhere by the class, but it can’t
incorporate the method it replaces.

If not successful, this method generates an error message and aborts.

setVersion:

+ (void)setVersion:(int)version

Sets the class version number to version . The version number is helpful when
instances of the class are to be archived and reused later. The default version is
0. See also version .

superclass

+ (Class)superclass

Returns the class object for the receiver’s superclass. See also class ,
superclass (NSObject protocol).

version

+ (int)version

Returns the version of the class definition. See also setVersion: .

NSObject 5-181

5

Instance Methods

awakeAfterUsingCoder:

– (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Implemented by subclasses to reinitialize the receiving object after it has been
unarchived by aDecoder . An awakeAfterUsingCoder: message is
automatically sent to every object after it has been unarchived and after all the
objects it refers to are in a usable state. The default version merely returns
self .

Each implementation of awakeAfterUsingCoder: should limit the work it
does to the scope of the class definition, and incorporate the initialization of
classes farther up the inheritance hierarchy through a message to super . For
example:

- awakeAfterUsingCoder:(NSCoder *) aDecoder
{
 [super awakeAfterUsingCoder:aDecoder];
 /* class-specific initialization goes here */
 return self;
}

All implementations should return self .

Note – Not all objects loaded from a nib file (created by Interface Builder) are
unarchived; some are newly instantiated. Those that are unarchived receive an
awakeAfterUsingCoder : message, but those that are instantiated do not.

See also NSCoder , NSArchiver .

classForArchiver

– (Class)classForArchiver

Returns the class used during archiving. NSObject ’s implementation returns
the object returned by classForCoder: . See also NSArchiver .

classForCoder

– (Class)classForCoder

5-182 OpenStep Programming Reference—September 1996

5

Returns the class used during serialization. An NSObject returns its own class
by default. See also classForArchiver , NSCoder .

copy

– (id)copy

Returns a new instance that’s an exact copy of the receiver. This method creates
only one new object. If the receiver has instance variables that point to other
objects, the instance variables in the copy will point to the same objects. The
values of the instance variables are copied, but the objects they point to are not.

This method does its work by invoking the copyWithZone: method and
specifying that the copy should be allocated from the same memory zone as
the receiver. If a subclass implements its own copyWithZone: method, this
copy method will use it to copy instances of the subclass. Therefore, a class can
support copying from both methods just by implementing a class-specific
version of copyFromZone: . See also copyWithZone: (NSCopying protocol).

dealloc

– (void)dealloc

Deallocates the memory occupied by the receiver. Subsequent messages to the
object will generate an error indicating that a message was sent to a
deallocated object, provided that the freed memory hasn’t been reused yet.

Subclasses must implement their own versions of dealloc to deallocate any
additional memory consumed by the object—such as dynamically allocated
storage for data, or other objects that are tightly coupled to the freed object and
are of no use without it. After performing the class-specific deallocation, the
subclass method should incorporate superclass versions of dealloc through a
message to super . See also alloc , allocWithZone: , new.

doesNotRecognizeSelector:

– (void)doesNotRecognizeSelector:(SEL)aSelector

Handles aSelector messages that the receiver doesn’t recognize. The run-
time system invokes this method whenever an object receives an aSelector
message that it can’t respond to or forward. This method, in turn, invokes
NSLog() to generate an error message and, raises an

NSObject 5-183

5

NSInvalidArgumentException . doesNotRecognizeSelector: messages
should be sent only by the run-time system. See also NSLog() (Foundation
Kit’s “Functions” chapter), NSException .

forwardInvocation:

– (void)forwardInvocation:(NSInvocation *)anInvocation

Implemented by subclasses to forward message invocations to other objects.
When an object is sent a message, and the run-time system can’t find an
implementation of the message for the receiving object, it sends the object a
forwardInvocation: message to give it an opportunity to delegate the
message to another receiver. If the delegated receiver can’t respond to the
message either, it will also be given a chance to forward it. Thus the
forwardInvocation: message allows an object to establish relationships
with other objects that will, for certain messages, act on its behalf. The
forwarding object is able to “inherit” some of the characteristics of the object it
forwards the message to.

A forwardInvocation : message is generated only if anInvocation isn’t
implemented by the receiving object’s class or by any of the classes it inherits
from.

A forwardInvocation: method implementation has two tasks:

• To locate an object that can respond to anInvocation . This need not be the
same object for all messages.

• To send anInvocation to that object.

The default implementation sends the doesNotRecognizeSelector:
message.

init

– (id)init

Implemented by subclasses to initialize a new object (the receiver) immediately
after memory for it has been allocated. An init message is generally coupled
with an alloc or allocWithZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

5-184 OpenStep Programming Reference—September 1996

5

An object isn’t ready to be used until it has been initialized. The version of the
init method defined in the NSObject class does no initialization; it simply
returns self .

Subclass versions of this method should return the new object (self) after it
has been successfully initialized. If it can’t be initialized, then it should free the
object and return nil . In some cases, an init method might free the new
object and return a substitute. Programs should therefore always use the object
returned by init , and not the one returned by alloc or allocWithZone: .

Every class must guarantee that the init method returns a fully functional
instance of the class. Typically this means overriding the method to add class-
specific initialization code. Subclass versions of init need to incorporate the
initialization code for the classes they inherit from, by sending a message to
super . For example:

- init
{
 [super init];
 /* class-specific initialization goes here */
 return self;
}

Note that the message to super precedes the initialization code added in the
method. This ensures that initialization proceeds in the order of inheritance.

Subclasses often add arguments to the init method to allow specific values to
be set. The more arguments a method has, the more freedom it gives you to
determine the character of initialized objects. Classes often have a set of
init... methods, each with a different number of arguments. For example:

- init;
- initArg:(int)tag;
- initArg:(int)tag arg:(struct info *)data;

The convention is that at least one of these methods, usually the one with the
most arguments, includes a message to super to incorporate the initialization
of classes higher up the hierarchy. This method is the designated initializer for
the class. The other init... methods defined in the class directly or indirectly
invoke the designated initializer through messages to self . In this way, all
init... methods are chained together. For example:

- init
{
 return [self initArg:-1];
}

NSObject 5-185

5

- initArg:(int)tag
{
 return [self initArg:tag arg:NULL];
}

- initArg:(int)tag arg:(struct info *)data
{
 [super init. . .];
 /* class-specific initialization goes here */
}

In this example, the initArg:arg: method is the designated initializer for the
class. If a subclass does any initialization of its own, it must define its own
designated initializer. This method should begin by sending a message to
super to perform the designated initializer of its superclass. For example,
suppose the three methods illustrated above are defined in the B class. The C
class, a subclass of B, might have this designated initializer:

- initArg:(int)tag arg:(struct info *)data arg:anObject
{
 [super initArg:tag arg:data];
 /* class-specific initialization goes here */
}

If inherited init... methods are to successfully initialize instances of the
subclass, they must all be made to (directly or indirectly) invoke the new
designated initializer. To accomplish this, the subclass is obliged to cover
(override) only the designated initializer of the superclass. For example, in
addition to its designated initializer, the C class would also implement this
method:

- initArg:(int)tag arg:(struct info *)data
{
 return [self initArg:tag arg:data arg:nil];
}

This ensures that all three methods inherited from the B class also work for
instances of the C class.

Often the designated initializer of the subclass overrides the designated
initializer of the superclass. If so, the subclass need only implement the one
init... method.

5-186 OpenStep Programming Reference—September 1996

5

These conventions maintain a direct chain of init... links, and ensure that
the new method and all inherited init... methods return usable, initialized
objects. They also prevent the possibility of an infinite loop wherein a subclass
method sends a message (to super) to perform a superclass method, which in
turn sends a message (to self) to perform the subclass method.

This init method is the designated initializer for the NSObject class.
Subclasses that do their own initialization should override it, as described
above. See also new, alloc , allocWithZone: .

methodForSelector:

– (IMP)methodForSelector:(SEL)aSelector

Locates and returns the address of the receiver’s implementation of the
aSelector method, so that it can be called as a function. If the receiver is an
instance, aSelector should refer to an instance method; if the receiver is a
class, it should refer to a class method.

aSelector must be a valid, non-NULL selector. If in doubt, use the
respondsToSelector: method (see the NSObject protocol) to check before
passing the selector to methodForSelector: .

IMP is defined (in the objc/objc.h header file) as a pointer to a function that
returns an id and takes a variable number of arguments in addition to the two
“hidden” arguments—self and _cmd—that are passed to every method
implementation:

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer that
methodForSelector: returns. It is sufficient for methods that return an
object and take object arguments. However, if the aSelector method takes
different argument types or returns anything but an id , its function
counterpart will be inadequately prototyped. Lacking a prototype, the
compiler will promote float s to double s and char s to int s, which the
implementation won’t expect. It will therefore behave differently (and
erroneously) when called as a function than when performed as a method.

To remedy this situation, it is necessary to provide your own prototype. In the
example below, the declaration of the test variable serves to prototype the
implementation of the isEqual: method. test is defined as pointer to a

NSObject 5-187

5

function that returns a BOOL and takes an id argument (in addition to the two
“hidden” arguments). The value returned by methodForSelector: is then
similarly cast to be a pointer to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target
methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 . . .
}

In some cases, it might be clearer to define a type (similar to IMP) that can be
used both for declaring the variable and for casting the function pointer
methodForSelector: returns. The example below defines the EqualIMP
type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);
EqualIMP test;

test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 . . .
}

Either way, it’s important to cast methodForSelector: ’s return value to the
appropriate function type. It’s not sufficient to simply call the function
returned by methodForSelector: and cast the result of that call to the
desired type. This can result in errors.

Note – Turning a method into a function by obtaining the address of its
implementation “unhides” the self and _cmd arguments. See also
instanceMethodForSelector: , methodSignatureForSelector: .

methodSignatureForSelector:

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Returns an object that contains an encoded description of the aSelector
method, or nil if the aSelector method can’t be found. When the receiver is
an instance, aSelector should be an instance method; when the receiver is a
class, it should be a class method. See also NSMethodSignature .

5-188 OpenStep Programming Reference—September 1996

5

mutableCopy

– (id)mutableCopy

Invokes mutableCopyWithZone: (see NSMutableCopying protocol). This
method is implemented in NSObject as a convenience to subclasses. A
subclass need override only mutableCopyWithZone: for both mutableCopy
and mutableCopyWithZone: to operate correctly. See also copy .

performSelector:object:afterDelay:

– (void)performSelector:(SEL)aSelector object:(id)anObject
afterDelay:(NSTimeInterval)delay

Sends the receiver an aSelector message, with anObject as its argument,
after delay . If delay is 0, then aSelector is performed on the next event
loop. anObject is retained until after the action is executed. See also
cancelPreviousPerformRequestsWithTarget: selector:object: ,
NSTimeInterval (Foundation Kit’s “Types and Constants” chapter).

replacementObjectForArchiver:

– (id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Allows an object to substitute another object for itself during archiving.
NSObject ’s implementation returns the object returned by
replacementObjectForCoder: . See also NSArchiver .

replacementObjectForCoder:

– (id)replacementObjectForCoder:(NSCoder *)anEncoder

Allows an object to substitute another object for itself during serialization.
NSObject ’s implementation returns self . See also NSCoder .

NSPosixFileDescriptor 5-189

5

NSPosixFileDescriptor

Class Description

An NSPosixFileDescriptor is an object that references an input/output
stream. Use NSPosixFileDescriptor s to open, read data from, and write
data to various system entities:

• files
• devices (such as terminals)
• pipes
• sockets

You can also use NSPosixFileDescriptor s to map files into virtual memory,
to truncate files, and to monitor the activity of data through devices and
sockets. Using NSPosixFileDescriptor methods to read from and write to
files has some advantages over other OpenStep API for file access. For one,
NSPosixFileDescriptor permits random access to the bytes within files.
Another advantage is the ability to read files in (and write them out)
incrementally, a feature especially useful when you have large files and limited
memory. However, for most purposes it is more efficient to access file contents
with “higher-level” OpenStep API, such as NSData ’s
initWithContentsOfMappedFile: .

Note – NSPosixFileDescriptor is not part of the OpenStep specification.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject(NSObject)

Declared In: Foundation/NSPosixFileDescriptor.h

5-190 OpenStep Programming Reference—September 1996

5

Method Types

Activity Class Method

Getting a standard
NSPosixFileDescriptor

– initWithStandardError
– initWithStandardInput
– initWithStandardOutput

Creating an NSPosixFileDescriptor – initWithFileDescriptor:
– initWithPath:
– initWithPath:flags:
– initWithPath:flags:createMode:

Getting a file descriptor – fd

Reading from a file descriptor – readEntireFile
– readFileLength:
– readFileRange:
– readRestOfFile

Writing to a file descriptor – writeData:
– writeData:range:

Seeking within a file descriptor – position
– seekToEnd
– seekToPosition:

Mapping files into memory – mapFile
– mapFileRange:

Truncating files – truncateAtPosition:
– synchronize

Setting and getting the delegate – delegate
– setDelegate:

Monitoring descriptors – activity
– ceaseMonitoringActivity
– monitorActivity:
– monitorActivity:delegate:

Methods implemented by the delegate – activity:posixFileDescriptor:

NSPosixFileDescriptor 5-191

5

Instance Methods

activity

- (NSPosixFileActivities)activity

Returns the current activity of the NSPosixFileDescriptor being
monitored. Activities include reading, writing, exceptions, and no activity. See
also ceaseMonitoringActivity , monitorActivity: ,
monitorActivity:delegate: .

ceaseMonitoringActivity

- (void)ceaseMonitoringActivity

Removes the receiver from the run loop monitoring descriptor file activity. See
also monitorActivity: , monitorActivity:delegate: .

delegate

- delegate

Returns the delegate for the NSPosixFileDescriptor . See also
monitorActivity:delegate: , setDelegate: .

fd

- (int)fd

Returns the descriptor integer associated with the receiver.

initWithFileDescriptor:

-(id)initWithFileDescriptor:(int)fileDescriptor

Returns an NSPosixFileDescriptor initialized with fileDescriptor . See
also initWithStandardError , initWithStandardInput ,
initWithStandardOutput .

initWithPath:

- (id)initWithPath:(NSString *)path

5-192 OpenStep Programming Reference—September 1996

5

Returns a read-only NSPosixFileDescriptor initialized to reference the file
identified by path . See also initWithPath:flags: .

initWithPath:flags:

-(id)initWithPath:(NSString *)path flags:(int)flags

Returns an NSPosixFileDescriptor initialized to reference the file
identified by path . The flags argument contains file-access attributes such as
O_RDONLY (read-only), O_RDWR (read-write), or O_APPEND (append on each
write). Compatible attributes can be OR’d together. However, never invoke this
method with an O_CREAT flag. See open(2) in the man pages for a complete list
of allowable flags. See also initWithPath:flags:createMode: .

initWithPath:flags:createMode:

-(id)initWithPath:(NSString *)path
flags:(int)flags createMode:(int)mode

Returns an NSPosixFileDescriptor initialized to reference the file
identified by path . The flags argument contains file-access attributes such as
O_WRONLY (write-only), O_RDWR (read-write), or O_NDELAY (do not block on
open). Compatible attributes can be OR’d together. See the system routine
open(2) in the man pages for a complete list of allowable flags. mode specifies
the file mode (that is, access permissions) for created
NSPosixFileDescriptor s (O_CREAT flag); see the system routine chmod()
in the man pages for a list of allowable values. See also initWithPath: .

initWithStandardError

-(id)InitWithStandardError

Returns an NSPosixFileDescriptor initialized with the standard error
device. See also initWithFileDescriptor: , initWithPath: .

initWithStandardInput

-(id)initWithStandardInput

Returns an NSPosixFileDescriptor initialized with the standard input
device. See also: initWithFileDescriptor: , initWithPath: .

NSPosixFileDescriptor 5-193

5

initWithStandardOutput

-(id)initWithStandardOutput

Returns an NSPosixFileDescriptor initialized with the standard output
device. See also initWithStandardError , initWithFileDescriptor: ,
initWithPath: .

mapFile

- (NSData *)mapFile

Maps the receiver into memory. As bytes are accessed, the operating system
brings new pages from disk to memory automatically. See also
mapFileRange: .

mapFileRange:

- (NSData *)mapFileRange:(NSRange)range

Maps the range of bytes in the file referenced by the receiver into memory. As
bytes are accessed, the operating system brings new pages from disk to
memory automatically. If there is an error in mapping, the method returns nil .
See also synchronize , mapFile .

monitorActivity:

- (void)monitorActivity:(NSPosixFileActivities)activity

Adds the receiver to the list of descriptors monitored in a run loop for
activity . The delegate for the receiving NSPosixFileDescriptor (if one
has been specified) is notified via the delegate method
activity:posixFileDescriptor: when the descriptor has data for
reading, can accept data for writing, or has an exceptional condition pending.

monitorActivity:delegate:

- (void)monitorActivity:(NSPosixFileActivities)activity
delegate:(id)delegate

5-194 OpenStep Programming Reference—September 1996

5

Adds the receiver to the list of descriptors monitored in a run loop for activity.
The delegate for the receiving NSPosixFileDescriptor (specified in
delegate) is notified via the delegate method
activity:posixFileDescriptor: when the descriptor has data for
reading, can accept data for writing, or has an exceptional condition pending.

position

- (unsigned)position

Returns the position of the file pointer within the file referenced by the
receiver. See also readEntireFile , seekToEnd , writeData: .

readEntireFile

- (NSData *)readEntireFile

Returns the contents of the file referenced by the receiver. See also
readFileLength: .

readFileLength:

- (NSData *)readFileLength:(unsigned int)length

Returns the contents of the file, socket, named pipe, or device referenced by the
receiver up to the byte identified by length . See also readFileRange: .

readFileRange:

- (NSData *)readFileRange:(NSRange)range

Returns the byte range of date in the file referenced by the receiver. See also
readRestOfFile .

readRestOfFile

- (NSData *)readRestOfFile

Returns the contents of the file, socket, named pipe, or device referenced by the
receiver from the current file pointer. See also position , seekToEnd ,
writeData: .

NSPosixFileDescriptor 5-195

5

seekToEnd

- (unsigned)seekToEnd

Puts the file pointer at the end of the file referenced by the receiver and returns
the number of bytes the file pointer has advanced from the start of the file. See
also position , seekToPosition: .

seekToPosition:

- (unsigned)seekToPosition:(unsigned)position

Moves the file pointer to the specified position within the file referenced by
the receiver and returns the number of bytes the file pointer has advanced
from the start of the file. See also position , readEntireFile , writeData: .

setDelegate:

- (void)setDelegate:(id)delegate

Sets the delegate object for the receiver. See also delegate .

synchronize

- (void)synchronize

Synchronizes the in-core state of the mapped file referenced by the receiver
with the on-disk image. See also mapFileRange: .

truncateAtPosition:

- (void)truncateAtPosition:(unsigned)position

Truncates the file referenced by the receiver at position within the file. See
also writeData: .

writeData:

- (void)writeData:(NSData *)data

Writes data to the file or device referenced by the receiver. See also position ,
readEntireFile , seekToEnd , writeData:range: .

5-196 OpenStep Programming Reference—September 1996

5

writeData:range:

- (void)writeData:(NSData *)data range:(NSRange)range

Writes the range of bytes from data to the current position within the file
referenced by the receiver. See also writeData: .

Methods implemented by the delegate

activity:posixFileDescriptor:

- activity:(NSPosixFileActivities)activity
posixFileDescriptor:(NSPosixFileDescriptor *)descriptor

Invoked to inform the delegate that the NSPosixFileDescriptor identified
by descriptor (a socket, device, pipe, or named pipe) is manifesting the
condition identified by activity . This condition can indicate a readiness for
reading or writing data, or can be an exception that is pending.

NSProcessInfo

Class Description

The NSProcessInfo class provides methods to access process-wide
information. An NSProcessInfo object can return such information as the
arguments, environment, host name, or process name. The processInfo class
method returns an NSProcessInfo object. For example, the following code
creates an NSProcessInfo object, which then provides the name of the
current process:

[[NSProcessInfo processInfo] processName];

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSProcessinfo.h

NSProcessInfo 5-197

5

Method Types

Class Methods

processInfo

+ (NSProcessInfo *)processInfo

Returns the NSProcessInfo object for the process. It is already initialized. An
NSProcessInfo object is created the first time this method is invoked, and
that same object is returned on each subsequent invocation.

Instance Methods

arguments

– (NSArray *)arguments

Returns the arguments as an array of NSString s from the command line.

environment

– (NSDictionary *)environment

Returns a dictionary of variables defined for the environment from which the
process was launched.

Activity Class Method

Getting an NSProcessInfo object + processInfo

Returning process information – arguments
– environment
– hostName
– processName
– globallyUniqueString

Specifying a process name – setProcessName:

5-198 OpenStep Programming Reference—September 1996

5

globallyUniqueString

– (NSString *)globallyUniqueString

Returns a globally unique string to identify the process. This method uses the
host name, process ID, and a timestamp (in that order) to ensure that the string
returned will be globally unique.

hostName

– (NSString *)hostName

Returns the name of the host system.

processName

– (NSString *)processName

Returns the name of the process under which this program’s user defaults
domain is created, and is the name used in error messages. It does not
uniquely identify the process.

setProcessName:

– (void)setProcessName:(NSString *)newName

Sets the name of the process to newName. Aspects of the environment like user
defaults might depend on the process name, so be very careful if you change
this. Setting the process name this way is not thread-safe.

NSProxy 5-199

5

NSProxy

Class Description

A proxy object stands in for another (real) object. Proxies can stand in for real
objects, which should be descendants of NSObject , that can exist in another
process, perhaps on another machine across a network.

To the application, the proxy behaves like the real object, though the real object
may not be directly accessible, and in general, instance variables of remote
objects are not accessible.

NSProxy class defines few methods because proxies respond to few messages
directly. Instead, when a proxy receives a message it doesn’t respond to, it
encodes the message, including the arguments, in an NSInvocation , and
invokes forwardInvocation: . Specialized subclasses then direct further
processing, such as forwarding the message to a real object in the same or
another process.

Methods defined in this class are methods that the NSProxy class responds to
directly. Unless otherwise noted, none of these methods are forwarded to the
proxy’s correspondent.

Your application in general doesn’t instantiate NSProxy objects—they’re
created as instances of specialized subclasses. Proxies are reference-counted so
that only a single NSProxy per connection is instantiated for any real object.

Characteristic Description

Inherits From: none (NXProxy is a root class)

Conforms To: NSObject

Declared In: Foundation/NSProxy

5-200 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

alloc

+ (id)alloc

Returns a new, uninitialized instance of the receiving class.

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Returns a new, uninitialized instance of the receiving class in zone .

class

+ (Class)class

Returns self . Since this is a class method, it returns the class object.

Instance Methods

dealloc

– (void)dealloc

Deallocates the memory occupied by the receiver.

Activity Class Method

Creating and destroying instances + alloc
+ allocWithZone:
– dealloc

Identifying classes + class

Obtaining method information – methodSignatureForSelector:

Describing objects – description

Forwarding messages – forwardInvocation:

NSRecursiveLock 5-201

5

description

– (NSString *)description

Prints the name of receiver’s class and the hexadecimal value of its id . See also
description (NSObject , NSArray , NSDictionary).

forwardInvocation:

– (void)forwardInvocation:(NSInvocation *)invocation

Implemented by subclasses to forward messages to other objects. The NSProxy
implementation of this method raises an NSInvalidArgumentException
exception. See also NSInvocation .

methodSignatureForSelector:

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Implemented by subclasses to return an object that contains a description of
the aSelector method, or to return nil if the aSelector method can’t be
found. The NSProxy implementation of this method raises an
NSInvalidArgumentException exception.

NSRecursiveLock

Class Description

NSRecursiveLock is used for locks that need to be reacquired by the same
thread. An NSRecursiveLock locks a critical section of code such that a single
thread can reacquire the lock multiple times without deadlocking, while
preventing access by other threads. (Note that this implies that a recursive lock

Characteristic Description

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

5-202 OpenStep Programming Reference—September 1996

5

will not protect a critical section from a signal handler interrupting the thread
holding the lock.) Here is an example where a recursive lock functions
properly, but where other lock types would deadlock:

// create the lock only once!
NSRecursiveLock *theLock = [NSRecursiveLock new];
/* ...other code... */
[theLock lock];

/* ... possibly a long time of fussing with global data... */
[theLock lock]; /* possibly invoked in a subroutine */
[theLock unlock];

[theLock unlock];

The NSConditionLock , NSLock , and NSRecursiveLock classes all
implement the NSLocking protocol with various features and performance
characteristics; see the NSConditionLock and NSLock class descriptions for
more information.

Method Types

Instance Methods

tryLock

– (BOOL)tryLock

Attempts to acquire a lock. Returns YES if successful and NO otherwise. This
method can be called repeatedly to produce nested locks.

Activity Class Method

Acquiring a lock – tryLock

NSRunLoop 5-203

5

NSRunLoop

Class Description

The NSRunLoop class declares the programmatic interface to objects that
manage input sources. An NSRunLoop object processes input for sources such
as mouse and keyboard events from the window system, NSTimer s, POSIX file
descriptors, and NSConnection s, based on a mode argument. A given
NSRunLoop object processes input for input sources associated with a
particular mode.

In general, your application won’t need to either create or explicitly manage
NSRunLoop objects. Each thread has an NSRunLoop object automatically
created for it. The NSApplication object creates a default thread and
therefore creates a default run loop.

Applications wanting to perform their own explicit run loop management
should send the currentRunLoop message to the NSRunLoop class object to
obtain the NSRunLoop object for the current thread, then invoke one of the
methods, described below in “Running a run loop” method category, to obtain
input.

Currently defined modes are:

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSRunLoop.h

Table 5-3 Run Loop and Reply Modes

Mode Use

NSDefaultRunLoopMode Use this mode to deal with input sources other
than NSConnections. Defined in the
Foundation/NSRunLoop.h header file.

NSConnectionReplyMode Use this mode to indicate NSConnections waiting
for replies. Defined in the
Foundation/NSConnection.h header file.

5-204 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

currentRunLoop

+ (NSRunLoop *)currentRunLoop

Returns the NSRunLoop for the current thread.

Instance Methods

acceptInputForMode:beforeDate:

– (void)acceptInputForMode:(NSString *)mode
beforeDate:(NSDate *)limitDate

Runs the run loop, accepting input from the input sources for the mode
specified by mode until the time specified by limitDate .

addTimer:forMode:

– (void)addTimer:(NSTimer *)aTimer forMode:(NSString *)mode

Registers the timer aTimer with input filter mode. The run loop causes the
timer to fire at its scheduled fire date. Note that timers are removed from
modes if they supply nil as their fire date. See also NSTimer .

Activity Class Method

Accessing the current run loop + currentRunLoop
– currentMode
– limitDateForMode:

Adding timers – addTimer:forMode:

Running a run loop – acceptInputForMode:beforeDate:
– run
– runMode:beforeDate:
– runUntilDate:

NSRunLoop 5-205

5

currentMode

– (NSString *)currentMode

Returns the current run loop mode.

limitDateForMode:

– (NSDate *)limitDateForMode:(NSString *)mode

Polls timers and platform-specific input managers for their limit date (if any).
Timers will fire if appropriate. Returns nil if there are no input sources for this
mode.

run

– (void)run

Runs the run loop in the default mode until there is nothing to do.

runMode:beforeDate:

– (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Runs the run loop, accepting input from filter mode until limitDate or until
the earliest limit date for input sources in this mode. Returns NO without
starting the run loop if there are no limit dates set for input sources (that is,
there’s nothing to do).

runUntilDate:

– (void)runUntilDate:(NSDate *)limitDate

Runs the run loop until limitDate or until there are no limit dates set for
input sources (that is, there’s nothing to do).

5-206 OpenStep Programming Reference—September 1996

5

NSScanner

Class Description

The NSScanner class declares the programmatic interface to an object that is
capable of scanning NSString objects (strings of characters in the Unicode
character encoding), converting the scanned strings to various numeric
representations, or scanning characters from a character set.

Generally, you instantiate a scanner object by sending one of
scannerWithString: or localizedScannerWithString: methods to the
NSScanner class object. Either method returns a scanner object initialized with
the string you pass in.

NSScanner provides methods of configuring the behavior of the scan.
setCaseSensitive: specifies whether the scanner will treat upper case and
lower case letters as distinct. setCharactersToBeSkipped: determines the
set of characters that will be skipped while scanning. The preset set of
characters to skip are whitespace and newline characters. setLocale:
specifies the locale to be used while scanning strings. setScanLocation: sets
the index in the string object at that scanning will commence. Using this
method, you can repeatedly scan portions of a string.

Scanning is performed using any of the scan... methods listed under
“Scanning a string” method category.

Note – Floating-point numbers are assumed to be IEEE compliant.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSScanner.h

NSScanner 5-207

5

Method Types

Class Methods

localizedScannerWithString:

+ (id)localizedScannerWithString:(NSString *)aString

Creates and returns a scanner that scans aString . Invokes
initWithString: and sets the locale to the user’s default locale.

scannerWithString:

+ (id)scannerWithString:(NSString *)aString

Creates and returns a scanner that scans aString .

Activity Class Method

Creating an NSScanner + localizedScannerWithString:
+ scannerWithString:
– initWithString:

Getting an NSScanner’s string – string

Configuring an NSScanner – caseSensitive
– charactersToBeSkipped
– locale
– scanLocation
– setCaseSensitive:
– setCharactersToBeSkipped:
– setLocale:
– setScanLocation:

Scanning a string – scanCharactersFromSet:intoString:
– scanDouble:
– scanFloat:
– scanHexInt:
– scanInt:
– scanLongLong:
– scanString:intoString:
– scanUpToCharactersFromSet:intoString:
– scanUpToString:intoString:
– isAtEnd

5-208 OpenStep Programming Reference—September 1996

5

Instance Methods

caseSensitive

– (BOOL)caseSensitive

Returns YES if the scanner distinguishes case, and NO otherwise. Scanners are
by default not case sensitive.

charactersToBeSkipped

– (NSCharacterSet *)charactersToBeSkipped

Returns a character set object containing those characters that the scanner
ignores when looking for an element. The default set is the whitespace and
newline character set.

initWithString:

– (id)initWithString:(NSString *)aString

Initializes the receiver, a newly allocated scanner, to scan aString . Returns
self .

isAtEnd

– (BOOL)isAtEnd

Returns YES if the scanner has exhausted all characters in its string; returns NO
if there are characters left to scan.

locale

– (NSDictionary *)locale

Returns a dictionary object containing locale information. Returns nil if the
locale dictionary has not been set.

scanCharactersFromSet:intoString:

– (BOOL)scanCharactersFromSet:(NSCharacterSet *)aSet
intoString:(NSString **)value

NSScanner 5-209

5

Scans the string as long as characters from aSet are encountered,
accumulating characters into an optional string that’s returned by reference in
value . If any characters are scanned, returns YES; otherwise returns NO.

scanDouble:

– (BOOL)scanDouble:(double *)value

Scans a double into value if possible. Returns YES if a valid floating-point
expression was scanned; returns NO otherwise. HUGE_VAL or –HUGE_VAL is put
in value on overflow ; 0.0 on underflow. Returns YES in overflow and
underflow cases.

scanFloat:

– (BOOL)scanFloat:(float *)value

Scans a float into value if possible. Returns YES if a valid floating-point
expression was scanned; returns NO otherwise. HUGE_VAL or –HUGE_VAL is put
in value on overflow; 0.0 on underflow. Returns YES in overflow and
underflow cases.

scanHexInt:

- (BOOL)scanHexInt:(unsigned *)value

Scans a hexadecimal integer into value , if possible. Returns YES if successful;
returns NO otherwise.

scanInt:

– (BOOL)scanInt:(int *)value

Scans an int into value if possible. Returns YES if a valid integer expression
was scanned; returns NO otherwise. INT_MAX or INT_MIN is put in value on
overflow. Returns YES in overflow cases.

scanLocation

– (unsigned)scanLocation

5-210 OpenStep Programming Reference—September 1996

5

Returns the character index at which the scanner will begin its next scanning
operation.

scanLongLong:

– (BOOL)scanLongLong:(long long *)value

Scans a long long int into value if possible. Returns YES if a valid integer
expression was scanned; returns NO otherwise. LONG_LONG_MAX or
LONG_LONG_MIN is put in value on overflow. Returns YES in overflow cases.

scanString:intoString:

– (BOOL)scanString:(NSString *)aString
intoString:(NSString **)value

Scans for aString , and if a match is found returns by reference in the optional
value argument a string object equal to it. If aString matches the characters
at the scan location, this method returns YES; otherwise returns NO.

scanUpToCharactersFromSet:intoString:

– (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)aSet
intoString:(NSString **)value

Scans the string until a character from aSet is encountered, accumulating
characters encountered into a string that’s returned by reference in the optional
value argument. If any characters are scanned, returns YES; otherwise returns
NO.

scanUpToString:intoString:

– (BOOL)scanUpToString:(NSString *)aString
intoString:(NSString **)value

Scans the string until aString is encountered, accumulating characters
encountered into a string that’s returned by reference in the optional value
argument. If any characters are scanned, returns YES, otherwise returns NO.

setCaseSensitive:

– (void)setCaseSensitive:(BOOL)flag

NSSerializer 5-211

5

If flag is YES, the scanner considers case when scanning characters. If flag is
NO, it ignores case distinctions. NSScanner s are by default not case sensitive.

setCharactersToBeSkipped:

– (void)setCharactersToBeSkipped:(NSCharacterSet *)aSet

Sets the scanner to ignore characters from aSet when scanning its string.

setLocale:

– (void)setLocale:(NSDictionary *)localeDictionary

Sets the receiver’s dictionary object containing locale information.

setScanLocation:

– (void)setScanLocation:(unsigned int)anIndex

Sets the location at which the next scan will begin to anIndex .

string

– (NSString *)string

Returns the string object that the scanner was created with.

NSSerializer

Class Description

The NSSerializer class provides a mechanism for creating an abstract
representation of a property list. (In OpenStep, property lists are defined to
be—and to contain—objects of these classes: NSDictionary , NSArray ,
NSString , NSData). The NSSerializer class stores this representation in an

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSSerialization.h

5-212 OpenStep Programming Reference—September 1996

5

NSData object in an architecture-independent format, so that property lists can
be used with distributed applications. NSSerializer ’s companion class
NSDeserializer declares methods that take the abstract representation and
recreate the property list in memory.

In contrast to archiving (see the NSArchiver class specification), the
serialization process preserves only structural information, not class
information. If a property list is serialized and then deserialized, the objects in
the resulting property list might not be of the same class as the objects in the
original property list. However, the structure and interrelationships of the data
in the resulting property list are identical to that in the original, with one
possible exception.

The exception is that when an object graph is serialized, the mutability of the
container objects (NSDictionary and NSArray objects) is preserved only
down to the highest node in the graph that has an immutable container. Thus,
if an NSArray contains an NSMutableDictionary , the serialized version of
this object graph would not preserve the mutability of the dictionary or any of
the mutable objects it contained. Since serialization doesn’t preserve class
information or—in some cases—mutability, coding (as implemented by
NSCoder and NSArchiver) is the preferred way to make object graphs
persistent.

The NSSerializer class object provides the interface to the serialization
process; you don’t create instances of NSSerializer . You might subclass
NSSerializer to modify the representation it creates, for example, to encrypt
the data or add authentication information.

Other types of data besides property lists can be serialized using methods
declared by the NSData and NSMutableData classes (see
serializeDataAt:ofObjCType:context: and
deserializeDataAt:ofObjCType:atCursor:context:), allowing these
types to be represented in an architecture-independent format. Furthermore,
the NSObjCTypeSerializationCallBack protocol allows you to serialize
and deserialize objects that aren’t property lists.

NSSet 5-213

5

Method Types

Class Methods

serializePropertyList:

+ (NSData *)serializePropertyList:(id)aPropertyList

Creates a data object, serializes aPropertyList into it, and returns the data
object. aPropertyList must be a kind of NSData , NSString , NSArray , or
NSDictionary .

serializePropertyList:intoData:

+ (void)serializePropertyList:(id)aPropertyList
intoData:(NSMutableData *)mdata

Serializes the property list aPropertyList in the mutable data object mdata .
aPropertyList must be a kind of NSData , NSString , NSArray , or
NSDictionary .

NSSet

Class Description

The NSSet class declares the programmatic interface to an object that manages
an immutable set of objects. NSSet provides support for the mathematical
concept of a set. A set, both in its mathematical sense and in the OpenStep

Activity Class Method

Serialization of property lists + serializePropertyList:
+ serializePropertyList:intoData:

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

5-214 OpenStep Programming Reference—September 1996

5

implementation of NSSet , is an unordered collection of distinct elements.
OpenStep provides the NSMutableSet class for sets whose contents may be
altered, and also provides the NSCountedSet class for sets that can contain
multiple instances of the same element.

Use set objects as an alternative to array objects when the order of elements is
not important, but performance in testing whether an object is contained in the
set is a consideration—while arrays are ordered, testing for membership is
slower than with sets. For example, the NSSet method containsObject:
operates in O(1) time when applied to a set, while containsObject: operates
in O(N) time when applied to an array.

Objects in a set must respond to hash and isEqual: methods. See the
NSObject protocol for details on hash and isEqual: .

Generally, you instantiate an NSSet object by sending one of the set…
methods to the NSSet class object. These methods return an NSSet object
containing the elements (if any) you pass in as arguments. The set method is
a “convenience” method to create an empty set. Newly created instances of
NSSet created by invoking the set method can be populated with objects
using any of the init… methods. initWithObjects: is the designated
initializer for the NSSet class. Objects added to the set are not copied; rather,
each object receives a retain message before it is added to the set.

NSSet provides methods for querying the elements of the set. allObjects
returns an array containing all objects in the set. anyObject returns some
object in the set. count returns the number of objects currently in the set.
member: returns the object in the set that is equal to a specified object.
Additionally, the intersectsSet: tests for set intersection, isEqualToSet:
tests for set equality, and isSubsetOfSet: tests for one set being a subset of
the specified set object.

The objectEnumerator method provides for traversing elements of the set
one by one. NSSet ’s makeObjectsPerform: and
makeObjectsPerform:withObject: methods provide for sending messages
to individual objects in the set.

Exceptions

NSSet implements the encodeWithCoder: method, which raises
NSInternalInconsistencyException if the number of objects enumerated
for encoding turns out to be unequal to the number of objects in the set.

NSSet 5-215

5

Method Types

Class Methods

allocWithZone:

+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized set object in zone .

set

+ (id)set

Activity Class Method

Allocating and initializing a set + allocWithZone:
+ set
+ setWithArray:
+ setWithObject:
+ setWithObjects:
– initWithArray:
– initWithObjects:
– initWithObjects:count:
– initWithSet:
– initWithSet:copyItems:

Querying the set – allObjects
– anyObject
– containsObject:
– count
– member:
– objectEnumerator

Sending messages to elements of the set – makeObjectsPerform:
– makeObjectsPerform:withObject:

Comparing sets – intersectsSet:
– isEqualToSet:
– isSubsetOfSet:

Creating a string description of the set – description
– descriptionWithLocale:

5-216 OpenStep Programming Reference—September 1996

5

Creates and returns an empty set object.

setWithArray:

+ (id)setWithArray:(NSArray *)array

Creates and returns a set object containing the objects in array .

setWithObject:

+ (id)setWithObject:(id)anObject

Creates and returns a set object containing the single element anObject .

setWithObjects:

+ (id)setWithObjects:(id)firstObj,...

Creates and returns a set object containing the objects in the argument list. The
object list is comma-separated and ends with nil .

Instance Methods

allObjects

– (NSArray *)allObjects

Returns an array containing all the objects in the set.

anyObject

– (id)anyObject

Returns some object in the set, or nil if the set is empty.

containsObject:

– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the set.

NSSet 5-217

5

count

– (unsigned int)count

Returns the number of objects currently in the set.

description

– (NSString *)description

Returns a string object that describes the contents of the receiver. See also
description (NSArray , NSDictionary , NSObject).

descriptionWithLocale:

– (NSString *)descriptionWithLocale:
(NSDictionary *)localeDictionary

Returns a string representation of the NSSet object, including the keys and
values that represent the locale data from localeDictionary .

initWithArray:

– (id)initWithArray:(NSArray *)array

Initializes a newly allocated set object by placing in it the objects contained in
array .

initWithObjects:

– (id)initWithObjects:(id)firstObj,...

Initializes a newly allocated set object by placing in it the objects in the
argument list. The object list is comma-separated and ends with nil .

initWithObjects:count:

– (id)initWithObjects:(id *)objects count:(unsigned int)count

Initializes a newly allocated set object by placing in it count objects from the
objects array.

5-218 OpenStep Programming Reference—September 1996

5

initWithSet:

– (id)initWithSet:(NSSet *)anotherSet

Initializes a newly allocated set object by placing in it the objects contained in
anotherSet .

initWithSet:copyItems:

– (id)initWithSet:(NSSet *)set copyItems:(BOOL)flag

Initializes a newly allocated set object by placing in it the objects contained in
anotherSet (or immutable copies of them, if flag is YES).

intersectsSet:

– (BOOL)intersectsSet:(NSSet *)otherSet

Returns YES if there is any object in the receiving set that’s equal to an object in
otherSet .

isEqualToSet:

– (BOOL)isEqualToSet:(NSSet *)otherSet

Returns YES if every object in the receiving set is equal to an object in
otherSet , and the two sets contain the same number of objects.

isSubsetOfSet:

– (BOOL)isSubsetOfSet:(NSSet *)otherSet

Returns YES if every object in the receiving set is equal to an object in
otherSet , and the receiving set contains no more objects than otherSet
does.

makeObjectsPerform:

– (void)makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the set.

NSString 5-219

5

makeObjectsPerform:withObject:

– (void)makeObjectsPerform:(SEL)aSelector withObject:(id)anObject

Sends an aSelector message to each object in the set, with anObject as an
argument.

member:

– (id)member:(id)anObject

Return the object in the set that is equal to anObject , or nil if none is equal.

objectEnumerator

– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the set.

NSString

Class Description

NSString declares the programmatic interface for objects that create and
manage immutable character strings in a representation-independent format.

NSString and NSMutableString are abstract classes for string
manipulation. NSString provides methods for read-only access, while
NSMutableString allows for changing the contents of the string. NSString
and NSMutableString provide factory methods that return autoreleased
instances of unspecified subclasses of strings.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h
Foundation/NSPathUtilities.h
Foundation/NSUtilities.h

5-220 OpenStep Programming Reference—September 1996

5

While the actual representation of character strings stored in NSString and
NSMutableString is independent of any particular implementation, you can
in general think of the contents of NSString and NSMutableString objects
as being Unicode characters defined by the unichar data type. Methods that
use the terms “character”, “range”, and “length”, refer to strings of unichar s
and ranges and lengths of unichar strings. This is important because
conversion between unichar s and other character encodings is not necessarily
one-to-one. For instance, an ISO Latin1 encoded string of a given length might
contain fewer or more characters when encoded as unichar s. Another
important point is that unichar s don't necessarily correspond one-to-one with
what is normally thought of as “letters” in a string; if you need to go through a
string in terms of ”letters”, use
rangeOfComposedCharacterSequenceAtIndex: .

Methods that take “CString” arguments deal with the default eight-bit
encoding of the environment, which could be, for instance, EUC or ISOLatin1.
You can also explicitly convert to and from any encoding by using methods
such as initWithData:usingEncoding: and dataUsingEncoding: .

Constant NSString s can be created with the @"..." option. Such strings
should contain only ASCII characters, and nothing more.

Strings are provided with generic coding behavior when used for storage or
distribution. This behavior is to copy the contents and provide a generic
NSString implementation, losing class but preserving mutability.

In general, you instantiate NSString objects sending one of the stringWith…
methods or the localizedStringWithFormat: method to the NSString
class object. For NSString objects that were allocated “manually”, use any of
the initWith… methods to initialize the contents of the string object.

The primitive methods to NSString are length and characterAtIndex: .

UNIX-style file system path names can be manipulated using the collection of
stringBy… methods described under “Manipulating file system paths”
method category in the following table.

NSString 5-221

5

Method Types

Activity Class Method

Creating temporary strings + localizedStringWithFormat:
+ stringWithCString:
+ stringWithCString:length:
+ stringWithCharacters:length:
+ stringWithContentsOfFile:
+ stringWithFormat:

Initializing newly allocated
strings

– init
– initWithCString:
– initWithCString:length:
– initWithCStringNoCopy:length:freeWhenDone:
– initWithCharacters:length:
– initWithCharactersNoCopy:length:freeWhenDone:
– initWithContentsOfFile:
– initWithData:encoding:
– initWithFormat:
– initWithFormat:arguments:
– initWithFormat:locale:arguments:
– initWithString:

Getting a string’s length – length

Accessing characters – characterAtIndex:
– getCharacters:
– getCharacters:range:

Combining strings – stringByAppendingFormat:
– stringByAppendingString:

Dividing strings into
substrings

– componentsSeparatedByString:
– substringFromIndex:
– substringWithRange:
– substringToIndex:

Finding ranges of characters
and substrings

– rangeOfCharacterFromSet:
– rangeOfCharacterFromSet:options:
– rangeOfCharacterFromSet:options:range:
– rangeOfString:
– rangeOfString:options:
– rangeOfString:options:range:

Determining composed
character sequences

– rangeOfComposedCharacterSequenceAtIndex:

5-222 OpenStep Programming Reference—September 1996

5

Indentifying and comparing
strings

– caseInsensitiveCompare:
– compare:
– compare:options:
– compare:options:range:
– hasPrefix:
– hasSuffix:
– hash
– isEqualToString:

Storing the string – description
– writeToFile:atomically:

Getting a shared prefix – commonPrefixWithString:options:

Changing case – capitalizedString
– lowercaseString
– uppercaseString

Getting C strings – cString
– cStringLength
– getCString:
– getCString:maxLength:
– getCString:maxLength:range:remainingRange:
– lossyCString

Getting numeric values – doubleValue
– floatValue
– intValue

Activity Class Method

NSString 5-223

5

Class Methods

availableStringEncodings

+ (NSStringEncoding *)availableStringEncodings

Returns a null terminated array of available string encodings. See the “String”
section of the Foundation Kit’s “Types and Constants” chapter for a list of
available string encodings. See also defaultCStringEncoding ,
localizedNameOfStringEncoding: , canBeConvertedToEncoding: ,
dataUsingEncoding: , dataUsingEncoding:allowLossyConversion: ,
fastestEncoding , smallestEncoding .

Working with encodings + availableStringEncodings
+ defaultCStringEncoding
+ localizedNameOfStringEncoding:
– canBeConvertedToEncoding:
– dataUsingEncoding:
– dataUsingEncoding:allowLossyConversion:
– fastestEncoding
– smallestEncoding

Converting string contents
into a property list

– propertyList
– propertyListFromStringsFileFormat

Manipulating file system
paths

– completePathIntoString:caseSensitive:
matchesIntoArray:filterTypes:
– fileSystemRepresentation
– getFileSystemRepresentation:maxLength:
– lastPathComponent
– pathExtension
– stringByAbbreviatingWithTildeInPath
– stringByAppendingPathComponent:
– stringByAppendingPathExtension:
– stringByDeletingLastPathComponent
– stringByDeletingPathExtension
– stringByExpandingTildeInPath
– stringByResolvingSymlinksInPath
– stringByStandardizingPath
– stringsByAppendingPaths:

Activity Class Method

5-224 OpenStep Programming Reference—September 1996

5

defaultCStringEncoding

+ (NSStringEncoding)defaultCStringEncoding

Returns the C string encoding assumed for any method accepting a C string as
an argument. See the “String” section of the Foundation Kit’s “Types and
Constants” chapter for a list of available string encodings. See also
availableStringEncodings .

localizedNameOfStringEncoding:

+(NSString *)localizedNameOfStringEncoding:
 (NSStringEncoding)encoding

Returns the localized name of the string encoding specified by encoding . See
the “String” section of the Foundation Kit’s “Types and Constants” chapter for
a list of available string encodings. See also availableStringEncodings .

localizedStringWithFormat:

+ (id)localizedStringWithFormat:(NSString *)format,...

Returns a string created by using format as a printf() style format string,
and the following arguments as values to be substituted into the format string.
The user’s default locale is used for format information. See also
stringWithFormat: , availableStringEncodings .

stringWithCString:

+ (id)stringWithCString:(const char *)byteString

Returns a string containing the characters in byteString , which must be null-
terminated. byteString should contain characters in the default C string
encoding. This method sends the message
stringWithCString:byteString length:strlen(byteString) . See
also stringWithCString:length: , availableStringEncodings .

stringWithCString:length:

+ (id)stringWithCString:(const char *)byteString
length:(unsigned int)length

NSString 5-225

5

Returns a string containing characters from byteString . byteString should
contain characters in the default C string encoding. length bytes are copied
into the string, regardless of whether a null byte exists in byteString . Raises
NSInvalidArgumentException if byteString is NULL. See also
stringWithCString: , availableStringEncodings .

stringWithCharacters:length:

+ (id)stringWithCharacters:(const unichar *)chars
length:(unsigned int)length

Returns a string containing chars . length characters are copied into the
string, regardless of whether a null character exists in chars . See also
availableStringEncodings .

stringWithContentsOfFile:

+ (id)stringWithContentsOfFile:(NSString *)path

Returns a string containing the contents of the file specified by path , or nil if
unsuccessful. This method attempts to determine the encoding for the file. The
string is assumed to be in Unicode encoding, but if the encoding is determined
not to be Unicode, the default C-string encoding is used instead. See also
availableStringEncodings .

stringWithFormat:

+ (id)stringWithFormat:(NSString *)format,...

Returns a string created by using format as a printf() style format string
(for example %s), and the following arguments as values to be substituted into
the format string. Note that the p and n format specifiers are not supported;
valid format specifiers are c s O o X x D d U u I i E e G g f I .
In addition, @ can be used to specify arbitrary objects; in this case, any
arguments to the object format specifier (for example field width and
precision) are ignored. Solaris sprintf -style argument reordering ($) is also
supported. See also localizedStringWithFormat: ,
availableStringEncodings .

5-226 OpenStep Programming Reference—September 1996

5

Instance Methods

canBeConvertedToEncoding:

– (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Returns YES if the receiver can be converted to encoding without loss of
information, and NO otherwise. See also availableStringEncodings .

capitalizedString

– (NSString *)capitalizedString

Returns a string with the first character of each word changed to its
corresponding uppercase value. See also lowercaseString ,
uppercaseString .

caseInsensitiveCompare:

– (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

Invokes compare:options: with the option NSCaseInsensitiveSearch .
See also compare:options: , compare:options:range: .

characterAtIndex:

– (unichar)characterAtIndex:(unsigned int)index

Returns the character at the array position given by index . This method raises
an NSStringBoundsError exception if index lies beyond the end of the
string. See also getCharacters: .

commonPrefixWithString:options:

– (NSString *)commonPrefixWithString:(NSString *)aString
options:(unsigned int)mask

Returns the substring of the receiver containing characters that the receiver
and aString have in common. mask can be any combination (using the C
bitwise OR operator |) of NSCaseInsensitiveSearch and
NSLiteralSearch (character-by-character search). See the String section of
the Foundation Kit’s Types and Constants chapter for a list of search masks.

NSString 5-227

5

compare:

– (NSComparisonResult)compare:(NSString *)aString

Invokes compare:options: with no options. See the “String section” of the
Foundation Kit’s “Types and Constants” chapter for a list of search masks. See
also compare:options: , compare:options:range: ,
caseInsensitiveCompare: , hasPrefix: , hasSuffix: , hash ,
isEqualToString: .

compare:options:

– (NSComparisonResult)compare:(NSString *)aString
options:(unsigned int)mask

Invokes compare:options:range: with mask as the options and the
receiver’s full extent as the range. See also compare: .

compare:options:range:

– (NSComparisonResult)compare:(NSString *)aString
options:(unsigned int)mask range:(NSRange)aRange

Compares aString to the receiver and returns their lexical ordering. The
comparison is restricted to aRange and uses mask options, which may be
NSCaseInsensitiveSearch and NSLiteralSearch . One of the following
values is returned:

• NSOrderedAscending
• NSOrderedSame
• NSOrderedDescending

See also compare: .

completePathIntoString:caseSensitive:
matchesIntoArray:filterTypes:

– (unsigned int)completePathIntoString:(NSString **)outputName
caseSensitive:(BOOL)flag
matchesIntoArray:(NSArray **)outputArray
filterTypes:(NSArray *)filterTypes

5-228 OpenStep Programming Reference—September 1996

5

Regards the receiver as containing a partial filename and returns in
outputName the longest matching path name. Case is considered if flag is
YES. If outputArray is given, all matching file names are returned in
outputArray . If filterTypes is provided, this method considers only those
paths that match one of the types. Returns 0 if no matches are found;
otherwise, the return value is positive. See also lastPathComponent ,
pathExtension , stringByAbbreviatingWithTildeInPath .

componentsSeparatedByString:

– (NSArray *)componentsSeparatedByString:(NSString *)separator

Finds the substrings in the receiver that are delimited by separator and
returns them as the elements of an NSArray . The strings in the array appear in
the order they appeared in the receiver. See also substringFromIndex: .

cString

– (const char *)cString

Returns a representation of the receiver as a C string in the default C-string
encoding. See also cStringLength , getCString: .

cStringLength

– (unsigned int)cStringLength

Returns the length, in bytes, of the receiver’s C string representation. See also
cString .

dataUsingEncoding:

– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Invokes dataUsingEncoding:allowLossyConversion: with NO as the
argument to allow lossy conversion. See also availableStringEncodings .

dataUsingEncoding:allowLossyConversion:

– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag

NSString 5-229

5

Returns an NSData object containing a representation of the receiver in
encoding . If flag is NO, and the receiver can’t be converted without losing
some information (such as accents or case), this method returns nil . If flag is
YES and the receiver can’t be converted without losing some information, some
characters may be removed or altered in the conversion. See also
dataUsingEncoding: , availableStringEncodings .

description

– (NSString *)description

Returns the string (self). See also writeToFile:atomically: .

doubleValue

– (double)doubleValue

Returns the double-precision floating-point value of the receiver’s text.
Whitespace at the beginning of the string is skipped. If the receiver begins with
a valid text representation of a floating-point number, that number’s value is
returned, otherwise 0.0 is returned. HUGE_VAL or –HUGE_VAL is returned on
overflow. 0.0 is returned on underflow. Characters following the number are
ignored. See also floatValue , intValue .

fastestEncoding

– (NSStringEncoding)fastestEncoding

Encoding in which this string can be expressed with lossless conversion most
quickly. See also smallestEncoding , availableStringEncodings .

floatValue

– (float)floatValue

Returns the floating-point value of the receiver’s text. Whitespace at the
beginning of the string is skipped. If the receiver begins with a valid text
representation of a floating-point number, that number’s value is returned,
otherwise 0.0 is returned. HUGE_VAL or –HUGE_VAL is returned on overflow.
0.0 is returned on underflow. Characters following the number are ignored. See
also doubleValue , intValue .

5-230 OpenStep Programming Reference—September 1996

5

fileSystemRepresentation

- (const char *)fileSystemRepresentation

Returns a file system specific representation of the receiver, as described for
getFileSystemRepresentation:maxLength: . The returned C string will
be automatically freed just as a returned object would be released; your code
should copy the representation or use
getFileSystemRepresentation:maxLength: if it needs to store the
representation outside of the autorelease context in which the representation is
created. See also getFileSystemRepresentation:maxLength: .

getCharacters:

– (void)getCharacters:(unichar *)buffer

Invokes getCharacters:range: with the provided buffer and the entire
extent of the receiver as the range. See also characterAtIndex: .

getCharacters:range:

– (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Copies characters from aRange in the receiver into buffer , which must be
large enough to contain them. This method does not add a null character. This
method raises an NSStringBoundsError exception if any part of aRange lies
beyond the end of the string. See also getCharacters: ,
characterAtIndex: .

getCString:

– (void)getCString:(char *)buffer

Invokes getCString:maxLength:range:remainingRange: with
NSMaximumStringLength as the maximum length, the receiver’s entire
extent as the range, and NULL for the remaining range. buffer must be large
enough to contain the resulting C string plus a terminating null characte,
which this method adds. See also cString , cStringLength ,
getCString:maxLength: ,
getCString:maxLength:range:remainingRange: .

NSString 5-231

5

getCString:maxLength:

– (void)getCString:(char *)buffer maxLength:(unsigned int)maxLength

Invokes getCString:maxLength:range:remainingRange: with
maxLength as the maximum length, the receiver’s entire extent as the range,
and NULL for the remaining range. buffer must be large enough to contain
the resulting C string plus a terminating null character (which this method
adds). See also getCString: .

getCString:maxLength:range:remainingRange:

– (void)getCString:(char *)buffer maxLength:(unsigned int)maxLength
range:(NSRange)aRange remainingRange:(NSRange *)leftoverRange

Copies the receiver’s characters, in the default C-string encoding, as bytes into
buffer . buffer must be large enough to contain maxLength bytes plus a
terminating null character which this method adds. Characters are copied from
aRange ; if not all characters can be copied, the range of those not copied is put
into leftoverRange . This method raises an NSStringBoundsError
exception if any part of aRange lies beyond the end of the string. See also
getCString: .

getFileSystemRepresentation:maxLength:

- (BOOL)getFileSystemRepresentation:(char *)c maxLength:(unsigned)m

Interprets the receiver as a system-independent path, filling buffer with a C
string in a format and encoding suitable for use with file system calls. This is
done by replacing the abstract path and extension separator characters (‘/’ and
‘.’ respectively) with their equivalents for the operating system. For example,
on Microsoft Windows 95 the receiver “C:/Working/Sample.tiff” is returned as
the C string “C:\Working\Sample.tiff”. Returns NO if the receiver cannot be
converted to a C string or if it is an empty string object. See also
fileSystemRepresentation .

hasPrefix:

– (BOOL)hasPrefix:(NSString *)aString

Returns YES if aString matches the beginning characters of the receiver, and
returns NO otherwise. See also hasSuffix: , compare: .

5-232 OpenStep Programming Reference—September 1996

5

hasSuffix:

– (BOOL)hasSuffix:(NSString *)aString

Returns YES if aString matches the ending characters of the receiver, and
returns NO otherwise. See also hasPrefix: , compare: .

hash

– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table
structure. If two string objects are equal, they must have the same hash value.
See also isEqualToString: , compare: .

init

– (id)init

Initializes the receiver, a newly allocated NSString , to contain no characters.
This is the only initialization method that a subclass of NSString should
invoke. See also initWithCString: .

initWithCString:

– (id)initWithCString:(const char *)byteString

Initializes the receiver, a newly allocated NSString , by converting the one-
byte characters in byteString into Unicode characters. byteString must be
a null-terminated C string in the default C string encoding. See also init ,
initWithCString:length: , initWithCharacters:length: ,
initWithString: .

initWithCString:length:

– (id)initWithCString:(const char *)byteString
length:(unsigned int)length

Initializes the receiver, a newly allocated NSString , by converting length
one-byte characters in byteString into Unicode characters. This method
doesn’t stop at a null byte. See also
initWithCStringNoCopy:length:freeWhenDone: , initWithCString: .

NSString 5-233

5

initWithCStringNoCopy:length:freeWhenDone:

– (id)initWithCStringNoCopy:(char *)byteString
length:(unsigned int)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString , by converting length
one-byte characters in byteString into Unicode characters. This method
doesn’t stop at a null byte. The receiver becomes the owner of byteString ; if
flag is YES it will free the memory when it no longer needs it, but if flag is
NO it won’t. See also initWithCString: , initWithCString:length: .

initWithCharacters:length:

– (id)initWithCharacters:(const unichar *)chars
length:(unsigned int)length

Initializes the receiver, a newly allocated NSString , by copying length
characters from chars . This method doesn’t stop at a null character. See also
initWithCharactersNoCopy:length:freeWhenDone: ,
initWithCString: .

initWithCharactersNoCopy:length:freeWhenDone:

– (id)initWithCharactersNoCopy:(unichar *)chars
length:(unsigned int)length freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString , to contain length
characters from chars . This method doesn’t stop at a null character. The
receiver becomes the owner of chars ; if flag is YES the receiver will free the
memory when it no longer needs them, but if flag is NO it won’t. Note that the
NO case could be dangerous if used with memory that could be freed. The NO
flag should be used only when the provided backing store is permanent. See
also initWithCharacters:length: , initWithCString: .

initWithContentsOfFile:

– (id)initWithContentsOfFile:(NSString *)path

Initializes the receiver, a newly allocated NSString , by reading characters
from the file whose name is given by path . This method attempts to determine
the encoding for the file. The string is assumed to be in Unicode encoding, but

5-234 OpenStep Programming Reference—September 1996

5

if the encoding is determined not to be Unicode, the default C string encoding
is used instead. See also writeToFile:atomically: , initWithCString: ,
initWithString: , initWithFormat: , initWithData:encoding: .

initWithData:encoding:

– (id)initWithData:(NSData *)data
encoding:(NSStringEncoding)encoding

Initializes the receiver, a newly allocated NSString , by converting the bytes in
data into Unicode characters. data must be an NSData object containing
bytes in encoding and in the default “plain text” format for that encoding. See
also initWithCString: , initWithContentsOfFile: ,
initWithCharacters:length: , initWithFormat: , initWithString: .

initWithFormat:

– (id)initWithFormat:(NSString *)format,...

Initializes the receiver, a newly allocated NSString , by constructing a string
from format and following string objects in the manner of printf() . See the
stringWithFormat: description for a list of valid format specifiers. See also
initWithFormat:arguments: , initWithFormat:locale: ,
initWithFormat:locale:arguments: , initWithCString: .

initWithFormat:arguments:

– (id)initWithFormat:(NSString *)format arguments:(va_list)argList

Initializes the receiver, a newly allocated NSString , by constructing a string
from format and argList in the manner of vprintf() . See also
initWithFormat: .

initWithFormat:locale:

– (id)initWithFormat:(NSString *)format
locale:(NSDictionary *)dictionary,...

Initializes the receiver, a newly allocated NSString , by constructing a string
from format and the formatting information in the dictionary in the manner
of printf() . See also initWithFormat: .

NSString 5-235

5

initWithFormat:locale:arguments:

– (id)initWithFormat:(NSString *)format
locale:(NSDictionary *)dictionary
arguments:(va_list)argList

Initializes the receiver, a newly allocated NSString , by constructing a string
from format and format information in dictionary and argList in the
manner of vprintf() . See also initWithFormat: .

initWithString:

– (id)initWithString:(NSString *)string

Initializes the receiver, a newly allocated NSString , by copying the characters
from string . See also initWithCString: , initWithFormat: ,
initWithData:encoding: .

intValue

– (int)intValue

Returns the integer value of the receiver’s text. White space at the beginning of
the string is skipped. If the receiver begins with a valid representation of an
integer, that number’s value is returned; otherwise 0 is returned. INT_MAX or
INT_MIN is returned on overflow. Characters following the number are
ignored. See also doubleValue , floatValue .

isEqualToString:

– (BOOL)isEqualToString:(NSString *)aString

Returns YES if aString is equivalent to the receiver if they have the same id
or if they compare as NSOrderedSame . Returns NO otherwise. See also
compare: .

lastPathComponent

– (NSString *)lastPathComponent

5-236 OpenStep Programming Reference—September 1996

5

Returns the last component of the receiver’s path representation. Given the
path /Images/Bloggs.tiff , this method returns a string containing
Bloggs.tiff . See also pathExtension ,
completePathIntoString:caseSensitive:
matchesIntoArray:filterTypes: .

length

– (unsigned int)length

Returns the number of characters in the receiver. This number includes the
individual characters of composed character sequences. See also
cStringLength .

lossyCString

- (const char *)lossyCString

Returns a lossy C string version of the receiver.

lowercaseString

– (NSString *)lowercaseString

Returns a string with each character changed to its corresponding lowercase
value. See also uppercaseString , capitalizedString .

pathExtension

– (NSString *)pathExtension

Returns the extension of the receiver’s path representation. Given the path
/Images/Bloggs.tiff , this method returns a string containing tiff . See
also completePathIntoString:caseSensitive:
matchesIntoArray:filterTypes: , lastPathComponent .

propertyList

– (id)propertyList

NSString 5-237

5

Depending on the format of the receiver’s contents, returns a string, data,
array, or dictionary object represention of those contents. See also
propertyListFromStringsFileFormat .

propertyListFromStringsFileFormat

– (NSDictionary *)propertyListFromStringsFileFormat

Returns a dictionary object initialized with the keys and values found in the
receiver. The receiver’s format must be that used for “.string” files. See also
NSDictionary , propertyList .

rangeOfCharacterFromSet:

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Invokes rangeOfCharacterFromSet:options: with no options. See also
rangeOfCharacterFromSet:options: ,
rangeOfCharacterFromSet:options:range: , rangeOfString: .

rangeOfCharacterFromSet:options:

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask

Invokes rangeOfCharacterFromSet:options:range: with mask and the
entire extent of the receiver as the range. See also
rangeOfCharacterFromSet: .

rangeOfCharacterFromSet:options:range:

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask range:(NSRange)aRange

Returns the range of the first character found from aSet . The search is
restricted to aRange with mask options. mask can be any combination (using
the C bitwise OR operator |) of NSCaseInsensitiveSearch ,
NSLiteralSearch , and NSBackwardsSearch (see theFoundation Kit’s Type
and Constants chapter). See also rangeOfCharacterFromSet: .

5-238 OpenStep Programming Reference—September 1996

5

rangeOfComposedCharacterSequenceAtIndex:

– (NSRange)rangeOfComposedCharacterSequenceAtIndex:
(unsigned int)anIndex

Returns an NSRange giving the location and length in the receiver of the
composed character sequence located at anIndex . This method raises an
NSStringBoundsError exception if anIndex lies beyond the end of the
string. See also NSRange (Foundation Kit’s “Types and Constants” chapter).

rangeOfString:

– (NSRange)rangeOfString:(NSString *)string

Invokes rangeOfString:options: with no options. See also NSRange
(Foundation Kit’s “Types and Constants” chapter),
rangeOfString:options: , rangeOfString:options:range: ,
rangeOfCharacterFromSet: .

rangeOfString:options:

– (NSRange)rangeOfString:(NSString *)string
options:(unsigned int)mask

Invokes rangeOfString:options:range: with mask options and the entire
extent of the receiver as the range. See also NSRange (Foundation Kit’s “Types
and Constants” chapter), rangeOfString: .

rangeOfString:options:range:

– (NSRange)rangeOfString:(NSString *)aString
options:(unsigned int)mask
range:(NSRange)aRange

Returns the range giving the location and length in the receiver of aString .
The search is restricted to aRange with mask options. mask can be any
combination (using the C bitwise OR operator |) of the following values:

• NSCaseInsensitiveSearch
• NSLiteralSearch
• NSBackwardsSearch
• NSAnchoredSearch

NSString 5-239

5

See the “Searching” section of the Foundation Kit’s “Types and Constants”
chapter for more information on the searching flags. See also
rangeOfString: , NSRange.

smallestEncoding

– (NSStringEncoding)smallestEncoding

Encoding in which this string can be expressed with lossless conversion in the
most space-efficient manner. See the “String” section of the Foundation Kit’s
“Types and Constants” chapter for a list of encodings. See also
fastestEncoding .

stringByAbbreviatingWithTildeInPath

– (NSString *)stringByAbbreviatingWithTildeInPath

Returns a string in which the user’s home directory path is replaced by ~. If
the user’s home directory is not detected in the receiver, this method attempts
to find any other user’s home directory path, which, if found, is replaced with
~. If no home directory component is found within the receiving string, a copy
of the receiving string is returned. See also
stringByExpandingTildeInPath .

stringByAppendingFormat:

– (NSString *)stringByAppendingFormat:(NSString *)format,...

Returns a string made by using format as a printf() style format string,
and the following arguments as values to be substituted into the format string.
See also stringByAppendingString: .

stringByAppendingPathComponent:

– (NSString *)stringByAppendingPathComponent:(NSString *)aString

5-240 OpenStep Programming Reference—September 1996

5

Returns a string representing aString concatenated with the receiver. The
following table illustrates this method’s behavior.

See also stringByAppendingPathExtension: ,
stringByDeletingLastPathComponent .

stringByAppendingPathExtension:

– (NSString *)stringByAppendingPathExtension:(NSString *)aString

Returns a string representing the receiver with the addition of the extension
aString . The following table illustrates this method’s behavior.

See also stringByDeletingPathExtension ,
stringByAppendingPathComponent: .

stringByAppendingString:

– (NSString *)stringByAppendingString:(NSString *)aString

Returns a string formed by appending aString to the receiver. If aString ’s
length is 0, a copy of the receiver is returned. If the receiver’s length is 0, a
copy of aString is returned. See also stringByAppendingFormat: .

stringByDeletingLastPathComponent

– (NSString *)stringByDeletingLastPathComponent

Receiver aString Result

/ /New.tiff /New.tiff

/Dir New.tiff /Dir/New.tiff

/Dir/ New.tiff /Dir/New.tiff

@”” New.tiff New.tiff

Receiver aString Result

/Dir/New.x tiff /Dir/New.x.tiff

/Dir/ tiff /Dir/.tiff

New tiff New.tiff

NSString 5-241

5

Returns the receiver’s path representation minus the last component. The
following table illustrates this method’s behavior.

See also stringByAppendingPathComponent: ,
stringByDeletingPathExtension .

stringByDeletingPathExtension

– (NSString *)stringByDeletingPathExtension

Returns the receiver’s path representation minus the extension on the last
component. Given the path /Images/Bloggs.tiff , this method returns a
string containing /Images/Bloggs . The following table illustrates this
method’s behavior.

See also stringByAppendingPathExtension: ,
stringByDeletingLastPathComponent .

stringByExpandingTildeInPath

– (NSString *)stringByExpandingTildeInPath

Returns a string in which paths of the form ~user/path or ~/path are
expanded to their full path equivalent. If no tilde is found, a copy of the
receiver is returned. See also stringByAbbreviatingWithTildeInPath .

Receiver Result

/Dir/New.tiff /Dir

/Dir/ /

/ /

New @””

Receiver Result

/Dir/New.tiff /Dir/New

/Dir/ /Dir

/ /

5-242 OpenStep Programming Reference—September 1996

5

stringByResolvingSymlinksInPath

– (NSString *)stringByResolvingSymlinksInPath

Returns a string identical to the receiver’s path except that any symbolic links
have been resolved. If symbolic links can’t be resolved, the empty string (@””)
is returned. See also stringByAbbreviatingWithTildeInPath .

stringByStandardizingPath

– (NSString *)stringByStandardizingPath

Returns a string containing a “standardized” path, one in which tildes are
expanded and redundant elements (for example, “//”) eliminated. Returns the
empty string (@””) if the path cannot be standardized. See also
stringByResolvingSymlinksInPath .

stringsByAppendingPaths:

- (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Appends each element of paths to the receiver and returns the array of
resulting paths. See also stringByAppendingPathComponent: .

substringFromIndex:

– (NSString *)substringFromIndex:(unsigned int)index

Returns a string object containing the characters from index to the end of the
receiver. This method raises an NSStringBoundsError exception if index
lies beyond the end of the string. See also substringWithRange: ,
substringToIndex: .

substringWithRange:

– (NSString *)substringWithRange:(NSRange)aRange

Returns a string object containing the receiver characters that lie within
aRange . This method raises an NSStringBoundsError exception if any part
of aRange lies beyond the end of the string. See also substringFromIndex: ,
substringToIndex: .

NSThread 5-243

5

substringToIndex:

– (NSString *)substringToIndex:(unsigned int)index

Returns a string object containing the characters of the receiver up to, but not
including, the character at index . This method raises an
NSStringBoundsError exception if index lies beyond the end of the string.
See also substringFromIndex: , substringWithRange: .

uppercaseString

– (NSString *)uppercaseString

Returns a string with each character changed to its corresponding uppercase
value. See also lowercaseString , capitalizedString .

writeToFile:atomically:

– (BOOL)writeToFile:(NSString *)filename
atomically:(BOOL)useAuxiliaryFile

Writes a textual description of the receiver to filename . If
useAuxiliaryFile is YES, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed to the intended file name.
The string is written in the default C string encoding if the contents can be
converted to that encoding. If not, the string is stored in the Unicode encoding.
See also description .

NSThread

Class Description

An NSThread object controls a thread of execution. Use an NSThread when
you want to terminate or delay a thread or you want a new thread.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSThread.h

5-244 OpenStep Programming Reference—September 1996

5

A thread is an executable unit. A task is made up of one or more threads. Each
thread has its own execution stack and is capable of independent I/O. All
threads share the virtual memory address space and communication rights of
their task. When a thread is started, it is detached from its initiating thread. The
new thread runs independently. That is, the initiating thread does not know
the new thread’s state.

To obtain an NSThread object that represents your current thread of execution,
use the currentThread method. To obtain an NSThread object that will
create a new thread of execution, use
detachNewThreadSelector:toTarget:withObject: . This method sends
the specified Objective C message to the specified object in its own thread of
execution. You use the NSThread object returned by these methods if you ever
need to delay or terminate that thread of execution.

When you use detachNewThreadSelector:toTarget:withObject: , your
application becomes multithreaded. At any time, you can send
isMultiThreaded to find out if the application is multithreaded, that is, if a
thread was ever detached from the current thread. isMultiThreaded returns
YES even if the detached thread has completed execution.

Method Types

Class Methods

currentThread

+ (NSThread *)currentThread

Returns an object representing the current thread of execution.

Activity Class Method

Creating an NSThread + currentThread
+ detachNewThreadSelector:toTarget:withObject:

Querying a thread + isMultiThreaded
– threadDictionary

Delaying a thread + sleepUntilDate:

Terminating a thread + exit

NSThread 5-245

5

detachNewThreadSelector:toTarget:withObject:

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
withObject:(id)anArgument

 Creates and starts a new NSThread for the message [aTarget
aSelector:anArgument] . The method aSelector may take only one
argument and may not have a return value. If this is the first thread detached
from the current thread, this method posts the notification
NSBecomingMultiThreaded with the nil object to the default notification
center.

exit

+ (void)exit

Terminates the thread represented by the calling object. Before exiting that
thread, this method posts the NSThreadExiting notification with the thread
being exited to the default notification center.

isMultiThreaded

+ (BOOL)isMultiThreaded

Returns YES if a thread was ever detached whether or not the detached thread
is still running.

sleepUntilDate:

+ (void)sleepUntilDate:(NSDate *)date

Sends the receiving NSThread to sleep until the time specified by date . No
input or timers will be processed in this interval.

Instance Methods

threadDictionary

– (NSMutableDictionary *)threadDictionary

Returns the NSThread ’s dictionary, allowing you to add data specific to the
receiving NSThread . This allows user-defined NSThread variables.

5-246 OpenStep Programming Reference—September 1996

5

NSTimer

Class Description

NSTimer creates timer objects. A timer object waits until a certain time interval
has elapsed and then fires, sending a specified message to a specified object.
For example, you could create an NSTimer that sends a message to a window,
telling it to update itself after a certain time interval.

NSTimer objects work in conjunction with NSRunLoop objects. NSRunLoops
control loops that wait for input, and they use NSTimer s to help determine the
maximum amount of time they should wait. When the NSTimer ’s time limit
has elapsed, the NSRunLoop fires the NSTimer (causing its message to be sent),
then checks for new input.

There are several ways to create an NSTimer object. The
scheduledTimerWithTimeInterval... class methods automatically
register the new NSTimer with the current NSRunLoop object in default mode.
The timerWithTimeInterval... class methods create NSTimer s that the
user may register at a later time by sending the message addTimer:forMode:
to the NSRunLoop. If you specify that the NSTimer should repeat, it will
automatically reschedule itself after it fires. If a delay occurs when a timer is
scheduled to fire, the timer will not fire. For example, suppose you used the
following statement to create a timer:

timer = [NSTimer scheduledTimerWithTimeInterval:0.5
 invocation:anInvocation repeats:YES];

This statement creates a timer that will schedule itself to fire after 0.5 seconds,
1 second, 1.5 seconds, and so on from the time this statement is executed.
Suppose there was a 2-second delay because NSRunLoop was busy processing
input. The timer takes this delay into consideration and will skip intervals that
were already missed when computing the next scheduled fire date.

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSTimer.h

NSTimer 5-247

5

There is no method that removes the association of an NSTimer from an
NSRunLoop—send the NSTimer the invalidate message instead.
invalidate disables the NSTimer , so it will no longer affect the NSRunLoop.

See the NSRunLoop class description for more information on NSRunLoops.

As a consequence of being a subclass of NSObject , NSTimer conforms to the
NSCoding protocol. In practice, however, NSTimer s are neither encoded nor
archived.

Method Types

Class Methods

scheduledTimerWithTimeInterval:
invocation:repeats:

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
invocation:(NSInvocation *)anInvocation repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in
the default mode. After seconds seconds have elapsed, the NSTimer fires,
sending anInvocation ’s message to its target. If repeats is YES, the
NSTimer will repeatedly reschedule itself.

Activity Class Method

Creating a timer object + scheduledTimerWithTimeInterval:
invocation:repeats:
+ scheduledTimerWithTimeInterval:target:
selector:userInfo:repeats:
+ timerWithTimeInterval:invocation:repeats:
+ timerWithTimeInterval:target:
selector:userInfo:repeats:

Firing the timer – fire

Stopping the timer – invalidate

Getting information about the
NSTimer

– fireDate
– isValid
– userInfo

5-248 OpenStep Programming Reference—September 1996

5

scheduledTimerWithTimeInterval:target:
selector:userInfo:repeats:

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
target:(id)anObject selector:(SEL)aSelector
userInfo:(id)anArgument repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in
the default mode. After seconds seconds have elapsed, the NSTimer fires,
sending the message [anObject aSelector:self] . If anObject needs
more information, it can send the NSTimer a userData message to retrieve
anArgument . If repeats is YES, the NSTimer will repeatedly reschedule
itself.

timerWithTimeInterval:invocation:repeats:

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds
invocation:(NSInvocation *)anInvocation repeats:(BOOL)repeats

Returns a new NSTimer that, if registered, will fire after seconds seconds.
Upon firing, the NSTimer sends anInvocation ’s message to its target. If
repeats is YES, the NSTimer will repeatedly reschedule itself.

timerWithTimeInterval:target:
selector:userInfo:repeats:

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds
target:(id)anObject selector:(SEL)aSelector
userInfo:(id)anArgument repeats:(BOOL)repeats

Returns a new NSTimer that, if registered, will fire after seconds seconds.
Upon firing, the NSTimer sends the message [anObject aSelector:self] .
If anObject needs more information, it can send the NSTimer a userData
message to retrieve anArgument . If repeats is YES, the NSTimer will
repeatedly reschedule itself.

Instance Methods

fire

– (void)fire

NSTimer 5-249

5

Causes the NSTimer ’s message to be dispatched to its target.

fireDate

– (NSDate *)fireDate

Returns the date that the NSTimer will next fire. Returns nil if the timer
object is not valid.

invalidate

– (void)invalidate

Stops the NSTimer from ever firing again. See also isValid .

isValid

- (BOOL)isValid

Returns YES if the timer is valid, and returns NO otherwise. See also
invalidate .

userInfo

– userInfo

Additional data that the object receiving NSTimer ’s message can use. The
default implementation returns nil .

5-250 OpenStep Programming Reference—September 1996

5

NSTimeZone

Class Description

NSTimeZone is an abstract class that defines the behavior of time-zone objects.
By itself, NSDate represents dates as universal time. Universal time treats a date
and time value as identical in, for instance, Redwood City and New York City.
NSDate has no provision for locale adjustment of time-zone information.
Provision for locale is critical for string descriptions and other expressions of
conventional dates and times. NSTimeZone is used to affect the apparent value
of date objects so that they reflect time-zone related locale information.

NSTimeZoneDetail , a public subclass of NSTimeZone , augments the
behavior of NSTimeZone by providing the commonly known attributes of a
time zone in effect for a date within a time zone geopolitical area. These
attributes are abbreviation, the offset from Greenwhich Mean Time (GMT), and
an indication of whether Daylight Savings Time (DST) is in effect.

Time-zone objects represent geopolitical regions and use names to denote the
various regions. For example, “US/Pacific” identifies the geopolitical time
zone for San Francisco and Los Angeles, which falls in the same general
latitude as that for the time zone “Canada/Pacific.” The US/Pacific time-zone
has specific NSTimeZoneDetail instances that specify Pacific Standard Time
(PST) and Pacific Daylight Time (PDT), which have slightly different offsets
from GMT.

You typically associate the objects returned by NSTimeZone and, by extension,
NSTimeZoneDetail with date objects to affect their behavior. Time-zone
objects can be of various types:

• time zones with hour and minute offsets from GMT
• time zones with a single abbreviation and offset
• time zones that vary according to Standard Time and DST

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

NSTimeZone 5-251

5

The system should supply the various choices for time zones along with time-
zone information. These choices should be restricted to subsets based on
latitude. You can access these choices through the timeZoneArray class
method. Another restriction is the choice of time zone available when there is
an ambiguous abbreviation; these choices are available through the class
method abbreviationDictionary . Despite these restrictions, you can obtain
an NSTimeZone object from an arbitrary file through the class method
timeZoneWithName .

Note – By itself, the NSTimeZone class only names a time zone. It does not
associate an abbreviation or a temporal offset with a time zone; that is done by
NSTimeZoneDetail . An instance of NSTimeZone , however, “knows” about
the set of time-zone detail objects related to it.

NSTimeZone provides several class methods to get time-zone objects, with or
without detail: timeZoneWithName: , timeZoneWithAbbreviation: , and
timeZoneForSecondsFromGMT: . The class also permits you to set the default
time zone used by your application for your locale (setDefaultTimeZone:)
You can access this default time zone at any time by the defaultTimeZone
method, and, with the localTimeZone class method, you can also get a
relative time-zone object that will decode itself to become the default time zone
for any locale in which it finds itself.

NSCalendarDate methods return date objects that are automatically bound
with time-zone detail objects. These date objects use the functionality of
NSTimeZone to adjust dates for the proper locale. Unless you specify
otherwise, objects returned from NSCalendarDate are bound to the default
time zone for the current locale. A useful instance method is
timeZoneDetailForDate: , which returns a time-zone detail object
associated with a specific date.

5-252 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

abbreviationDictionary

+ (NSDictionary *)abbreviationDictionary

Returns a dictionary that maps abbreviations to region names, for example
“PST” is the key for “US/Pacific”. If you know a region name for a key, you
can obtain a valid abbreviation from the dictionary and use it to obtain a detail
time-zone object using timeZoneWithAbbreviation: . See also
NSDictionary .

defaultTimeZone

+ (NSTimeZoneDetail *)defaultTimeZone

Returns the default time zone as set for the current locale. Default time-zone
objects remain constant as they travel around the globe. For example, if you
create a default time-zone object in California, under PST, and send that object
to New York, the object still represents PST. See also localTimeZone ,
NSTimeZoneDetail .

Activity Class Method

Creating and initializing an NSTimeZone + defaultTimeZone
+ localTimeZone
+ timeZoneForSecondsFromGMT:
+ timeZoneWithAbbreviation:
+ timeZoneWithName:
– timeZoneDetailForDate:

Managing time zones + setDefaultTimeZone:

Getting time zone information + abbreviationDictionary
– timeZoneName

Getting arrays of time zones + timeZoneArray
– timeZoneDetailArray

NSTimeZone 5-253

5

localTimeZone

+ (NSTimeZone *)localTimeZone

Returns an NSTimeZone that behaves as the current default time zone in any
given locale. The local time-zone objects "change" as they travel around the
globe. For example, if you create a local time-zone object in California, under
PST, and send that object to New York, the object will then represent EST. See
also defaultTimeZone .

setDefaultTimeZone:

+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone

Sets aTimeZone as the time zone appropriate for the current locale. This new
time zone replaces the previous default time zone.

timeZoneArray

+ (NSArray *)timeZoneArray

Returns an array of string object arrays, each containing strings that show
current geopolitical names for each time zone. The subarrays are grouped by
latitudinal region. See also NSArray .

timeZoneForSecondsFromGMT:

+ (NSTimeZone *)timeZoneForSecondsFromGMT:(int)seconds

Returns an NSTimeZone representing the time zone with seconds offset from
GMT. If there is no object matching the offset, this method creates and returns
a new NSTimeZone bearing the value seconds as a name.

timeZoneWithAbbreviation:

+ (NSTimeZoneDetail *)timeZoneWithAbbreviation:
(NSString *)abbreviation

Returns the time-zone object identified by the abbreviation abbreviation . If
there is no match, this method returns nil .

5-254 OpenStep Programming Reference—September 1996

5

timeZoneWithName:

+ (NSTimeZone *)timeZoneWithName:(NSString *)aTimeZoneName

Returns the time-zone object with the name that corresponds to the geopolitical
region aTimeZoneName. It searches the region’s dictionary for matching
names. If there is no match on the name, this method returns nil .

Instance Methods

timeZoneDetailForDate:

– (NSTimeZoneDetail *)timeZoneDetailForDate:(NSDate *)date

Returns the correct time-zone detail object associated with a date object. You
invoke this method when a region’s time zone (that is, its offset value from
GMT) varies over the year, as happens between Standard Time and Daylight
Savings Time.

timeZoneName

– (NSString *)timeZoneName

Returns the geopolitical name of the time zone.

timeZoneDetailArray

– (NSArray *)timeZoneDetailArray

Returns an array of NSTimeZoneDetail objects that are associated with the
receiving NSTimeZone object.

NSTimeZoneDetail 5-255

5

NSTimeZoneDetail

Class Description

NSTimeZoneDetail is an abstract class that refines the behavior provided by
NSTimeZone . NSTimeZone identifies a geopolitical area with a name (such as
US/Pacific). NSTimeZoneDetail augments this region name with more
specific information appropriate for a particular date within its geopolitical
region: an abbreviation, an offset (in seconds) from Greenwich Mean Time
(GMT), and an indication of whether Daylight Savings Time is in effect. The
specificity afforded through NSTimeZoneDetail helps to resolve conflicts
between abbreviations and offsets that can arise within regions.

Even though it is a concrete subclass of NSTimeZone , NSTimeZoneDetail
does not have “factory” class methods that create and return time-zone objects.
See the specification of NSTimeZone for methods that provide this ability.

However, NSTimeZoneDetail does have methods that allow you to get the
abbreviation and temporal offset of a time-zone object, as well as determine
whether Daylight Savings Time is in effect.

Characteristic Description

Inherits From: NSTimeZone : NSObject

Conforms To: NSCoding, NSCopying (NSTimeZone)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

5-256 OpenStep Programming Reference—September 1996

5

Method Types

Instance Methods

isDaylightSavingTimeZone

– (BOOL)isDaylightSavingTimeZone

Returns YES if the time-zone detail object is used in the representation of dates
during Daylight Savings Time, and returns NO otherwise.

timeZoneAbbreviation

– (NSString *)timeZoneAbbreviation

Returns the abbreviation of the time-zone detail object, such as EDT (Eastern
Daylight Time).

timeZoneSecondsFromGMT

– (int)timeZoneSecondsFromGMT

Returns the difference in seconds between the receiving time-zone detail object
and GMT. The offset can be a positive or negative value.

Activity Class Method

Querying an NSTimeZoneDetail – isDaylightSavingTimeZone
– timeZoneAbbreviation
– timeZoneSecondsFromGMT

NSUnarchiver 5-257

5

NSUnarchiver

Class Description

NSUnarchiver , a concrete subclass of NSCoder, defines objects that can
decode a data structure, such as a graph of Objective C objects, from an
archive. Such archives are produced by objects of the NSArchiver class. See
the NSArchiver specification for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs a variety of consistency checks
on the incoming data stream. NSUnarchiver raises an
NSInconsistentArchiveException for a variety of reasons. Possible data
errors leading to this exception are: unknown type descriptors in the data file;
an array type descriptor is incorrectly terminated (that is, a missing “]”); excess
characters in a type descriptor; a null class found where a concrete class was
expected; class not loaded.

Characteristic Description

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

5-258 OpenStep Programming Reference—September 1996

5

Method Types

Class Methods

classNameDecodedForArchiveClassName:

+ (NSString *)classNameDecodedForArchiveClassName:
(NSString *)nameInArchive

Returns the class name used to archive instances of the class
(nameInArchive). This may not be the original class name but another name
encoded with NSArchiver ’s encodeClassName:intoClassName: .

decodeClassName:asClassName:

+ (void)decodeClassName:(NSString *)nameInArchive
asClassName:(NSString *)trueName

Decodes from the archived data a class name (nameInArchive) substituted
for the real class name (trueName). This method enables easy conversion of
unarchived data when there are name changes in classes.

unarchiveObjectWithData:

+ (id)unarchiveObjectWithData:(NSData *)data

Activity Class Method

Initializing an NSUnarchiver – initForReadingWithData:

Decoding objects + unarchiveObjectWithData:
+ unarchiveObjectWithFile:
– decodeArrayOfObjCType:count:at:

Managing an NSUnarchiver – isAtEnd
– objectZone
– setObjectZone:
– systemVersion

Substituting one class for another + classNameDecodedForArchiveClassName:
+ decodeClassName:asClassName:
– classNameDecodedForArchiveClassName:
– decodeClassName:asClassName:

NSUnarchiver 5-259

5

Decodes an archived object stored in data .

unarchiveObjectWithFile:

+ (id)unarchiveObjectWithFile:(NSString *)path

Decodes an archived object stored in the file path .

Instance Methods

classNameDecodedForArchiveClassName:

– (NSString *)classNameDecodedForArchiveClassName:
(NSString *)nameInArchive

Returns the class name used to archive instances of the class
(nameInArchive). This may not be the original class name but another name
encoded with NSArchiver ’s encodeClassName:intoClassName: .

decodeArrayOfObjCType:count:at:

– (void)decodeArrayOfObjCType:(const char *)itemType
count:(unsigned int)count at:(void *)array

Decodes an array of count data elements of the same Objective C data
itemType . It is your responsibility to release any objects derived in this way.
itemType can be some combination of the type descriptors in the following
table.

Descriptor Type

id @

Class #

SEL :

char c

unsigned char C

short s

unsigned short S

5-260 OpenStep Programming Reference—September 1996

5

For example, if itemType were “{sic*@}”, the array to be decoded would
contain structures containing a short, an int, a char, a char *, and an object. See
also encodeArrayOfObjCType:count:at: (NSArchiver).

decodeClassName:asClassName:

– (void)decodeClassName:(NSString *)nameInArchive
asClassName:(NSString *)trueName

Decodes from the archived data a class name (nameInArchive) substituted
for the real class name (trueName). This method enables easy conversion of
unarchived data when there are name changes in classes.

initForReadingWithData:

– (id)initForReadingWithData:(NSData *)data

Initializes an NSUnarchiver object from data object data . Raises
NSInvalidArgumentException if the data argument is nil .

int i

unsigned int I

long l

unsigned long L

float f

double d

bitfield b

void v

undefined ?

pointer ^

char * *

array [<count><types>]

union (<types>)

structure {<types>}

Descriptor Type

NSUserDefaults 5-261

5

isAtEnd

– (BOOL)isAtEnd

Returns YES if the end of data is reached, NO if more data follows.

objectZone

– (NSZone *)objectZone

Returns the allocation zone for the unarchiver object.

setObjectZone:

– (void)setObjectZone:(NSZone *)zone

Sets the allocation zone for the unarchiver object to zone . If zone is nil , it sets
it to the default zone.

systemVersion

– (unsigned int)systemVersion

Returns the system version number for the unarchived data.

NSUserDefaults

Class Description

The NSUserDefaults class allows an application to query and manipulate a
user’s defaults settings. Defaults are grouped in domains. For example, there’s
a domain for application-specific defaults and another for global defaults. Each
domain has a name and stores defaults as key-value pairs in an

Characteristic Description

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSUserDefaults.h

5-262 OpenStep Programming Reference—September 1996

5

NSDictionary object. A default is identified by a string key, and its value can
be any property-list object (NSData , NSString , NSArray , or NSDictionary).
The standard domains are:

Above identifiers starting with “NS” are global constants.

The argument domain is composed of defaults parsed from the application’s
arguments. The application domain contains the defaults set by the
application. It is identified by the name of the application, as returned by this
message:

NSString *applicationName = [[NSProcessInfo processInfo]
processName];

The global domain contains defaults that are meant to be seen by all
applications. The registration domain is a set of temporary defaults whose
values can be set by the application to ensure that searches for default values
will always be successful. Applications can create additional domains as
needed.

A search for the value of a given default proceeds through the domains listed
in an NSUserDefault object’s search list. Only domains in the search list are
searched. The standard search list contains the domains from the table above,
in the order listed. A search ends when the default is found. If multiple
domains contain the same default, only the domain nearest the beginning of
the search list provides the default’s value. Using the searchList method,
you can reorder the default search list or set up one that is a subset of all the
user’s domains.

Table 5-4 Domains for User Defaults

Domain Identifier

Argument NSArgumentDomain

Application Identified by the application’s name

Global NSGlobalDomain

Languages Identified by the language names

Registration NSRegistrationDomain

NSUserDefaults 5-263

5

Typically, you use this class by invoking the standardUserDefaults class
method to get an NSUserDefaults object. This method returns a global
NSUserDefaults object with a search list already initialized. Then use the
setObject:forKey: and objectForKey: methods to set and access user
defaults.

The rest of the methods allow more complex defaults management. You can
create your own domains, modify any domain, set up a custom search list, and
even control the synchronization of the in-memory and on-disk defaults
representations. The synchronize method saves any modifications to the
persistent domains and updates all persistent domains that were not modified
to what is on disk. synchronize is automatically invoked at periodic
intervals.

You can create either persistent or volatile domains. Persistent domains are
permanent and last past the life of the NSUserDefaults object. Any changes
to the persistent domains are committed to disk. Volatile domains last only as
long as the NSUserDefaults object exists. The NSGlobalDomain domain is
persistent; the NSArgumentDomain is volatile.

Be warned that:

• User defaults are not thread safe.

• Automatic saving of changes to disk (through synchronize) depends on a
run-loop being present.

• You should synchronize any domain you have altered before exiting a
process.

5-264 OpenStep Programming Reference—September 1996

5

Method Types

Activity Class Method

Getting the shared instance + standardUserDefaults

Getting and setting a default – arrayForKey:
– boolForKey:
– dataForKey:
– dictionaryForKey:
– floatForKey:
– integerForKey:
– objectForKey:
– removeObjectForKey:
– setBool:forKey:
– setFloat:forKey:
– setInteger:forKey:
– setObject:forKey:
– stringArrayForKey:
– stringForKey:

Initializing the user defaults – init
– initWithUser:

Returning the search list – searchList
– setSearchList:

Maintaining peristent domains – persistentDomainForName:
– persistentDomainNames
– removePersistentDomainForName:
– setPersistentDomain:forName:
– synchronize

Maintaining volatile domains – removeVolatileDomainForName:
– setVolatileDomain:forName:
– volatileDomainForName:
– volatileDomainNames

Making advanced use of defaults – dictionaryRepresentation
– registerDefaults:

NSUserDefaults 5-265

5

Class Methods

standardUserDefaults

+ (NSUserDefaults *)standardUserDefaults

Returns the shared defaults object. If it doesn’t exist yet, it’s created with a
search list containing the names of the following domains, in order:

• NSArgumentDomain (consisting of defaults parsed from the application’s
arguments)

• A domain with the process’ name

• Separate domains for each of the user’s preferred languages

• the NSGlobalDomain (consisting of defaults meant to be seen by all
applications)

• the NSRegistrationDomain (a set of temporary defaults whose values can
be set by the application to ensure that searches will always be successful)

The defaults are initialized for the current user. Subsequent modifications to
the standard search list remain in effect even when this method is invoked
again—the search list is guaranteed to be standard only the first time this
method is invoked. The shared instance is provided as a convenience; other
instances may also be created.

Instance Methods

arrayForKey:

– (NSArray *)arrayForKey:(NSString *)defaultName

Invokes objectForKey: with key defaultName . Returns the corresponding
value if it’s an NSArray object (according to the isKindOfClass: test) and
nil otherwise.

boolForKey:

– (BOOL)boolForKey:(NSString *)defaultName

5-266 OpenStep Programming Reference—September 1996

5

Invokes stringForKey: with key defaultName . Returns YES if the
corresponding value is an NSString containing uppercase or lowercase YES
or responds to the intValue message by returning a nonzero value.
Otherwise, returns NO.

dataForKey:

– (NSData *)dataForKey:(NSString *)defaultName

Invokes objectForKey: with key defaultName . Returns the corresponding
value if it’s an NSData object (according to the isKindOfClass: test) and
nil otherwise.

dictionaryForKey:

– (NSDictionary *)dictionaryForKey:(NSString *)defaultName

Invokes objectForKey: with key defaultName . Returns the corresponding
value if it’s an NSDictionary object (according to the isKindOfClass: test)
and nil otherwise.

dictionaryRepresentation

– (NSDictionary *)dictionaryRepresentation

Returns a dictionary that contains a union of all key-value pairs in the domains
in the search list. As with objectForKey: , key-value pairs in domains that
are earlier in the search list take precedence. The combined result doesn’t
preserve information about which domain each entry came from.

floatForKey:

– (float)floatForKey:(NSString *)defaultName

Invokes stringForKey: with key defaultName . Returns 0 if no string is
returned. Otherwise, the resulting string is sent a floatValue message, which
provides this method’s return value.

init

– (id)init

NSUserDefaults 5-267

5

Initializes defaults for the current user, who is identified by examining the
environment. This method doesn’t put anything in the search list. Invoke it
only if you’ve allocated your own NSUserDefaults object instead of using
the shared one. Returns self .

initWithUser:

– (id)initWithUser:(NSString *)userName

Like init , but initializes defaults for the specified user.

integerForKey:

– (int)integerForKey:(NSString *)defaultName

Invokes stringForKey: with key defaultName . Returns 0 if no string is
returned. Otherwise, the resulting string is sent an intValue message, which
provides this method’s return value.

objectForKey:

– (id)objectForKey:(NSString *)defaultName

Returns the value of the first occurrence of the specified default, searching the
domains included in the search list. Returns nil if the default isn’t found.

persistentDomainForName:

– (NSDictionary *)persistentDomainForName:(NSString *)domainName

Returns a dictionary corresponding to the specified persistent domain. The
keys in the dictionary are names of defaults, and the value corresponding to
each key is a property list data object.

persistentDomainNames

– (NSArray *)persistentDomainNames

Returns an array containing the names of the persistent domains. Each domain
can then be retrieved by invoking persistentDomainForName: .

5-268 OpenStep Programming Reference—September 1996

5

registerDefaults:

– (void)registerDefaults:(NSDictionary *)dictionary

Adds the contents of dictionary to the registration domain. If there is no
registration domain yet, it’s created using dictionary , and
NSRegistrationDomain is added to the end of the search list.

removeObjectForKey:

– (void)removeObjectForKey:(NSString *)defaultName

Removes the value for the given default in the standard application domain.
Removing a default has no effect on the value returned by the
objectForKey: method if the same key exists in a domain that precedes the
standard application domain in the search list.

removePersistentDomainForName:

– (void)removePersistentDomainForName:(NSString *)domainName

Removes the named persistent domain from the user’s defaults. The first time
that a persistent domain is changed after synchronize , an
NSUserDefaultsChanged notification is posted.

removeVolatileDomainForName:

– (void)removeVolatileDomainForName:(NSString *)domainName

Removes the named volatile domain from the user’s defaults.

searchList

– (NSArray *)searchList

Returns an array of domain names that objectForKey: will search. Non-
existent domain names in the list are ignored. See also setSearchList: ,
objectForKey: .

setBool:forKey:

– (void)setBool:(BOOL)value forKey:(NSString *)defaultName

NSUserDefaults 5-269

5

Sets the value of the specified default to a string representation of YES or NO,
depending on value . Invokes setObject:forKey: as part of its
implementation.

setFloat:forKey:

– (void)setFloat:(float)value forKey:(NSString *)defaultName

Sets the value of the specified default to a string representation of value.
Invokes setObject:forKey: as part of its implementation.

setInteger:forKey:

– (void)setInteger:(int)value forKey:(NSString *)defaultName

Sets the value of the specified default to a string representation of value .
Invokes setObject:forKey: as part of its implementation.

setObject:forKey:

– (void)setObject:(id)value

Sets the value of the specified default in the standard application domain.
Setting a default has no effect on the value returned by the objectForKey:
method if the same key exists in a domain that precedes the application
domain in the search list.

setPersistentDomain:forName:

– (void)setPersistentDomain:(NSDictionary *)domain
forName:(NSString *)domainName

Sets the dictionary for the persistent domain named domainName; raises an
NSInvalidArgumentException if a volatile domain with domainName
already exists. The first time that a persistent domain is changed after
synchronize , an NSUserDefaultsChanged notification is posted.

setSearchList:

- (void)setSearchList:(NSArray *)newSearchList

5-270 OpenStep Programming Reference—September 1996

5

Sets the domain name list searched by objectForKey:. See also searchList ,
objectForKey: .

setVolatileDomain:forName:

– (void)setVolatileDomain:(NSDictionary *)domain
forName:(NSString *)domainName

Sets the dictionary to domain for the volatile domain named domainName.
This method raises an NSInvalidArgumentException if a persistent domain
with domainName already exists.

stringArrayForKey:

– (NSArray *)stringArrayForKey:(NSString *)defaultName

Invokes objectForKey: with key defaultName . Returns the corresponding
value if it’s an NSArray object containing NSString s, and returns nil
otherwise. The class of each object is determined using the isKindOfClass:
test.

stringForKey:

– (NSString *)stringForKey:(NSString *)defaultName

Invokes objectForKey: with key defaultName . Returns the corresponding
value if it’s an NSString object according to the isKindOfClass: test, and
returns nil otherwise.

synchronize

– (BOOL)synchronize

Saves any modifications to the persistent domains and updates all persistent
domains that were not modified to what is on disk. Returns NO if it could not
save data to disk. Since the synchronize method is automatically invoked at
periodic intervals, use this method only if you cannot wait for the automatic
synchronization (for example if your application is about to exit), or if you
want to update user defaults to what is on disk even though you have not
made any changes.

NSValue 5-271

5

volatileDomainForName:

– (NSDictionary *)volatileDomainForName:(NSString *)domainName

Returns a dictionary corresponding to the specified volatile domain. The keys
in the dictionary are names of defaults, and the value corresponding to each
key is a property list data object.

volatileDomainNames

– (NSArray *)volatileDomainNames

Returns an array containing the names of the volatile domains. Each domain
can then be retrieved by calling volatileDomainForName: .

NSValue

Class Description

NSValue objects provide an object-oriented wrapper for the data types defined
in standard C and Objective C. The NSValue class is often used to put
Objective C and standard C data types into collections that require objects,
such as NSArray objects. When a value object is instantiated, it is encoded
with the specified data type.

The NSValue class declares the programmatic interface to an object that
contains a C data type. It provides methods for creating value objects that
contain values of a specified data type, pointers, and other objects. Use
NSValue objects to put C types into collections. Use NSNumber objects to put
numbers into collections.

Characteristic Description

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSGeometry.h

5-272 OpenStep Programming Reference—September 1996

5

The following code puts an NSRange into an NSArray , using the Objective C
@encode directive to get a character string that encodes the type structure of
NSRange:

[myArray insertObject:[NSValue value:&range
withObjCType:@encode(NSRange)] atIndex:n]

To get the value back, you would do this:

[[myArray objectAtIndex:n] getValue:&range]

NSValue objects are provided with generic coding and copying behavior. To
subclass NSValue and preserve class when encoding or copying, override
classForCoder , initWithCoder: , encodeWithCoder: (for encoding), and
copyWithZone: (for copying).

General Exception Conditions

NSValue can raise NSInternalInconsistencyException in a variety of
cases where an unknown Objective C type is found. In addition, NSValue ’s
implementation of encodeWithCoder: can raise
NSInvalidArgumentException if an attempt is made to encode void .

NSValue 5-273

5

Method Types

Class Methods

valueWithBytes:objCType:

+ (NSValue *)valueWithBytes:(const void *)value
objCType:(const char *)type

Creates and returns a value object initialized to value and of specified Objective
C type . See also value:withObjCType: , initWithBytes:objCType: .

valueWithNonretainedObject:

+ (NSValue *)valueWithNonretainedObject: (id)anObject

Creates and returns a value object containing the object anObject , without
retaining anObject . This is provided as a convenience method. The following
statement

[NSValue valueWithNonretainedOject:anObject]

Activity Class Method

Allocating and initializing value objects + valueWithBytes:objCType:
+ value:withObjCType:
+ valueWithNonretainedObject:
+ valueWithPointer:
– initWithBytes:objCType:

Allocating and initializing geometry
value objects

+ valueWithPoint:
+ valueWithRect:
+ valueWithSize:

Accessing data in value objects – getValue:
– nonretainedObjectValue
– objCType
– pointerValue

Accessing data in value geometry objects – pointValue
– rectValue
– sizeValue

Equality – isEqualToValue:

5-274 OpenStep Programming Reference—September 1996

5

is equivalent to the statement

[NSValue value:&anObject withObjCType:@encode(void *)].

value:withObjCType:

+ (NSValue *)value:(const void *)value
withObjCType:(const char *)type

Creates and returns a value object containing the value value of the Objective
C type type .

valueWithPoint:

+ (NSValue *)valueWithPoint:(NSPoint)point

Creates and returns a value object that contains the specified NSPoint
structure which represents a geometrical point in two dimensions. See also
NSPoint .

valueWithPointer:

+ (NSValue *)valueWithPointer:(const void *)pointer

Creates and returns a value object that contains the specified pointer. This is
provided as a convenience method. The following statement

[NSValue valueWithPointer:pointer]

is equivalent to the statement

[NSValue value:&pointer withObjCType:@encode(void *)].

valueWithRect:

+ (NSValue *)valueWithRect:(NSRect)rect

Creates and returns a value object that contains the specified NSRect structure,
representing a rectangle. See also NSRect .

valueWithSize:

+ (NSValue *)valueWithSize:(NSSize)size

NSValue 5-275

5

Creates and returns a value object that contains the specified NSSize structure
which stores a width and a height. See also NSSize .

Instance Methods

initWithBytes:objCType:

- (id) initWithBytes:(const void *)value objCType:(const char *)type

Returns an Objective C type , initialized to value. See also
valueWithBytes:objCType: .

isEqualToValue:

- (BOOL)isEqualToValue:(NSValue *)otherValue

Returns YES if the receiver is equal to otherValue .

getValue:

– (void)getValue:(void *)value

Copies the receiver’s data into value .

nonretainedObjectValue

– (id)nonretainedObjectValue

Returns the nonretained object that is contained in the receiver. It is an error to
send this message to an NSValue object that doesn’t store a nonretained object.

objCType

– (const char *)objCType

Returns the Objective C type of the data contained in the receiver.

pointValue

– (NSPoint)pointValue

5-276 OpenStep Programming Reference—September 1996

5

Returns the NSPoint structure that is contained in the receiver. See also
NSPoint .

pointerValue

– (void *)pointerValue

Returns the value pointed to by a pointer contained in a value object. It’s an
error to send this message to an NSValue that doesn’t store a pointer.

rectValue

– (NSRect)rectValue

Returns the rectangle structure that is contained in the receiver. See also
NSRect .

sizeValue

– (NSSize)sizeValue

Returns the size structure that’s contained in the receiver. See also NSSize .

6-277

Protocols 6

NSCoding

Protocol Description

The NSCoding protocol declares the two methods that a class must implement
so that objects of that class can be encoded and decoded. This capability
provides the basis for archiving (where objects and other structures are stored
on disk) and distribution (where objects are copied to different address spaces).

When an object receives an encodeWithCoder: message, it should write its
instance variables (and, through a message to super , the instance variables
that it inherits) to the supplied NSCoder. Similarly, when an object receives an
initWithCoder: message, it should initialize its instance variables (and
inherited instance variables, again through a message to super) from the data
in the supplied NSCoder. See the NSCoder and NSArchiver class
specifications for more complete information.

Characteristic Description

Adopted By: NSObject

Declared In: Foundation/NSObject.h

6-278 OpenStep Programming Reference—September 1996

6

Instance Methods

encodeWithCoder:

– (void)encodeWithCoder:(NSCoder *)aCoder

Encodes the receiver using aCoder .

initWithCoder:

– (id)initWithCoder:(NSCoder *)aDecoder

Initializes and returns a new instance from data in aDecoder .

NSCopying

Protocol Description

A class whose instances provide functional copies of themselves should adopt
the NSCopying protocol. The exact meaning of “copy” can vary from class to
class, but a copy must be a functionally independent object, identical to the
original at the time the copy was made. Where the concept “immutable vs.
mutable” applies to an object, this protocol produces immutable copies; see the
NSMutableCopying protocol for details on making mutable copies. Property
list classes (NSString , NSData , NSArray , and NSDictionary) guarantee
immutable returned values.

In most cases, to produce a copy that’s independent of the original, a deep copy
must be made. In a deep copy every instance variable of the receiver is
duplicated, instead of referencing the variable in the original object. If the
receiver’s instance variables themselves have instance variables, those too
must be duplicated, and so on. A deep copy is thus a completely separate
object from the original; changes to it don’t affect the original, and changes to
the original don’t affect it. Further, for an immutable copy, no part at any level
may be changed, making a copy a “snapshot” of the original object.

Characteristic Description

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocols 6-279

6

Making a complete deep copy isn’t always needed. Some objects can
reasonably share instance variables among themselves—a static string object
that gets replaced but not modified, for example. In such cases your class can
implement NSCopying more cheaply than it might otherwise need to.

The typical usage of NSCopying is to create “passing by value” value objects.

Note – Contrary to most methods, the returned object is owned by the caller,
which is responsible for releasing it.

Instance Methods

copyWithZone:

- (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a functional copy of the receiver. Memory for the
new instance is allocated from zone. For collections, creates a deep (recursive)
copy. The copy returned is immutable if the consideration “immutable vs.
mutable” applies to the receiving object; otherwise the exact nature of the copy
is determined by the class. The returned object is owned by the caller, who is
responsible for releasing it.

NSLocking

Protocol Description

NSLocking protocol is used by classes that provide lock objects. The lock
objects provided by OpenStep are used only for protecting critical sections of
code: sections that manipulate shared data and that can be executed
simultaneously in several threads. Lock objects—except for
NSConditionLock objects—contain no useful data.

Characteristic Description

Adopted By: NSConditionLock
NSLock
NSRecursiveLock

Declared In: Foundation/NSLock.h

6-280 OpenStep Programming Reference—September 1996

6

Although an object that isn't a lock could adopt the NSLocking protocol, it
may be more desirable to design the object so that all locking is handled
internally, through normal use rather than requiring that the object be
explicitly locked and unlocked.

In order to enable clients to only have locks when processes become
multithreaded, it is permissible to unlock a lock freshly created (i.e. that has
not been locked)—unless it is a recursive lock. Three classes conform to the
NSLocking protocol:

None of these classes busy-waits while the lock is unavailable. All classes may
all be efficiently used for long sections of atomic code. See the class
specifications for these classes for further information on their behavior and
usage.

Instance Methods

lock

– (void)lock

Acquires a lock. Applications generally do this when entering a critical section
of their code. A thread will sleep if it can’t immediately acquire the lock.

unlock

– (void)unlock

Table 6-1 Classes That Conform to NSLocking Protocol

Class Use

NSLock Protect critical sections of code.

NSConditionLock Protects critical sections of code, but can also be used to
postpone entry to a critical section until a condition is met. This
class is functionally a superset of the NSLock class, though
unlocking is slightly more expensive.

NSRecursiveLock Protects critical sections from access by multiple threads, but
allows a single thread to acquire a lock several times without
deadlocking.

Protocols 6-281

6

Releases a lock. Applications generally do this when exiting a critical section of
their code.

NSMutableCopying

Protocol Description

A class that defines an “immutable vs. mutable” distinction adopts this
protocol to allow mutable copies of its instances to be made. A mutable copy of
an object is usually a shallow copy (as opposed to the deep copy defined in the
NSCopying protocol specification). The original and its copy share references
to the same instance variables, so that if a component of the copy is changed,
for example, that change is reflected in the original.

A class that doesn’t define an “immutable vs. mutable” distinction but that
needs to offer both deep and shallow copying shouldn’t adopt this protocol.
The NSCopying methods should by default be assumed to produce deep
copies; the class can then also implement methods to produce shallow copies.

Note – Contrary to most methods, the returned value is owned by the caller,
which is responsible for releasing it.

Instance Methods

mutableCopyWithZone:

– (id)mutableCopyWithZone:(NSZone *)zone

Returns a new instance that’s a top level, mutable copy of the receiver. For a
collection, objects in the collection are retained. Memory for the new instance is
allocated from zone . The returned object is owned by the caller, which is
responsible for releasing it.

Characteristic Description

Adopted By: various OpenStep classes

Declared In: Foundation/NSObject.h

6-282 OpenStep Programming Reference—September 1996

6

NSObjCTypeSerializationCallBack

Protocol Description

An object conforms to the NSObjCTypeSerializationCallBack protocol so
that it can intervene in the serialization and deserialization process. The
primary purpose of this protocol is to allow for the serialization of objects and
other data types that aren’t directly supported by OpenStep’s serialization
facility. (See the NSSerializer class specification for information on
serialization.)

NSMutableData declares the method that’s used to begin the serialization
process:

- (void)serializeDataAt:(const void *)data
ofObjCType:(const char *)type
context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialized all standard Objective C types (int , float ,
character strings, and so on) except for objects, union , and void * . If, during
the serialization process, an object is encountered, the object passed as the
callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {
NSString *stockName;
float value;

};

The Objective C type code for this structure is {@f} , so the serialization
process begins with this message: (Assume that theData is the
NSMutableData object that’s doing the serialization and helper is an object
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};
[theData serializeDataAt:&aRecord

ofObjCType: "{@f}" context:helper];

Characteristic Description

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocols 6-283

6

Since the first field of the structure is an unsupported type, the helper object is
sent a serializeObjectAt:ofObjCType:intoData: message, letting it
serialize the object. helper might implement the method in this way:

- (void)serializeObjectAt:(id *)objectPtr
 ofObjCType:(const char *)type
 intoData:(NSMutableData *)theMutableData
{
 NSString *nameObject;
 char *companyName

 nameObject = *objectPtr;
 companyName = [nameObject cString];

 [theData serializeDataAt:&companyName
 ofObjCType:@encode(typeof(companyName))
 context:nil]
}

The callback object is free to serialize the target object as it wishes. In this case,
helper simply extracts the company name from the NSString object and
then has that character string serialized. Once this callback method finishes
executing, the original method (serializeDataAt:ofObjCType:context:)
resumes execution and serializes the second field of the structure. Since this
second field contains a supported type (float), the callback method is not
invoked again.

Deserialization follows a similar pattern, except in this case NSData declares
the central method
deserializeDataAt:ofObjCType:atCursor:context: . The
deserialization of the example structure starts with a message to the NSData
object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType: "{@f}"
 cursor:&cursor context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning
of the data in the NSData object.)

6-284 OpenStep Programming Reference—September 1996

6

When this method is invoked, the callback object receives a
deserializeObjectAt:ofObjCType:fromData:atCursor: message, as
declared in this protocol. The callback object can then reestablish the first field
of the structure. For example, helper might implement the method in this
way:

- (void) deserializeObjectAt:(id *)objectPtr
ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor

{
char *companyName;

[theData deserializeDataAt:&companyName ofObjCType: "* "
atCursor:cursor context:nil];

*objectPtr = [[NSString stringWithCString:companyName] retain];
}

Instance Methods

deserializeObjectAt:ofObjCType:
fromData:atCursor:

– (void)deserializeObjectAt:(id *)object
ofObjCType:(const char *)type fromData:(NSData *)data
atCursor:(unsigned int*)cursor

The implementor of this method decodes the referenced object (which
should always be of type "@") located at the cursor position in the data
object. The decoded object is not autoreleased. See the description of NSData
method deserializeDataAt:ofObjCType:context: .

serializeObjectAt:ofObjCType:intoData:

– (void)serializeObjectAt:(id *)object
ofObjCType:(const char *)type
intoData:(NSMutableData *)data

The implementor of this method encodes the referenced object (which should
always be of type "@") in the data object. See the description of
NSMutableData method serializeDataAt:ofObjCType:context: .

Protocols 6-285

6

NSObject

Protocol Description

The NSObject protocol declares methods that all objects should implement
within OpenStep, no matter which root class they descend from (NSObject ,
NSProxy , or another root class). Some of the methods in this protocol reveal an
object’s primary attributes: its position in the class hierarchy, its conformance
to other protocols, and whether it responds to specific messages. Other
methods let the object be manipulated in various ways. For example, it can be
asked to perform methods that are detemined at runtime (using the
performSelector:... methods) or to participate in OpenStep’s automatic
deallocation scheme (using the retain , release , and autorelease
methods). By conforming to this protocol, an object advertises that it has the
basic behaviors necessary to work with the OpenStep container classes (such as
NSArray and NSDictionary).

Instance Methods

autorelease

- (id)autorelease

As defined in the NSObject class, decrements the receiver's reference count.
When the count reaches 0, adds the object to the current autorelease pool.
Returns self . Objects in the pool are released later, typically at the top of the
event loop.

class

- (Class)class

Returns the receiver’s class object. See also superclass .

Characteristic Description

Adopted By: NSObject

Declared In: Foundation/NSObject.h

6-286 OpenStep Programming Reference—September 1996

6

conformsToProtocol:

- (BOOL) conformsToProtocol:(Protocol *aProtocol)

Returns YES if the receiver’s class conforms to aProtocol .

description

- (NSString)description

Returns text information about the receiver.

hash

- (unsigned int)hash

Returns an unsigned int that can be used as a table address in a hash table
structure. Two objects that are equal must hash to the same value.

isEqual:

- (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject have equal values, and returns NO
otherwise.

isKindOfClass:

- (BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class
that inherits from aClass . Returns NO otherwise.

isMemberOfClass:

- (BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass . Returns NO otherwise.

isProxy

- (BOOL)isProxy

Protocols 6-287

6

Returns YES is an NSProxy , rather than an object that descends from the
NSObject class. Returns NO otherwise.

performSelector:

- (id)performSelector:(SEL)selector

Sends an aSelector messsage to the receiver and returns the result of the
message. If aSelector is NULL, and NSInvalidArgumentException is
raised.

performSelector:withObject:

- (id)performSelector:(SEL)selector withObject:(id)anObject

Sends an aSelector messsage to the receiver with anObject as an argument,
and returns the message result. If aSelector is NULL, and
NSInvalidArgumentException is raised.

performSelector:withObject:withObject:

- (id)performSelector:(SEL)selector withObject:(id)anObject
withObject:anotherObject

Sends an aSelector messsage to the receiver with anObject and
anotherObject as arguments, and returns the message result. If aSelector is
NULL, and NSInvalidArgumentException is raised.

release

- (void)release

Decrements the receiver’s reference count. When the count reaches 0, the object
is automatically deallocated immediately.

respondsToSelector:

- (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond
to aSelector messages. Returns NO otherwise.

6-288 OpenStep Programming Reference—September 1996

6

retain

- (id)retain

As defined in the NSObject class, increments the receiver's reference count.
Send an object a retain message when you want to prevent it from being
deallocated without your permission. Returns self as a convenience. See also
retainCount , release , autorelease .

retainCount

- (unsigned int)retainCount

Returns the receiver’s reference count. This is useful for debugging.

self

- (id)self

Returns the receiver.

superclass

- (Class)superclass

Returns the class object for the receiver’s superclass. See also class .

zone

- (NSZone *)zone

Returns a pointer to memory zone from which the receiver was allocated.

7-1

Functions 7

Memory Allocation Functions

Get the Virtual Memory Page Size

NSPageSize()

unsigned NSPageSize(void)

Returns the number of bytes in a page.

NSLogPageSize()

unsigned NSLogPageSize(void)

Returns the binary log of the page size.

NSRoundDownToMultipleOfPageSize()

unsigned NSRoundDownToMultipleOfPageSize(unsigned byteCount)

Returns the multiple of the page size that is closest to, but not greater than,
byteCount . See also NSRoundUpToMultipleOfPageSize() .

7-2 OpenStep Programming Reference—September 1996

7

NSRoundUpToMultipleOfPageSize()

unsigned NSRoundUpToMultipleOfPageSize(unsigned byteCount)

Returns the multiple of the page size that is closest to, but not less than,
byteCount . See also NSRoundDownToMultipleOfPageSize() .

Get the Amount of Real Memory

NSRealMemoryAvailable()

unsigned NSRealMemoryAvailable(void)

Returns the number of bytes available in the RAM hardware.

Allocate or Free Virtual Memory

NSAllocateMemoryPages()

void *NSAllocateMemoryPages(unsigned byteCount)

Allocates the integral number of pages whose total size is closest to, but not
less than, byteCount , with the pages guaranteed to be zero-filled. See also
NSDeallocateMemoryPages() .

NSDeallocateMemoryPages()

void NSDeallocateMemoryPages(void *pointer, unsigned byteCount)

Deallocates byteCount of memory, pointed to by pointer , that was allocated
with NSAllocateMemoryPages() .

NSCopyMemoryPages()

void NSCopyMemoryPages(const void *source, void *destination,
unsigned byteCount)

Copies (or copies-on-write) byteCount bytes from source to destination .

Functions 7-3

7

Get a Zone

NSCreateZone()

NSZone *NSCreateZone(unsigned startSize, unsigned granularity,
BOOL canFree)

Creates and returns a pointer to a new zone of startSize bytes, which will
grow and shrink by granularity bytes. If canFree is NO, the allocator will
never free memory, and malloc() will be fast. See also
NSDefaultMallocZone() .

NSDefaultMallocZone()

NSZone *NSDefaultMallocZone(void)

Returns the default zone, which is created automatically at startup. This is the
zone used by the standard C function malloc() .

NSZoneFromPointer()

NSZone *NSZoneFromPointer(void *pointer)

Returns the zone for the pointer block of memory, or NULL if the block was
not allocated from a zone. The pointer must be one that was returned by a
prior call to an allocation function. See also NSCreateZone() .

Allocate or Free Memory in a Zone

The following methods should be used instead of malloc() . Note that if the
zone argument is given as (NSZone *)0 , the default zone is used.

NSZoneMalloc()

void *NSZoneMalloc(NSZone *zone, unsigned size)

Allocates size bytes in zone , and returns a pointer to the allocated memory.
See also NSZoneCalloc() , NSZoneRealloc() .

7-4 OpenStep Programming Reference—September 1996

7

NSZoneCalloc()

void *NSZoneCalloc(NSZone *zone, unsigned numElems,
unsigned numBytes)

Allocates enough memory from zone for numElems elements, each with a size
of numBytes bytes, and returns a pointer to the allocated memory. The
memory is initialized with zeros. See also NSZoneMalloc() ,
NSZoneRealloc() .

NSZoneRealloc()

void *NSZoneRealloc(NSZone *zone, void *pointer, unsigned size)

Changes the size of the block of memory pointed to by pointer to size bytes.
It may allocate new memory to replace the old, in which case it moves the
contents of the old memory block to the new block, up to a maximum of size
bytes. The pointer may be NULL. See also NSZoneMalloc() ,
NSZoneCalloc() .

NSRecycleZone()

void NSRecycleZone(NSZone *zone)

Frees zone after adding any of its pointers still in use to the default zone. (This
strategy prevents retained objects from being inadvertently destroyed.)

NSZoneFree()

void NSZoneFree(NSZone *zone, void *pointer)

Returns memory to the zone from which it was allocated. The standard C
function free() does the same, but spends time finding which zone the
memory belongs to.

Name a Zone

NSSetZoneName()

void NSSetZoneName(NSZone *zone, NSString *name)

Functions 7-5

7

Sets the specified zone ’s name to name, which can aid in debugging. See also
NSZoneName() .

NSZoneName()

NSString *NSZoneName(NSZone *zone)

Returns the zone ’s name. See also NSSetZoneName() .

Object Allocation Functions

Allocate or Free an Object

NSAllocateObject()

NSObject *NSAllocateObject(Class aClass, unsigned extraBytes,
NSZone *zone)

Allocates and returns a pointer to an instance of aClass , created in the
specified zone (or in the default zone, if zone is NULL). The extraBytes
argument (usually zero) states the number of extra bytes required for indexed
instance variables. See also NSCopyObject() , NSDeallocateObject() .

NSCopyObject()

NSObject *NSCopyObject(NSObject *anObject, unsigned extraBytes,
NSZone *zone)

Creates and returns a new object that’s an exact copy of anObject . The second
and third arguments have the same meaning as in NSAllocateObject() . See
also NSDeallocateObject() .

NSDeallocateObject()

void NSDeallocateObject(NSObject *anObject)

Deallocates anObject , which must have been allocated using
NSAllocateObject() . See also NSCopyObject() .

7-6 OpenStep Programming Reference—September 1996

7

Decide Whether to Retain an Object

NSShouldRetainWithZone()

BOOL NSShouldRetainWithZone(NSObject *anObject,
NSZone *requestedZone)

Returns YES if requestedZone is NULL, the default zone, or the zone in which
anObject was allocated. This function is typically called from inside an
NSObject ’s copyWithZone: method, when deciding whether to retain
anObject as opposed to making a copy of it.

Modify the Number of References to an Object

NSDecrementExtraRefCountWasZero()

BOOL NSDecrementExtraRefCountWasZero(id anObject)

Returns YES if the externally maintained “extra reference count” for anObject
is zero; otherwise, this function decrements the count and returns NO.

NSExtraRefCount()

unsigned int NSExtraRefCount(id anObject)

Returns the externally maintained “extra reference count”.

NSIncrementExtraRefCount()

void NSIncrementExtraRefCount(id anObject)

Increments the externally maintained “extra reference count” for anObject. The
first reference (typically done in NSObject ’s alloc method) isn’t maintained
externally, so there’s no need to call this function for that first reference.

Functions 7-7

7

Error-Handling Functions

Change the Top-Level Error Handler

NSGetUncaughtExceptionHandler()

NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)

Returns a pointer to the function serving as the top-level error handler. This
handler will process exceptions raised outside of any exception-handling
domain.

NSSetUncaughtExceptionHandler()

void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler
*handler)

Sets the top-level error-handling function to handler. If handler is NULL or this
function is never invoked, the default top-level handler is used.

Macros to Handle an Exception

NS_DURING

NS_DURING

Marks the beginning of an exception-handling domain (a portion of code
delimited by NS_DURING and NS_HANDLER). When an error is raised
anywhere within the exception-handling domain, program execution jumps to
the first line of code in the exception handler. It’s illegal to exit the exception-
handling domain by any other means than NS_VALUERETURN,
NS_VOIDRETURN, or falling out the bottom.

NS_ENDHANDLER

NS_ENDHANDLER

Marks the ending of an exception handler (a portion of code delimited by
NS_HANDLER and NS_ENDHANDLER).

7-8 OpenStep Programming Reference—September 1996

7

NS_HANDLER

NS_ENDHANDLER

Marks the ending of an exception-handling domain and the beginning of the
corresponding exception handler. Within the scope of the handler, a local
variable called localException (of type NSException *) stores the raised
exception. Code delimited by NS_HANDLERand NS_ENDHANDLER is never
executed except when an error is raised in the preceding exception-handling
domain.

NS_VALUERETURN

value NS_VALUERETURN(value, type)

Causes the method (or function) in which this macro occurs to immediately
return value of type type . This macro can only be placed within an
exception-handling domain.

NS_VOIDRETURN

NS_VOIDRETURN

Causes the method (or function) in which this macro occurs to return
immediately, with no return value. This macro can only be placed within an
exception-handling domain.

Functions 7-9

7

Call the Assertion Handler from the Body of an Objective-C Method

NSAssert()

NSAssert(BOOL condition, NSString *description)

Calls the NSAssertionHandler object for the current thread if condition is
false. The description should explain the error, formatted as for the
standard C function printf() ; it need not include the object’s class and
method name, since they’re passed automatically to the handler.

NSAssert1()

NSAssert1(BOOL condition, NSString *description, arg)

Like NSAssert() , but the format string description includes a conversion
specification (such as %s or %d) for the argument arg , in the style of
printf() . You can pass an object in arg by specifying %@, which gets
replaced by the string that the object’s description method returns.

NSAssert2()

NSAssert2(BOOL condition, NSString *description, arg1, arg2)

Like NSAssert1() , but with two arguments.

NSAssert3()

NSAssert3(BOOL condition, NSString *description, arg1, arg2, arg3)

Like NSAssert1() , but with three arguments.

NSAssert4()

NSAssert4(BOOL condition, NSString *description, arg1, arg2,
arg3, arg4)

Like NSAssert1() , but with four arguments.

7-10 OpenStep Programming Reference—September 1996

7

NSAssert5()

NSAssert5(BOOL condition, NSString *description, arg1, arg2,
arg3, arg4, arg5)

Like NSAssert1() , but with five arguments.

Call the Assertion Handler from the Body of a C Function

NSCAssert()

NSCAssert(BOOL condition, NSString *description)

Calls the NSAssertionHandler object for the current thread if condition is
false. The description should explain the error, formatted as for the
standard C function printf() ; it need not include the function name, which
is passed automatically to the handler.

NSCAssert1()

NSCAssert1(BOOL condition, NSString *description, arg)

Like NSCAssert() , but the format string description includes a conversion
specification (such as %s or %d) for the argument arg , in the style of
printf() . See also NSAssert() .

NSCAssert2()

NSCAssert2(BOOL condition, NSString *description, arg1, arg2)

Like NSCAssert1() , but with two arguments.

NSCAssert3()

NSCAssert3(BOOL condition, NSString *description, arg1, arg2, arg3)

Like NSCAssert1() , but with three arguments.

NSCAssert4()

NSCAssert4(BOOL condition, NSString *description, arg1, arg2,
arg3, arg4)

Functions 7-11

7

Like NSCAssert1() , but with four arguments.

NSCAssert5()

NSCAssert5(BOOL condition, NSString *description, arg1, arg2,
arg3, arg4, arg5)

Like NSCAssert1() , but with five arguments.

Validate a Parameter

NSParameterAssert()

NSParameterAssert(BOOL condition)

Like NSAssert() , but the description passed to the assertion handler is
“Invalid parameter not satisfying: ” followed by the text of condition (which
can be any boolean expression). See also NSCParameterAssert .

NSCParameterAssert

NSCParameterAssert(BOOL condition)

Like NSParameterAssert() , but to be called from the body of a C function.

Geometric Functions

Create Basic Structures

NSMakePoint()

NSPoint NSMakePoint(float x, float y)

Create an NSPoint having the coordinates x and y.

NSMakeSize()

NSSize NSMakeSize(float width, float height)

Create an NSSize having the specified width and height .

7-12 OpenStep Programming Reference—September 1996

7

NSMakeRect()

NSRect NSMakeRect(float x, float y, float width, float height)

Create an NSRect having the specified origin and size.

NSMakeRange()

NSRange NSMakeRange(unsigned int location, unsigned int length)

Create an NSRange having the specified location and length.

Get a Rectangle’s Coordinates

NSMaxX()

float NSMaxX(NSRect aRect)

Returns the largest x-coordinate value within aRect . See also NSMidX() ,
NSMinX() , NSMaxY() .

NSMaxY()

float NSMaxY(NSRect aRect)

Returns the largest y-coordinate value within aRect . See also NSMidY() ,
NSMinY() , NSMaxX() ,

NSMidX()

float NSMidX(NSRect aRect)

Returns the x-coordinate of the rectangle’s center point. See also NSMaxX() ,
NSMinX() , NSMidY() .

NSMidY()

float NSMidY(NSRect aRect)

Returns the y-coordinate of the rectangle’s center point. See also NSMaxY() ,
NSMinY() , NSMidX() .

Functions 7-13

7

NSMinX()

float NSMinX(NSRect aRect)

Returns the smallest x-coordinate value within aRect . See also NSMaxX() ,
NSMidX() , NSMinY() .

NSMinY()

float NSMinY(NSRect aRect)

Returns the smallest y-coordinate value within aRect . See also NSMaxY() ,
NSMidY() , NSMinX() .

NSWidth()

float NSWidth(NSRect aRect)

Returns the width of aRect . See also NSHeight() .

NSHeight()

float NSHeight(NSRect aRect)

Returns the height of aRect . See also NSWidth() .

Modify a Copy of a Rectangle

NSInsetRect()

NSRect NSInsetRect(NSRect aRect, float dX, float dY)

Returns a copy of the rectangle aRect , altered by moving the two sides that
are parallel to the y-axis inwards by dX, and the two sides parallel to the x-axis
inwards by dY. See also NSOffsetRect() .

NSOffsetRect()

NSRect NSOffsetRect(NSRect aRect, float dX, float dY)

Returns a copy of the rectangle aRect , with its location shifted by dX along the
x-axis and by dY along the y-axis. See also NSInsetRect() .

7-14 OpenStep Programming Reference—September 1996

7

NSDivideRect()

void NSDivideRect(NSRect inRect, NSRect *slice, NSRect *remainder,
float amount, NSRectEdge edge)

Creates two rectangles, slice and remainder , from inRect , by dividing
inRect with a line that’s parallel to one of inRect ’s sides (namely, the side
specified by edge—either NSMinXEdge, NSMinYEdge, NSMaxXEdge, or
NSMaxYEdge). The size of slice is determined by amount, which measures the
distance from edge. See also NSIntegralRect() .

NSIntegralRect()

NSRect NSIntegralRect(NSRect aRect)

Returns a copy of the rectangle aRect , expanded outwards just enough to
ensure that none of its four defining values (x, y, width, and height) have
fractional parts. If aRect ’s width or height is zero or negative, this function
returns a rectangle with origin at (0.0, 0.0) and with zero width and height. See
also NSDivideRect() .

Compute a Third Rectangle from Two Rectangles

NSUnionRect()

NSRect NSUnionRect(NSRect aRect, NSRect bRect)

Returns the smallest rectangle that completely encloses both aRect and
bRect . If one of the rectangles has zero (or negative) width or height, a copy of
the other rectangle is returned; but if both have zero (or negative) width or
height, the returned rectangle has its origin at (0.0, 0.0) and has zero width and
height. See also NSIntersectionRect() .

NSIntersectionRect()

NSRect NSIntersectionRect(NSRect aRect, NSRect bRect)

Returns the graphic intersection of aRect and bRect . If the two rectangles
don’t overlap, the returned rectangle has its origin at (0.0, 0.0) and zero width
and height. (This includes situations where the intersection is a point or a line
segment.) See also NSUnionRect() .

Functions 7-15

7

Test Geometric Relationships

NSContainsRect()

BOOL NSContainsRect(NSRect aRect, NSRect bRect)

Returns YES if aRect is equal to or completely encloses bRect , and neither
aRect nor bRect is “empty”.

NSEqualPoints()

BOOL NSEqualPoints(NSPoint aPoint, NSPoint bPoint)

Returns YES if the two points aPoint and bPoint are identical, and NO
otherwise.

NSEqualRects()

BOOL NSEqualRects(NSRect aRect, NSRect bRect)

Returns YES if the two rectangles aRect and bRect are identical, and NO
otherwise.

NSEqualSizes()

BOOL NSEqualSizes(NSSize aSize, NSSize bSize)

Returns YES if the two sizes aSize and bSize are identical, and NO otherwise.

NSIntersectsRect()

BOOL NSIntersectsRect(NSRect aRect, NSRect bRect)

Returns YES if aRect and bRect intersect, and returns NO otherwise. See also
NSIntersectionRect() .

NSIsEmptyRect()

BOOL NSIsEmptyRect(NSRect aRect)

Returns YES if aRect encloses no area at all—that is, if its width or height is
zero or negative.

7-16 OpenStep Programming Reference—September 1996

7

NSMouseInRect()

BOOL NSMouseInRect(NSPoint aPoint, NSRect aRect, BOOL flipped)

Returns YES if the point represented by aPoint is located within the rectangle
represented by aRect . It assumes an unscaled and unrotated coordinate
system; the argument flipped should be YES if the coordinate system has been
flipped so that the positive y-axis extends downward. This function is used to
determine whether the hot spot of the cursor lies inside a given rectangle. See
also NSPointInRect() .

NSPointInRect()

BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

Performs the same test as NSMouseInRect() , but assumes a flipped
coordinate system.

Conversion To and From String Representations

NSStringFromPoint()

NSString *NSStringFromPoint(NSPoint aPoint)

Returns a string of the form “{x=a; y=b}”, where a and b are the x and y
coordinates of aPoint .

NSPointFromString()

NSPoint NSStringFromPoint(NSString *aString)

Returns a point from a string containing the substrings “x = a” and “y = b”,
where “a” and “b” specify the x and y point coordinates. Returns a point with
coordinates {0.0, 0.0} if the string does not convert.

NSStringFromRect()

NSString *NSStringFromRect(NSRect aRect)

Returns a string of the form “{x=a; y=b; width=c; height=d}”, where a, b, c, and
d are the x- and y-coordinates and the width and height, respectively, of
aRect .

Functions 7-17

7

NSRectFromString()

NSRect NSRectFromString(NSString *aString)

Returns a rectangle object from a string containing the following substrings “x
= a”, “y = b”, “width = c”, “height = d”; where a, b, c, and d are the x and y
coordinates, and the width and height of the rectangle. Returns a rectangle
object of {0.0, 0.0, 0.0, 0.0} if the string does not convert.

NSStringFromSize()

NSString *NSStringFromSize(NSSize aSize)

Returns a string of the form “{width=a; height=b}”, where a and b are the
width and height of aSize .

NSSizeFromString()

NSSize NSSizeFromString(NSString* aString)

Returns a size object from a string containing the substrings “width = a”, and
“height = b”, where “a” and “b” specify the width and height of the size object.
Returns a size object with dimensions {0.0, 0.0} if the string does not convert.

7-18 OpenStep Programming Reference—September 1996

7

Range Functions

Query a Range

NSEqualRanges()

BOOL NSEqualRanges(NSRange range1, NSRange range2)

Returns YES if range1 and range2 have the same locations and lengths.

NSLocationInRange()

BOOL NSLocationInRange(unsigned location, NSRange range)

Returns YES if location is in range (that is, if location is greater than or equal
to range.location and location is less than NSMaxRange(range)).

NSMaxRange()

unsigned NSMaxRange(NSRange range)

Returns range.location + range.length —in other words, the number one
greater than the maximum value within the range.

Compute a Range from Two Other Ranges

NSIntersectionRange()

NSRange NSIntersectionRange(NSRange range1, NSRange range2)

Returns a range whose maximum value is the lesser of range1 ’s and range2 ’s
maximum values, and whose location is the greater of the two range’s
locations. However, if the two ranges don’t intersect, the returned range has a
location and length of zero.

NSUnionRange()

NSRange NSUnionRange(NSRange range1, NSRange range2)

Functions 7-19

7

Returns a range whose maximum value is the greater of range1 ’s and
range2 ’s maximum values, and whose location is the lesser of the two range’s
locations.

Convrsion To and From a String Representation

NSStringFromRange()

NSString *NSStringFromRange(NSRange range)

Returns a string of the form: “{location = a; length = b}”, where a and b are
non-negative integers.

NSRangeFromString()

NSRange NSRangeFromString(NSString* aString)

Returns range object from a string containing the substrings “location = a”, and
“length = b”, where a and b are origin and length of the range object. Returns
a range object with values of {0,0} if the string does not convert.

Hash Table Functions

Create a Table

NSCreateHashTable()

NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks,
unsigned capacity)

Creates, and returns a pointer to, an NSHashTable object in the default zone;
the table’s size is dependent on (but generally not equal to) capacity . If
capacity is 0, a small hash table is created. The NSHashTableCallBacks
structure callBacks has five pointers to functions (documented under “Types
and Constants”), with the following defaults:

• Pointer hashing, if hash() is NULL;

• Pointer equality, if isEqual() is NULL;

• No call-back upon adding an element, if retain() is NULL;

7-20 OpenStep Programming Reference—September 1996

7

• No call-back upon removing an element, if release() is NULL;

• A function returning a pointer’s hexadecimal value as a string, if
describe() is NULL.

The hashing function must be defined such that if two data elements are equal,
as defined by the comparison function, the values produced by hashing on
these elements must also be equal. Also, data elements must remain invariant
if the value of the hashing function depends on them; for example, if the
hashing function operates directly on the characters of a string, that string can’t
change. See also NSCreateHashTableWithZone() .

NSCreateHashTableWithZone()

NSHashTable *NSCreateHashTableWithZone(
NSHashTableCallBacks callBacks, unsigned capacity, NSZone *zone)

Like NSCreateHashTable() , but creates the hash table in zone instead of in
the default zone. (If zone is NULL, the default zone is used.) See also
NSCopyHashTableWithZone() .

NSCopyHashTableWithZone()

NSHashTable *NSCopyHashTableWithZone(NSHashTable *table,
NSZone *zone)

Returns a pointer to a new copy of table , created in zone , and containing
copies of table ’s pointers to data elements. If zone is NULL, the default zone
is used. See also NSCreateHashTableWithZone() .

Free a Table

NSFreeHashTable()

void NSFreeHashTable(NSHashTable *table)

Releases each element of the specified hash table and frees the table itself.

NSResetHashTable()

void NSResetHashTable(NSHashTable *table)

Functions 7-21

7

Releases each element but doesn't deallocate the table . This is useful for
preserving the table's capacity.

Compare Two Tables

NSCompareHashTables()

BOOL NSCompareHashTables(NSHashTable *table1, NSHashTable *table2)

Returns YES if the two hash tables are equal—that is, if each element of
table1 is in table2 , and the two tables are the same size.

Get the Number of Items

NSCountHashTable()

unsigned NSCountHashTable(NSHashTable *table)

Returns the number of elements in the hash table .

Retrieve Items

NSHashGet()

void *NSHashGet(NSHashTable *table, const void *pointer)

Returns the pointer in the table that matches pointer (as defined by the
isEqual() call-back function) within table . If there is no matching element,
the function returns NULL.

NSAllHashTableObjects()

NSArray *NSAllHashTableObjects(NSHashTable *table)

Returns an array object containing all the elements of table . This function
should be called only when the table elements are objects, not when they’re
any other data type.

7-22 OpenStep Programming Reference—September 1996

7

NSEnumerateHashTable()

NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)

Returns an NSHashEnumerator structure that will cause successive elements
of table to be returned each time this enumerator is passed to
NSNextHashEnumeratorItem() .

NSNextHashEnumeratorItem()

void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)

Returns the next element in the table that enumerator is associated with, or
NULL if enumerator has already iterated over all the elements.

Add or Remove an Item

NSHashInsert()

void NSHashInsert(NSHashTable *table, const void *pointer)

Inserts pointer , which must not be NULL, into table . If pointer matches an
item already in the table, the previous pointer is released using the release()
call-back function that was specified when the table was created. See also
NSHashInsertKnownAbsent() .

NSHashInsertKnownAbsent()

void NSHashInsertKnownAbsent(NSHashTable *table,
const void *pointer)

Inserts pointer , which must not be NULL, into table. Unike
NSHashInsert() , this function raises NSInvalidArgumentException if
table already includes an element that matches pointer.

NSHashInsertIfAbsent()

void *NSHashInsertIfAbsent(NSHashTable *table, const void *pointer)

If pointer matches an item already in table, this function returns the pre-
existing pointer; otherwise, it adds pointer to the table and returns NULL.

Functions 7-23

7

NSHashRemove()

void NSHashRemove(NSHashTable *table, const void *pointer)

If pointer matches an item already in table , this function releases the pre-
existing item.

Get a String Representation

NSStringFromHashTable()

NSString *NSStringFromHashTable(NSHashTable *table)

Returns a string describing the hash table’s contents. The function iterates over
the table ’s elements, and for each element appends the string returned by the
describe() call-back function. If NULL was specified for the call-back
function, the hexadecimal value of each pointer is added to the string.

Map Table Functions

Create a Table

NSCreateMapTable()

NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks,
NSMapTableValueCallBacks valueCallBacks, unsigned capacity)

Creates, and returns a pointer to, an NSMapTable in the default zone; the
table’s size is dependent on (but generally not equal to) capacity . If capacity
is 0, a small map table is created. The NSMapTableKeyCallBacks arguments
are structures (documented under “Types and Constants”) that are very similar
to the call-back structure used by NSCreateHashTable() ; in fact, they have
the same defaults as documented for that function. See also
NSCreateHashTable() .

7-24 OpenStep Programming Reference—September 1996

7

NSCreateMapTableWithZone()

NSMapTable *NSCreateMapTableWithZone(
NSMapTableKeyCallBacks keyCallBacks,
NSMapTableValueCallBacks valueCallBacks,
unsigned capacity, NSZone *zone)

Like NSCreateMapTable() , but creates the map table in zone instead of in
the default zone. If zone is NULL, the default zone is used.

NSCopyMapTableWithZone()

NSMapTable *NSCopyMapTableWithZone(NSMapTable *table, NSZone *zone)

Returns a pointer to a new copy of table , created in zone and containing
copies of table’s key and value pointers. If zone is NULL, the default zone is
used.

Free a Table

NSFreeMapTable()

void NSFreeMapTable(NSMapTable *table)

Releases each key and value of the specified map table and frees the table
itself. See also NSResetMapTable() .

NSResetMapTable()

void NSResetMapTable(NSMapTable *table)

Releases each key and value but doesn’t deallocate the table . This is useful
for preserving the table’s capacity. See also NSFreeMapTable() .

Compare Two Tables:

NSCompareMapTables()

BOOL NSCompareMapTables(NSMapTable *table1, NSMapTable *table2)

Functions 7-25

7

Returns YES if each key of table1 is in table2 , and the two tables are the
same size. Note that this function does not compare values, only keys.

Get the Number of Items

NSCountMapTable()

unsigned NSCountMapTable(NSMapTable *table)

Returns the number of key/value pairs in table .

Retrieve Items

NSMapMember()

BOOL NSMapMember(NSMapTable *table, const void *key,
void **originalKey, void **value)

Returns YES if table contains a key equal to key . If so, originalKey is set to
key , and value is set to the value that the table maps to key .

NSMapGet()

void *NSMapGet(NSMapTable *table, const void *key)

Returns the value that table maps to key , or NULL if the table doesn’t contain
key .

NSEnumerateMapTable()

NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)

Returns an NSMapEnumerator structure that will cause successive key/value
pairs of table to be visited each time this enumerator is passed to
NSNextMapEnumeratorPair() .

NSNextMapEnumeratorPair()

BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator,
void **key, void **value)

7-26 OpenStep Programming Reference—September 1996

7

Returns NO if enumerator has already iterated over all the elements in the
table that enumerator is associated with. Otherwise, this function sets key
and value to match the next key/value pair in the table, and returns YES.

NSAllMapTableKeys()

NSArray *NSAllMapTableKeys(NSMapTable *table)

Returns an array object containing all the keys in table . This function should
be called only when the table keys are objects, not when they’re any other
type of pointer.

NSAllMapTableValues()

NSArray *NSAllMapTableValues(NSMapTable *table)

Returns an array object containing all the values in table . This function
should be called only when the table values are objects, not when they’re any
other type of pointer.

Add or Remove an Item

NSMapInsert()

void NSMapInsert(NSMapTable *table, const void *key,
const void *value)

Inserts key and value into table. If key matches a key already in the table,
value is retained and the previous value is released, using the retain and
release call-back functions that were specified when the table was created.
Raises NSInvalidArgumentException if key is equal to the
notAKeyMarker field of the table’s NSMapTableKeyCallBacks structure.
See also NSMapInsertIfAbsent() , NSMapInsertIfAbsent()) .

NSMapInsertIfAbsent()

void *NSMapInsertIfAbsent(NSMapTable *table, const void *key,
const void *value)

Functions 7-27

7

If key matches a key already in table , this function returns the pre-existing
key; otherwise, it adds key and value to the table and returns NULL. Raises
NSInvalidArgumentException if key is equal to the notAKeyMarker field
of the table’s NSMapTableKeyCallBacks structure.

NSMapInsertKnownAbsent()

void NSMapInsertKnownAbsent(NSMapTable *table, const void *key,
const void *value)

Inserts key (which must not be notAKeyMarker) and value into table .
Unike NSMapInsert() , this function raises NSInvalidArgumentException
if table already includes a key that matches key .

NSMapRemove()

void NSMapRemove(NSMapTable *table, const void *key)

If key matches a key already in table , this function releases the pre-existing
key and its corresponding value.

NSStringFromMapTable()

NSString *NSStringFromMapTable(NSMapTable *table)

Returns a string describing the map table ’s contents. The function iterates
over the table’s key/value pairs, and for each one appends the string “a =
b;\n”, where a and b are the key and value strings returned by the
corresponding describe() call-back functions. If NULL was specified for the
call-back function, a and b are the key and value pointers, expressed as
hexadecimal numbers.

Miscellaneous Functions

Get Information about a User

NSUserName()

NSString *NSUserName(void)

7-28 OpenStep Programming Reference—September 1996

7

Returns the user’s name. See also NSHomeDirectory() .

NSHomeDirectory()

NSString *NSHomeDirectory(void)

Returns the user’s home directory.

NSHomeDirectoryForUser()

NSString *NSHomeDirectoryForUser(NSString * userName)

Returns the home directory for the specified userName . See also
NSHomeDirectory() .

Log an Error Message

NSLog()

void NSLog(NSString *format, ...)

Writes to stderr an error message of the form: “time processName processID
format”. The format argument to NSLog() is a printf() -style format string,
followed by an arbitrary number of arguments that match conversion
specifications (such as %s or %d) in the format string. You can pass an object in
the list of arguments by specifying %@ in the format string—this conversion
specification gets replaced by the string that the object’s description method
returns. See also NSLogv() .

NSLogv()

void NSLogv(NSString *format, va_list args)

Like NSLog() , but the arguments to the format string are passed in a single
va_list, in the manner of vprintf() .

Functions 7-29

7

Get Localized Versions of Strings

NSLocalizedString()

NSString *NSLocalizedString(NSString *key, NSString *comment)

Returns a localized version of the string designated by key . The default string
table (Localizable.strings) in the main bundle is searched for key .
comment is ignored, but can provide information for translators. See also
NSLocalizedStringFromTable() .

NSLocalizedStringFromTable()

NSString *NSLocalizedStringFromTable(NSString *key,
NSString *tableName, NSString *comment)

Like NSLocalizedString() , but searches the specified table. See also
NSLocalizedStringFromTableInBundle() .

NSLocalizedStringFromTableInBundle()

NSString *NSLocalizedStringFromTableInBundle(NSString *key,
NSString *tableName, NSBundle *aBundle, NSString *comment)

Like NSLocalizedStringFromTable() , but uses the specified bundle
instead of the application’s main bundle. See also NSLocalizedString() .

Convert to and from a String

NSClassFromString()

Class NSClassFromString(NSString *aClassName)

Returns the class object named by aClassName , or nil if none by this name is
currently loaded.

NSSelectorFromString()

SEL NSSelectorFromString(NSString *aSelectorName)

7-30 OpenStep Programming Reference—September 1996

7

Returns the selector named by aSelectorName , or zero if none by this name
exists.

NSStringFromClass()

NSString *NSStringFromClass(Class aClass)

Returns an NSString object containing the name of aClass .

NSStringFromSelector()

NSString *NSStringFromSelector(SEL aSelector)

Returns an NSString object containing the name of aSelector .

Get an Objective C Type’s Size and Alignment

NSGetSizeAndAlignment()

const char *NSGetSizeAndAlignment (const char *typePtr,
unsigned int *sizep, unsigned int *alignp)

Returns the size and alignment of the Objective C type that typePtr points to
in sizep and alignp . Returns typePtr . See also NSMethodSignature ,
NSConnection .

8-1

Types and Constants 8

Bundle Notification
NSString *NSBundleDidLoadNotification

After a bundle dynamically loads its code, the bundle sends out this
notification. NSBundleDidLoadNotification ’s user information dictionary
contains an array of strings which are the names of the classes loaded. The key
for this dictionary entry is @"NSLoadedClasses" .

Exception Handling

Exception Handler
typedef struct _NSHandler NSHandler;

Exception handler information.

Uncaught Exception Handler
typedef volatile void
 NSUncaughtExceptionHandler
 (NSException *exception);

Registers an uncaught exception handler.

8-2 OpenStep Programming Reference—September 1996

8

Inconsistent Archive Exception
NSString *NSInconsistentArchiveException;

Consistency error in archive file.

Generic Exception
NSString *NSGenericException;

General programming error.

Internal Inconsistency Exception
NSString *NSInternalInconsistencyException;

Some item that should be invariant changed.

Invalid Argument Exception
NSString *NSInvalidArgumentException;

Invalid argument.

Malloc Exception
NSString *NSMallocException;

No memory left to allocate.

Range Exception
NSString *NSRangeException;

Attempt to access an element beyond the limit of an array or similar structure.

Character Conversion Exception
NSString *NSCharacterConversionException

Raised when conversion to a C string fails.

Types and Constants 8-3

8

Geometry

NSPoint
typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

Graphical point definition.

NSSize
typedef struct _NSSize {
 float width;
 float height;
} NSSize;

Rectangle sizes.

NSRect
typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

Rectangle size and origin.

Rectangle Sides
typedef enum _NSRectEdge {
 NSMinXEdge,
 NSMinYEdge,
 NSMaxXEdge,
 NSMaxYEdge
} NSRectEdge;

Rectangle sides.

Zero Point
const NSPoint NSZeroPoint;

8-4 OpenStep Programming Reference—September 1996

8

A zero point.

Zero-Sized Rectangle
const NSRect NSZeroRect;

A rectangle with zero size and origin.

Zero Size
const NSSize NSZeroSize;

A size with zero height and width.

Hash Table

Hash Enumerator
typedef struct NSHashEnumerator;

Private type for enumerating.

Hash Table
typedef struct _NSHashTable NSHashTable;

Hash table type.

Hash Table Call Backs
typedef struct {

unsigned (*hash)(NSHashTable *table,
const void *anObject);

BOOL (*isEqual)(NSHashTable *table,
const void *anObject,
const void *anObject);

void (*retain)(NSHashTable *table,
const void *anObject);

void (*release)(NSHashTable *table,
void *anObject);

Types and Constants 8-5

8

NSString *(*describe)(NSHashTable *table,
const void *anObject);

} NSHashTableCallBacks;

Describes callback functions. hash is a hashing function. Note that elements
with equal values must have equal hash function values. isEqual is a
comparison function. retain is a retaining function call when adding
elements to the table. release is a releasing function called when a data
element is removed from the table. describe is a description function.

The following constants describe specific hash table callbacks. See
NSFoundationGlobals.m for more information.

const NSHashTableCallBacks NSIntHashCallBacks;

For sets of pointer-sized or smaller quantities.

const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;

For sets of pointers hashed by address.

const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;

For sets of objects without retaining and releasing.

const NSHashTableCallBacks NSObjectHashCallBacks;

For sets of objects; similar to NSSet .

const NSHashTableCallBacks NSOwnedPointerHashCallBacks;

For sets of pointers with transfer of ownership upon insertion.

const NSHashTableCallBacks NSPointerToStructHashCallBacks;

For sets of pointers to struct s when the first field of the struct is the size of
an int .

8-6 OpenStep Programming Reference—September 1996

8

const NSHashTableCallBacks NSOwnedObjectIdentityHashCallBacks;

For sets that own the objects but use pointer comparison.

Map Table

Map Enumerator
typedef struct NSMapEnumerator;

Private type for enumerating.

Map Table
typedef struct _NSMapTable NSMapTable;

Map table type.

Map Table Key Callbacks
typedef struct {

unsigned (*hash)(NSMapTable *table,
const void *anObject);

BOOL (*isEqual)(NSMapTable *table,
const void *anObject,
const void *anObject);

void (*retain)(NSMapTable *table,
const void *anObject);

void (*release)(NSMapTable *table,
void *anObject);

NSString *(*describe)(NSMapTable *table,
const void *anObject);

const void *notAKeyMarker;
} NSMapTableKeyCallBacks;

Callback functions for a key. hash is a hashing function. Note that elements
with equal values must have equal hash function values. isEqual is a
comparison function. retain is a retaining function call when adding
elements to the table. release is a releasing function called when a data
element is removed from the table. describe is a description function.
notAKeyMarker is a quantity that is not a key to the hash table.

Types and Constants 8-7

8

Map Table Value Callbacks
typedef struct {

void (*retain)(NSMapTable *table,
const void *anObject);

void (*release)(NSMapTable *table,
void *anObject);

NSString *(*describe)(NSMapTable *table,
const void *anObject);

 } NSMapTableValueCallBacks;

Callback functions for a value. retain is a retaining function call when adding
elements to the table. release is a releasing function called when a data
element is removed from the table. describe is a description function.

Not An Integer Map Key
#define NSNotAnIntMapKey;

Quantity that is never a map key.

Not A Pointer Map Key
#define NSNotAPointerMapKey;

Quantity that is never a map key.

Pointer-Sized Map Key Callbacks
const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;

For keys that are pointer-sized or smaller quantities.

Pointer-Sized MapValue Callbacks
const NSMapTableValueCallBacks NSIntMapValueCallBacks;

For values that are pointer-sized quantities.

Non-Owned Pointer Map Key Callbacks
const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;

For keys that are pointers not freed.

8-8 OpenStep Programming Reference—September 1996

8

Non-Owned Pointer Map Value Callbacks
const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;

For values that are owned pointers.

Non-Owned Pointer Or Null Map Key Callbacks
const NSMapTableKeyCallBacks

NSNonOwnedPointerOrNullMapKeyCallBacks;

For keys that are pointers not freed, or NULL.

Non-Retained Object Map Key Callbacks

const NSMapTableKeyCallBacks
 NSNonRetainedObjectMapKeyCallBacks;

For sets of objects without retaining and releasing.

Object Map Key Callbacks
const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;

For keys that are objects.

Object Map Value Callbacks
const NSMapTableValueCallBacks NSObjectMapValueCallBacks;

For values that are objects.

Owned Pointer Map Key Callbacks
const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;

For keys that are pointers with transfer of ownership upon insertion.

Owned Pointer Map Value Callbacks
const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;

For values that are owned pointers.

Types and Constants 8-9

8

Non-Retained Object Map Value Callbacks
const NSMapTableValueCallBacks

NSNonRetainedObjectMapValueCallBacks;

For values which are objects that should not be retained.

Notification Queue

Posting Style
typedef enum
 NSPostWhenIdle,
 NSPostASAP,
 NSPostNow
} NSPostingStyle;

NSPostWhenIdle means to post the notification when the run loop is idle.
NSPostASAP means to post the notification as soon as possible. And
NSPostNow means to post the notification immediately.

Notification Coalescing
typedef enum {
 NSNotificationNoCoalescing,
 NSNotificationCoalescingOnName,
 NSNotificationCoalescingOnSender,
} NSNotificationCoalescing;

NSNotificationNoCoalescing means not to coalesce similar notifications
in the queue. NSNotificationCoalescingOnName means to coalesce
notifications in the queue matching name. And
NSNotificationCoalescingOnSender means to coalesce notifications in
the queue matching sender.

Run Loop

Connection Reply Mode
NSString *NSConnectionReplyMode;

8-10 OpenStep Programming Reference—September 1996

8

NSRunLoop mode in which Distributed Object system seeks replies.

Default Run Loop Mode
NSString *NSDefaultRunLoopMode;

Common NSRunLoop mode.

Searching

Comparison Result
typedef enum _NSComparisonResult {
 NSOrderedAscending,
 NSOrderedSame,
 NSOrderedDescending
} NSComparisonResult;

Ordered comparison results.

Anchored Search
enum {
 NSCaseInsensitiveSearch,
 NSLiteralSearch,
 NSBackwardsSearch,
 NSAnchoredSearch
};

Flags passed to various search methods.

Not Found
enum {NSNotFound};

Indicates an item not found.

Types and Constants 8-11

8

String

String Encodings
typedef unsigned NSStringEncoding;

Known string encodings.

Unicode String Encodings
enum {
 NSASCIIStringEncoding,
 NSNEXTSTEPStringEncoding,
 NSJapaneseEUCStringEncoding,
 NSUTF8StringEncoding,
 NSISOLatin1StringEncoding ,
 NSSymbolStringEncoding ,
 NSNonLossyASCIIStringEncoding,
 NSShiftJISStringEncoding,
 NSISOLatin2StringEncoding,
 NSUnicodeStringEncoding
};

Known Unicode string encodings.

OpenStep Unicode Base
enum _NSOpenStepUnicodeReservedBase {
 NSOpenStepUnicodeReservedBase
};

Base for Unicode characters.

Maximum String Length
NSMaximumStringLength

Maximum string length, defined as INT_MAX-1 .

8-12 OpenStep Programming Reference—September 1996

8

Threads

Thread Priorities
typedef enum {
 NSInteractiveThreadPriority,
 NSBackgroundThreadPriority,
 NSLowThreadPriority
} NSThreadPriority;

Notifications
NSString *NSBecomingMultiThreaded;
NSString *NSThreadExiting;

User Defaults
NSString *NSArgumentDomain;
//For defaults parsed from the application’s arguments.
NSString *NSGlobalDomain;
//For defaults seen by all applications.
NSString *NSRegistrationDomain;
//For registered defaults.
NSString *NSUserDefaultsChanged;
//Public notification.
NSString *NSWeekDayNameArray;
//Keys for language-dependent information.
NSString *NSShortWeekDayNameArray;
NSString *NSMonthNameArray;
NSString *NSShortMonthNameArray;
NSString *NSTimeFormatString;
NSString *NSDateFormatString;
NSString *NSTimeDateFormatString;
NSString *NSShortTimeDateFormatString;
NSString *NSCurrencySymbol;
NSString *NSDecimalSeparator;
NSString *NSThousandsSeparator;
NSString *NSInternationalCurrencyString;
NSString *NSCurrencyString;
NSString *NSDecimalDigits;
NSString *NSAMPMDesignation;

Types and Constants 8-13

8

Miscellaneous

NSArgumentInfo
typedef struct {
 int offset;
 int size;
 char *type;
} NSArgumentInfo;

Specifies the layout of arguments used in invocations. See the NSCoder class
description for a list of argument types.

NSRange
typedef struct _NSRange {
 unsigned int location;
 unsigned int length;
} NSRange;

Specifies a range of items in arrays, strings, and so on.

NSTimeInterval
typedef double NSTimeInterval;

Time interval difference between two dates.

NSZone
typedef struct _NSZone NSZone;

Large region allocation. See also NSCreateZone() (Foundation Kit Functions
chapter).

8-14 OpenStep Programming Reference—September 1996

8

Part 3 — Display PostScript

9-1

Classes 9

The single class listed here and the protocol in the following section constitute
OpenStep’s object-oriented interface to the Display PostScript System. Many of
the argument and return types that appear below (specifically, those having a
“DPS” prefix) are not described in this document. Rather, they are detailed in
the specification for the Display PostScript System itself, as found in the
Display PostScript System, Client Library Reference Manual, by Adobe Systems
Incorporated.

9-2 OpenStep Programming Reference—September 1996

9

NSDPSContext

Class Description

The NSDPSContext class is the programmatic interface to objects that
represent Display PostScript System contexts. A context can be thought of as a
destination to which PostScript code is sent for execution. Each Display
PostScript context contains its own complete PostScript environment including
its own local VM (PostScript Virtual Memory). Every context has its own set of
stacks, including an operand stack, graphics state stack, dictionary stack, and
execution stack. Every context also contains a FontDirectory which is local
to that context, plus a SharedFontDirectory that is shared across all
contexts. There are three built-in dictionaries in the dictionary stack. From top
to bottom, they are userdict , globaldict , and systemdict . userdict is
private to the context, while globaldict and systemdict are shared by all
contexts. globaldict is a modifiable dictionary containing information
common to all contexts. systemdict is a read-only dictionary containing all
the PostScript operators.

At any time there is the notion of the current context. The current context for the
current thread may be set using setCurrentContext: .

NSDPSContext objects by default write their output to a specified data
destination. This is used for printing, FAXing, and for generation of saved EPS
(Encapsulated PostScript) code. The means to create contexts that interact with
displays are platform-specific. The NSApplication object creates a context by
default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object is created, it creates and manages a
DPSContext record. Programmers familiar with the client side C function
interface to the Display PostScript System can access the DPSContext record
by sending a context message to an NSDPSContext object. You can then
operate on this context record using any of the functions or single operator

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: DPSClient/NSDPSContext.h

Classes 9-3

9

functions defined in the Display PostScript System client library. Conversely,
you can create an NSDPSContext object from a DPSContext record with the
DPSContextObject() function, as defined in “Client Library Functions”. You
can then work with the created NSDPSContext object using any of the
methods described here.

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext . In most cases,
exceptions are raised because of errors returned from the Display PostScript
Server. Exceptions are listed under “Types and Constants.” Also see the Display
PostScript System, Client Library Reference Manual, by Adobe Systems
Incorporated, for more details on Display PostScript System error names and
their possible causes.

9-4 OpenStep Programming Reference—September 1996

9

Method Types

Activity ClassMethod

Initializing a Context – initWithMutableData:forDebugging:
languageEncoding:nameEcoding:textProc: errorProc:

Testing the Drawing
Destination

– isDrawingToScreen

Accessing Context Data – mutableData

Setting and Identifying the
Current Context

+ currentContext
– setCurrentContext:
– DPSContext

Controlling the Context – flush
– interruptExecution
– notifyObjectWhenFinishedExecuting:
– resetCommunication
– wait

Managing Returned Text
and Errors

+ stringForDPSError:
– errorProc
– setErrorProc:
– setTextProc:
– textProc

Sending Raw Data – printFormat:
– printFormat:arguments:
– writeData:
– writePostScriptWithLanguageEncodingConversion:

Managing Binary Object
Sequences

– awaitReturnValues
– writeBOSArray:count:ofType:
– writeBOSNumString:length:ofType:scale:
– writeBOSString:length:
– writeBinaryObjectSequence:length:
– updateNameMap

Managing Chained
Sequences

– chainChildContext:
– childContext
– parentContext
– unchainContext

Debugging Aids + areAllContextsOutputTraced
+ areAllContextsSynchronized
+ setAllContextsOutputTraced:
+ setAllContextsSynchronized:
– isOutputTraced
– isSynchronized
– setOutputTraced:
– setSynchronized:

Classes 9-5

9

Class Methods

areAllContextsOutputTraced

+ (BOOL)areAllContextsOutputTraced

Returns YES if the data flowing between the application’s contexts and their
destinations is copied to diagnostic output.

areAllContextsSynchronized

+ (BOOL)areAllContextsSynchronized

Returns YES if all NSPDSContext objects invoke the wait method after
sending each batch of output.

currentContext

+ (NSDPSContext *)currentContext

Returns the current context of the current thread. See also
setCurrentContext: .

setAllContextsOutputTraced:

+ (void)setAllContextsOutputTraced:(BOOL)flag

When flag is YES, causes the data (PostScript code, return values, etc.)
flowing between the all the application’s contexts and their destinations to be
copied to diagnostic output. See also areAllContextsOutputTraced ,
isOutputTraced .

setAllContextsSynchronized:

+ (void)setAllContextsSynchronized:(BOOL)flag

When flag is YES, causes the wait method to be invoked each time an
NSDPSContext object sends a batch of output to its destination. See also
areAllContextsSynchronized , setSynchronized: , isSynchronized .

9-6 OpenStep Programming Reference—September 1996

9

setCurrentContext:

+ (void)setCurrentContext:(NSDPSContext *)context

Installs context as the current context of the current thread. See also
currentContext .

stringForDPSError:

+ (NSString *)stringForDPSError:(const DPSBinObjSeqRec *)error

Returns a string representation of error .

Instance Methods

awaitReturnValues

– (void)awaitReturnValues

Waits for all return values from the result table.

chainChildContext:

– (void)chainChildContext:(NSDPSContext *)child

Links child (and all of it’s children) to the receiver as its chained context, a
context that receives a copy of all PostScript code sent to the receiver.

childContext

– (NSDPSContext *)childContext

Returns the receiver’s child context, or nil if none exists. See also
parentContext .

DPSContext

– (DPSContext)DPSContext

Returns the corresponding DPScontext .

Classes 9-7

9

errorProc

– (DPSErrorProc)errorProc

Returns the context’s error callback function. See also setErrorProc: .

flush

– (void)flush

Forces any buffered data to be sent to its destination.

initWithMutableData:forDebugging:
languageEncoding:nameEcoding:textProc:
errorProc:

– initWithMutableData:(NSMutableData *)data
forDebugging:(BOOL)debug
languageEncoding:(DPSProgramEncoding)langEnc
nameEcoding:(DPSNameEncoding)nameEnc
textProc:(DPSTextProc)tProc errorProc:(DPSErrorProc)errorProc

Initializes a newly allocated NSDPSContext that writes its output to data
using the language and name encodings specified by langEnc and nameEnc.
The callback functions tProc and errorProc handle text and errors
generated by the context. If debug is YES, the output is given in human-
readable form in which large structures (such as images) may be represented
by comments.

interruptExecution

– (void)interruptExecution

Interrupts execution in the receiver’s context.

isDrawingToScreen

– (BOOL)isDrawingToScreen

Returns YES if the drawing destination is the screen.

9-8 OpenStep Programming Reference—September 1996

9

isOutputTraced

– (BOOL)isOutputTraced

Returns YES if the data flowing between the application’s single context and its
destination is copied to diagnostic output. See also setOutputTraced: .

isSynchronized

– (BOOL)isSynchronized

Returns whether the wait method is invoked each time the receiver sends a
batch of output to the server.

mutableData

– (NSMutableData *)mutableData

Returns the receiver’s data object.

notifyObjectWhenFinishedExecuting:

– (void)notifyObjectWhenFinishedExecuting:
(id <NSDPSContextNotification>)object

Registers object to receive a contextFinishedExecuting: message when
the NSDPSContext ’s destination is ready to receive more input.

parentContext

– (NSDPSContext *)parentContext

Returns the receiver’s parent context, or nil if none exists. See also
childContext .

printFormat:

– (void)printFormat:(NSString *)format,...

Constructs a string from format and following string objects (in the manner of
printf()) and sends it to the context’s destination. See also
printFormat:arguments: .

Classes 9-9

9

printFormat:arguments:

– (void)printFormat:(NSString *)format arguments:(va_list)argList

Constructs a string from format and argList (in the manner of vprintf())
and sends it to the context’s destination. See also printFormat: .

resetCommunication

– (void)resetCommunication

Discards any data that hasn’t already been sent to its destination.

setErrorProc:

– (void)setErrorProc:(DPSErrorProc)proc

Sets the context’s error callback function to proc . See also errorProc .

setOutputTraced:

– (void)setOutputTraced:(BOOL)flag

When flag is YES, causes the data (PostScript code, return values, etc.)
flowing between the application’s single context and the Display PostScript
server to be copied to diagnostic output. See also isOutputTraced .

setSynchronized:

– (void)setSynchronized:(BOOL)flag

Sets whether the wait method is invoked each time the receiver sends a batch
of output to its destination.

setTextProc:

– (void)setTextProc:(DPSTextProc)proc

Sets the context’s text callback function to proc .

textProc

– (DPSTextProc)textProc

9-10 OpenStep Programming Reference—September 1996

9

Returns the context’s text callback function.

unchainContext

– (void)unchainContext

Unlinks the child context (and all of it’s children) from the receiver’s list of
chained contexts.

updateNameMap

– (void)updateNameMap

Updates the context’s name map from the client library’s name map.

wait

– (void)wait

Waits until the NSDPSContext ’s destination is ready to receive more input.

writeBOSArray:count:ofType:

– (void)writeBOSArray:(const void *)data count:(unsigned int)items
ofType:(DPSDefinedType)type

Write an array to the context’s destination as part of a a binary object sequence.
The array is taken from data and consists of items items of type type .

writeBOSNumString:length:ofType:scale:

– (void)writeBOSNumString:(const void *)data
length:(unsigned int)count
ofType:(DPSDefinedType)type scale:(int)scale

Write a number string to the context’s destination as part of a binary object
sequence. The string is taken from data as described by count , type , and
scale .

Classes 9-11

9

writeBOSString:length:

– (void)writeBOSString:(const void *)data
length:(unsigned int)bytes

Write a string to the context’s destination as part of a binary object sequence.
The string is taken from bytes (a count) of data .

writeBinaryObjectSequence:length:

– (void)writeBinaryObjectSequence:(const void *)data
length:(unsigned int)bytes

Write a binary object sequence to the context’s destination. The sequence
consists of bytes (a count) of data .

writeData:

– (void)writeData:(NSData *)buf

Sends the PostScript data in buf to the context’s destination.

writePostScriptWithLanguageEncodingConversion:

– (void)writePostScriptWithLanguageEncodingConversion:(NSData *)buf

Writes the PostScript data in buf to the context’s destination. The data,
formatted as plain text, encoded tokens, or a binary object sequence, is
converted as necessary depending on the language encoding of the receiving
context.

9-12 OpenStep Programming Reference—September 1996

9

10-1

Protocols 10

NSDPSContextNotification

Protocol Description

The NSDPSContextNotification protocol supplies information about the
execution status of a sequence of PostScript commands previously sent to the
Display PostScript server.

Instance Methods

contextFinishedExecuting:

– (void)contextFinishedExecuting:(NSDPSContext *)context

Notifies the receiver that the context has finished executing a batch of
PostScript commands. See notifyObjectWhenFinishedExecuting:
(NSDPSContext).

Adopted by: No OpenStep classes

Declared In: DPSClient/NSDPSContext.h

10-2 OpenStep Programming Reference—September 1996

10

11-1

Operators 11

This chapter describes the operators found in OpenStep, but not in the
standard PostScript language. The PostScript Language Reference Manual (the
Red Book), Second Edition, by Adobe Systems Incorporated, provides the
specifications for standard PostScript and Display PostScript operators.

The following operator descriptions are in the format used by the PostScript
Language Reference Manual, and the Adobe publication Programming the Display
PostScript System with X (the Orange Book). For example:

operand1 ... operandn operator result1 ... resultm

Compositing Operators

composite

srcx srcy width height srcgstate destx desty op composite –

Performs the compositing operation specified by op between pairs of pixels in
two images, a source and a destination. The source pixels are in the Drawable
referred to by the srcgstate graphics state, and the destination pixels are in the
Drawable specified by the current graphics state. If srcgstate is null, the current
graphics state is assumed.

11-2 OpenStep Programming Reference—September 1996

11

The rectangle specified by srcx, srcy, width, and height defines the source image.
The outline of the rectangle may cross pixel boundaries due to fractional
coordinates, scaling, or rotated axes. The pixels included in the source are all
those that the outline of the rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source;
destx and desty give destination’s location image compared to the source. Even if
the two graphic states have different orientations, the images will not have
different orientations; composite will not rotate images.

Both images are clipped to the frame rectangles of the respective Drawables.
The destination image is further clipped to the clipping path of the current
graphics state. The result of a composite operation replaces the destination
image.

op specifies the compositing operation. The color of each destination image
pixel (alpha value) after the operation, dst’ (dstA’) is given by

dst’ = src * Fs(srcA, dstA, op) + dst * Fd(srcA, dstA, op)

dstA’ = srcA * Fs(srcA, dstA, op) + dstA * Fd(srcA, dstA, op)

where src and srcA are the source color and alpha values, dst and dstA are the
destination color and alpha values, and Fs and Fd are the functions given in the
following table. The choices for op are also given in the following table.

Table 11-1 Composite Operation and Compositing Equation Factors

Op Fs Fd

Clear 0 0

Copy 1 0

Sover 1 1 - srcA

Sin dstA 0

Sout 1 - dstA 0

Satop dstA 1 - srcA

Dover 1 - dstA 1

Din 0 srcA

Dout 0 1 - srcA

Datop 1 - dstA srcA

Operators 11-3

11

compositerect

destx desty width height op compositerect –

Composites rectangle of current color and coverage with image in current
graphics state.

In general, this operator is the same as the composite operator except that there
is no real source image. The destination is in the current graphics state; destx,
desty, width, and height describe the destination image in that graphics state’s
current coordinate system. The effect on the destination is as if there were a
source image filled with the color and coverage specified by the graphics
state’s current color and coverage parameters. op has the same meaning as the
op operand of the composite operator; however, one additional operation,
Highlight, is allowed.

Highlight turns every white pixel in the destination rectangle to light gray and
every light gray pixel to white, regardless of the pixel’s coverage value. Light
gray is defined as 2/3. Repeating the same operation reverses the effect. (On
monochrome displays, Highlight inverts each pixel, white becomes black,
black becomes white.)

1. PlusD does not follow the general equation. The equation is dst’ = (1-dst) + (1-
src); If the result is less than 0 (black) then the result is 0.

2. For PlusL the addition saturates. That is if (src + dst > white) the result is white.

3. For dissolve, Fa and Fs have another parameter: the delta operand to the
dissolve operator.

4. Highlight doesn’t follow the general equation. It turns white pixels light gray
(2/3) and light gray pixels white. Pixels of other colors are unaffected. Alpha
values are unaffected. Highlight is a valid op only for the compositerect
operator.

Xor 1 - dstA 1 - srcA

PlusD1 N/A N/A

PlusL2 1 1

dissolve3 delta 1 - delta

Highlight4 N/A N/A

Table 11-1 Composite Operation and Compositing Equation Factors (Continued)

Op Fs Fd

11-4 OpenStep Programming Reference—September 1996

11

Note that the Highlight operation doesn’t change the value of a pixel’s
coverage component. To ensure that the pixel’s color and coverage
combination remains valid, Highlight operations should be temporary and
should be reversed before any further compositing.

For this operation, the pixels included in the destination are those that the
outline of the specified rectangle encloses or enters. The destination image is
clipped to the frame rectangle and clipping path of the window in the current
graphics state.

dissolve

srcx srcy width height srcgstate destx desty delta dissolve –

Dissolves between area of window referred to by srcgstate and equal area of
window referred to by the current graphics state. The effect of this operation is
a blending of a source and a destination image. The first seven arguments
choose source and destination pixels as they do for composite. The exact
fraction of the blend is specified by delta, which is a floating-point number
between 0.0 and 1.0; the resulting image is:

 delta * source + (1- delta) * destination

If srcgstate is null, the current graphics state is assumed. The values of the
composite ops are available for applications in the PostScript systemdict. The
definitions are as follows:

• /Clear 0 def
• /Copy 1 def
• /Sover 2 def
• /Sin 3 def
• /Sout 4 def
• /Satop 5 def
• /Dover 6 def
• /Din 7 def
• /Dout 8 def
• /Datop 9 def
• /Xor 10 def
• /PlusD 11 def
• /Highlight 12 def
• /PlusL 13 def

Operators 11-5

11

Graphics State Operators

setalpha

coverage setalpha –

Sets the coverage parameter in the current graphics state to coverage. coverage
should be a number between 0 and 1, with 0 corresponding to transparent, 1
corresponding to opaque, and intermediate values corresponding to partial
coverage. The default value is 1. This sets how much background shows
through when compositing images. If the coverage value given is less than 0,
the coverage parameter is set to 0. If the value is greater than 1, the coverage
parameter is set to 1.

The coverage value affects the color painted by PostScript marking operations.
The current color is pre-multiplied by the alpha value before rendering. This
multiplication occurs after the current color has been transformed to the RGB
color space.

currentalpha

– currentalpha coverage

Returns the coverage parameter of the current graphics state.

11-6 OpenStep Programming Reference—September 1996

11

12-1

Client Library Functions 12

The Display PostScript Client Library is composed of system-dependent and a
system-independent parts. The Display PostScript System, Client Library
Reference Manual, by Adobe Systems, Incorporated, provides the specification
for the system-independent portion of this library.

Functions that are part of OpenStep’s system-dependent part of the Display
PostScript Client Library are listed here.

PostScript Execution Context Functions

DPSContextObject()

NSDPSContext *DPSContextObject(DPSContext ctxt)

Converts a DPSContext to an NSDPSContext object.

12-2 OpenStep Programming Reference—September 1996

12

Communication with the Display PostScript Server

Send a PostScript User Path to the Display PostScript Server

These functions are used to send a user path, plus one other action , to the
Display PostScript Server. In the …WithMatrix forms of these functions, the
matrix argument is the optional matrix argument used by the ustroke ,
inustroke , and ustrokepath operators. The matrix argument may be
NULL, in which case it is ignored.

PSDoUserPath()

void PSDoUserPath(const void *coords, int numCoords,
DPSNumberFormat numType, const DPSUserPathOp *ops, int numOps,
const void *bbox, DPSUserPathAction action)

PSDoUserPathWithMatrix()

void PSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps,
void *bbox, DPSUserPathAction action, float matrix[6])

PSDoUserPathWithMatrix()

void PSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps,
void *bbox, DPSUserPathAction action, float matrix[6])

DPSDoUserPath()

void DPSDoUserPath(DPSContext context, const void *coords,
int numCoords, DPSNumberFormat numType,
const DPSUserPathOp *ops,int numOps, const void *bbox,
DPSUserPathAction action)

DPSDoUserPathWithMatrix()

void DPSDoUserPathWithMatrix(DPSContext context, void *coords,
int numCoords, DPSNumberFormat numType, unsigned char *ops,
int numOps, void *bbox, DPSUserPathAction action,
float matrix[6])

Client Library Functions 12-3

12

Send PostScript Code to the Display PostScript Server

PSFlush()

void PSFlush(void)

PSWait()

void PSWait(void)

12-4 OpenStep Programming Reference—September 1996

12

13-1

Single-Operator Functions 13

Single-operator functions provide a C language interface to the individual
operators of the PostScript language. The specification for a single-operator
function is identical to that of the PostScript operator it represents. The
PostScript Language Reference Manual, Second Edition, by Adobe Systems
Incorporated, provides the specifications of all standard PostScript operators.
Also refer to the Display PostScript System, Client Library Reference Manual, by
Adobe Systems Incorporated. Listed below are single-operator functions that
correspond to operators found in OpenStep but not in the standard
implementation of the PostScript language.

These functions have either a “PS” or a “DPS” prefix. For every single-operator
function with a “PS” prefix, there’s a corresponding single-operator function
with a “DPS” prefix. The PS and DPS functions are identical except that DPS
functions take an additional (first) argument that represents the PostScript
execution context.

Besides using standard C language types, some single-operator functions use
userobject —an int that refers to the value returned by
DPSDefineUserObject() .

In the function descriptions below, x and y refer to the origin of source
rectangles, and w and h refer to the width and height of the source rectangles.
gstateNum refers to the graphics state (gstate) of the source rectangle. dx and
dy refer to the origin of the destination for the compositing or dissolving
operation. op refers to the specific compositing operation. a or alpha refers to
the coverage component used for compositing operations.

13-2 OpenStep Programming Reference—September 1996

13

“PS” Prefix Functions

PScomposite()

void PScomposite(float x, float y, float w, float h,
int gstateNum, float dx, float dy, int op)

PScompositerect()

void PScompositerect(float x, float y, float w, float h, int op)

PScurrentalpha()

void PScurrentalpha(float *alpha)

PSdissolve()

void PSdissolve(float x, float y, float w, float h,
int gstateNum, float dx, float dy, float delta)

PSsetalpha()

void PSsetalpha(float a)

“DPS” Prefix Functions

DPScomposite()

void DPScomposite(DPSContext ctxt, float x, float y, float w,
float h, int gstateNum, float dx, float dy, int op)

DPScompositerect()

void DPScompositerect(DPSContext ctxt, float dx, float dy,
float w, float h, int op)

DPScurrentalpha()

void DPScurrentalpha(DPSContext ctxt, float *pcoverage)

Single-Operator Functions 13-3

13

DPSdissolve()

void DPSdissolve(DPSContext ctxt, float x, float y, float w, float h,
int gstateNum, float dx, float dy, float delta)

DPSsetalpha()

void DPSsetalpha(DPSContext ctxt, float a)

13-4 OpenStep Programming Reference—September 1996

13

14-1

Types and Constants 14

The Display PostScript Client Library is composed of system-dependent and a
system-independent parts. The Display PostScript System, Client Library
Reference Manual, by Adobe Systems, Incorporated, provides the specification
for the system-independent portion of this library.

The defined types, enumeration constants, and global variables that are part of
OpenStep’s system-dependent part of the Display PostScript Client Library are
listed here.

Defined Types

Number Format
typedef enum _DPSNumberFormat {
#ifdef __BIG_ENDIAN__
 dps_float = 48,
 dps_long = 0,
 dps_short = 32
#else
 dps_float = 48+128,
 dps_long = 0+128,
 dps_short = 32+128
#endif
} DPSNumberFormat;

Other permitted values are:

14-2 OpenStep Programming Reference—September 1996

14

• For 32-bit fixed-point numbers, use dps_long plus the number of bits in the
fractional part.

• For 16-bit fixed-point numbers, use dps_short plus the number of bits in
the fractional part.

NSBackingStoreType
typedef enum _NSBackingStoreType {
 NSBackingStoreRetained,
 NSBackingStoreNonretained,
 NSBackingStoreBuffered
} NSBackingStoreType;

Backing store types.

Compositing Operations
typedef enum _NSCompositingOperation {
 NSCompositeClear,
 NSCompositeCopy,
 NSCompositeSourceOver,
 NSCompositeSourceIn,
 NSCompositeSourceOut,
 NSCompositeSourceAtop,
 NSCompositeDestinationOver,
 NSCompositeDestinationIn,
 NSCompositeDestinationOut,
 NSCompositeDestinationAtop,
 NSCompositeXOR,
 NSCompositePlusDarker,
 NSCompositeHighlight,
 NSCompositePlusLighter
} NSCompositingOperation;

NSWindowOrderingMode
typedef enum _NSWindowOrderingMode {
 NSWindowAbove,
 NSWindowBelow,
 NSWindowOut
} NSWindowOrderingMode;

Types and Constants 14-3

14

User Path Operators
typedef unsigned char DPSUserPathOp;
enum {
 dps_setbbox,
 dps_moveto,
 dps_rmoveto,
 dps_lineto,
 dps_rlineto,
 dps_curveto,
 dps_rcurveto,
 dps_arc,
 dps_arcn,
 dps_arct,
 dps_closepath,
 dps_ucache
};

User path operators. These constants define the operator numbers used to
construct the operator array parameter of DPSDoUserPath .

User Path Actions
typedef enum _DPSUserPathAction {
 dps_uappend,
 dps_ufill,
 dps_ueofill,
 ps_ustroke,
 dps_ustrokepath,
 dps_inufill,
 dps_inueofill,
 dps_inustroke,
 dps_def,
 dps_put
} DPSUserPathAction;

User path actions. These constants define the action of a DPSDoUserPath . In
addition to the actions defined here, any other system name index may be
used. See the PostScript Language Reference Manual, Second Edition, by
Adobe Systems Incorporated, for a detailed list of system name indexes.

14-4 OpenStep Programming Reference—September 1996

14

Enumerations

Alpha Values
enum {
 NSAlphaEqualToData,
 NSAlphaAlwaysOne
};

Null Object
enum {
 DPSNullObject
};

User object representing the PostScript null object.

Symbolic Constants
DPS_OPENSTEP_ERROR_BASE

Error code base.

Global Variables

DPS Exceptions
NSString *DPSPostscriptErrorException;
NSString *DPSNameTooLongException;
NSString *DPSResultTagCheckException;
NSString *DPSResultTypeCheckException;
NSString *DPSInvalidContextException;
NSString *DPSSelectException;
NSString *DPSConnectionClosedException;
NSString *DPSReadException;
NSString *DPSWriteException;
NSString *DPSInvalidFDException;
NSString *DPSInvalidTEException;
NSString *DPSInvalidPortException;
NSString *DPSOutOfMemoryException;
NSString *DPSCantConnectException;

Types and Constants 14-5

14

14-6 OpenStep Programming Reference—September 1996

14

Part 4 — Sound Kit

15-9

Sound Classes 15

The Sound , SoundMeter , and SoundView classes comprise OpenStep’s sound
support. These classes are not part of the OpenStep specification.

Sound

Class Description

Sound objects represent and manage sounds. A Sound object’s sound can be
recorded from a microphone, read from a soundfile or NSBundle resource,
retrieved from the pasteboard, or created algorithmically. The Sound class also
provides an application-wide name table that lets you identify and locate sounds
by name.

Playback and recording are performed by background threads, allowing your
application to proceed in parallel. You should only use a Sound object to play
and record sounds in applications that have a running NSApp object present.

You can also edit a Sound object by adding and removing samples. To minimize
data movement (and thus save time), an edited Sound may become fragmented;
in other words, its sound data might become discontiguous in memory. While
playback of a fragmented Sound object is transparent, it does incur some
overhead. If you perform a number of edits you may want to return the Sound

Inherits From: NSObject

Declared In: soundkit/Sound.h

15-10 OpenStep Programming Reference—September 1996

15

to a contiguous state by sending it a compactSamples message before you play
it. However, a large Sound may take a long time to compact, so a judicious and
well-timed use of compactSamples is advised. Fragmented Sounds are
automatically compacted before they’re copied to a pasteboard (through the
writeToPasteboard: method). Also, when you write a Sound to a soundfile,
the data in the file will be compact regardless of the state of the object.

A Sound object contains a structure, named SNDSoundStruct , that contains
and describes sound data. Here is what it looks like:

typedef struct {
 int magic; /* Must be equal to SND_MAGIC */
 int dataLocation; /* Offset or pointer to the raw data */
 int dataSize; /* Number of raw data bytes */
 int dataFormat; /* Data format code */
 int samplingRate; /* Sampling rate */
 int channelCount; /* Number of channels */
 char info[4]; /* Textual sound information */
} SNDSoundStruct;

This sound data format is also used as the Sound object’s file format and
pasteboard type.

• SNDSoundStruct consists of a header and two variable length quantities: textual
information (info) and raw data (dataLocation). Here’s a description of the
contents:

• magic specifies the magic number used to determine the byte order of the
data.

• dataLocation specifies an offset from the beginning of the
SNDSoundStruct to info ’s end. This raw data always starts where textual
info (described below) ends.

• dataSize is the length of the raw data in bytes.

• dataFormat specifies what the data actually means (for example, sample
data, dsp core structure), and is one of the following constants:
• SND_FORMAT_UNSPECIFIED
• SND_FORMAT_MULAW_8
• SND_FORMAT_LINEAR_8
• SND_FORMAT_LINEAR_16
• SND_FORMAT_LINEAR_24
• SND_FORMAT_LINEAR_32
• SND_FORMAT_FLOAT

Sound 15-11

15

• SND_FORMAT_DOUBLE
• SND_FORMAT_INDIRECT
• SND_FORMAT_NESTED
• SND_FORMAT_DSP_CORE
• SND_FORMAT_DSP_DATA_8
• SND_FORMAT_DSP_DATA_16
• SND_FORMAT_DSP_DATA_24
• SND_FORMAT_DSP_DATA_32
• SND_FORMAT_DISPLAY
• SND_FORMAT_MULAW_SQUELCH
• SND_FORMAT_EMPHASIZED
• SND_FORMAT_COMPRESSED
• SND_FORMAT_COMPRESSED_EMPHASIZED
• SND_FORMAT_DSP_COMMANDS
• SND_FORMAT_DSP_COMMANDS_SAMPLES
• SND_FORMAT_ADPCM_G721
• SND_FORMAT_ADPCM_G722
• SND_FORMAT_ADPCM_G723_3
• SND_FORMAT_ADPCM_G723_5
• SND_FORMAT_ALAW_8
• SND_FORMAT_AES
• SND_FORMAT_DELTA_MULAW_8

• samplingRate , and channelCount further describe the data.

• info is any null-terminated data that the application may need (for
example, copyright information, textual description). The four bytes
allocated are a minimum, and may be extended to whatever length is
required.

Most of the methods defined in the Sound class are implemented so that you
needn’t be aware of this structure.

Error Codes

The following list contains the error codes returned by Sound object methods.

• SND_ERR_NONE
• SND_ERR_NOT_SOUND
• SND_ERR_BAD_FORMAT
• SND_ERR_BAD_RATE
• SND_ERR_BAD_CHANNEL

15-12 OpenStep Programming Reference—September 1996

15

• SND_ERR_BAD_SIZE
• SND_ERR_BAD_FILENAME
• SND_ERR_CANNOT_OPEN
• SND_ERR_CANNOT_WRITE
• SND_ERR_CANNOT_READ
• SND_ERR_CANNOT_ALLOC
• SND_ERR_CANNOT_FREE
• SND_ERR_CANNOT_COPY
• SND_ERR_CANNOT_RESERVE
• SND_ERR_NOT_RESERVED
• SND_ERR_CANNOT_RECORD
• SND_ERR_ALREADY_RECORDING
• SND_ERR_NOT_RECORDING
• SND_ERR_CANNOT_PLAY
• SND_ERR_ALREADY_PLAYING
• SND_ERR_NOT_PLAYING
• SND_ERR_NOT_IMPLEMENTED
• SND_ERR_CANNOT_FIND
• SND_ERR_CANNOT_EDIT
• SND_ERR_BAD_SPACE
• SND_ERR_KERNEL
• SND_ERR_BAD_CONFIGURATION
• SND_ERR_CANNOT_CONFIGURE
• SND_ERR_UNDERRUN
• SND_ERR_ABORTED
• SND_ERR_BAD_TAG
• SND_ERR_CANNOT_ACCESS
• SND_ERR_TIMEOUT
• SND_ERR_BUSY
• SND_ERR_CANNOT_ABORT
• SND_ERR_INFO_TOO_BIG
• SND_ERR_UNKNOWN

See also the SoundMeter and SoundView classes.

Activity Class Method

Creating and freeing a Sound
object

+ addName:fromBundle:
+ addName:fromSoundfile:
– dealloc
– initFromPasteboard:
– initFromSoundfile:

Sound 15-13

15

Accessing the Sound name
table

+ addName:sound:
+ findSoundFor:
+ removeSoundForName:

Reading and writing sound
data

– dataForSound
– readSoundfile:
– writeSoundfile:
– writeToPasteboard:

Modifying sound data – convertToFormat:samplingRate:channelCount:
– convertToFormat:
– setDataSize:dataFormat:samplingRate:
channelCount:infoSize:
– setSoundStruct:soundStructSize:
– setName:
– name

Querying the object – soundStruct
– soundStructSize
– data
– dataFormat
– dataSize
– channelCount
– samplingRate
– sampleCount
– duration
– info
– infoSize
– isEmpty
– compatibleWith:
– processingError

Activity Class Method

15-14 OpenStep Programming Reference—September 1996

15

Recording and playing – pause
– pause:
– isPlayable
– play
– play:
– record
– record:
– resume
– resume:
– stop
– stop:
– samplesProcessed
– status
– soundBeingProcessed
– soundStructBeingProcessed
– waitUntilStopped

Editing sound data – isEditable
– copySamples:at:count:
– copySound:
– deleteSamples
– deleteSamplesAt:count:
– insertSamples:at:
– needsCompacting
– compactSamples

Accessing the delegate – setDelegate:
– delegate
– tellDelegate:

Accessing the sound hardware + getVolume::
+ setVolume::
+ isMuted
+ setMute:

Methods implemented by the
delegate

– didPlay:
– didRecord:
– hadError:
– willPlay:
– willRecord:

Activity Class Method

Sound 15-15

15

Class Methods

addName:fromBundle:

+ addName:(NSString *)name fromBundle:(NSBundle *)aBundle

Creates a Sound object from the sound resource named name in the NSBundle
aBundle , assigns the name name to the object, and places the name on the
sound name table. If name is already in use, or if the resource isn’t found or can’t
be read, the Sound isn’t created and nil is returned. Otherwise, the new Sound
is returned.

addName:fromSoundfile:

+ addName:(NSString *)name fromSoundfile:(NSString *)filename

Creates a Sound object from the soundfile filename , assigns the name name to
the object, and adds it to the named Sound table. If name is already in use, or if
filename isn’t found or can’t be read, the Sound isn’t created and nil is
returned. Otherwise, the new Sound is returned.

addName:sound:

+ addName:(NSString *)name sound:(Sound *)aSound

Assigns the name name to the Sound aSound and adds it to the named Sound
table. Returns aSound , or nil if name is already in use.

findSoundFor:

+ findSoundFor:(NSString *)aName

Finds and returns the named Sound object. First the named Sound table is
searched; if the sound isn’t found, then the method looks for “aName.snd” in the
sound segment of the application’s executable file. Finally, the file is searched for
in the following directories (in order):

• ~/openstep/Library/Sounds
• /usr/local/openstep/Library/Sounds
• /usr/openstep/Library/Sounds

15-16 OpenStep Programming Reference—September 1996

15

where ~ represents the user’s home directory. If the Sound eludes the search,
nil is returned.

getVolume::

+ getVolume:(float *)left :(float *)right

Returns, by reference, the stereo output levels as floating-point numbers between
0.0 and 1.0.

isMuted

+ (BOOL)isMuted

Returns YES if the sound output level is currently muted.

removeSoundForName:

+ removeSoundForName:(NSString *)name

Removes the named Sound from the named Sound table. If the Sound isn’t
found, returns nil ; otherwise returns the Sound .

setMute:

+ setMute:(BOOL)aFlag

Mutes and unmutes the sound output level as aFlag is YES or NO, respectively.
If successful, returns self ; otherwise returns nil .

setVolume::

+ setVolume:(float)left :(float)right

Sets the stereo output levels. These affect the volume of the stereo signals sent to
the built-in speaker and headphone jacks. left and right must be floating-
point numbers between 0.0 (minimum) and 1.0 (maximum). If successful, returns
self ; otherwise returns nil .

Sound 15-17

15

Instance Methods

channelCount

– (int)channelCount

Returns the number of channels in the Sound .

compactSamples

– (int)compactSamples

The Sound ’s sampled data is compacted into a contiguous block, undoing the
fragmentation that can occur during editing. If the Sound ’s data isn’t
fragmented (its format isn’t SND_FORMAT_INDIRECT), then this method does
nothing. Compacting a large sound can take a long time; keep in mind that when
you copy a Sound to a pasteboard, the object is automatically compacted before
it’s copied. Also, the soundfile representation of a Sound contains contiguous
data so there’s no need to compact a Sound before writing it to a soundfile
simply to ensure that the file representation will be compact. See the class
description for a list of error codes returned by this method.

compatibleWith:

– (BOOL)compatibleWith:aSound

Returns YES if the format, sampling rate, and channel count of aSound ’s sound
data is the same as that of the Sound receiving this message. If one (or both) of
the Sounds doesn’t contain a sound (soundStruct returns nil) then the
objects are declared compatible and YES is returned.

convertToFormat:

– (int)convertToFormat:(int)newFormat

This is the same as convertToFormat:samplingRate:channelCount: ,
except that only the format is changed. See the class description for a list of error
codes returned by this method.

15-18 OpenStep Programming Reference—September 1996

15

convertToFormat:samplingRate:channelCount:

– (int)convertToFormat:(int)newFormat
samplingRate:(double)newRate
channelCount:(int)newChannelCount

Convert the Sound ’s data to the given format, sampling rate, and number of
channels. The following conversions are possible:

• Arbitrary sampling rate conversion.

• Compression and decompression.

• Floating-point formats (including double-precision) to and from linear
formats.

• Mono to stereo.

• Mu-law to and from linear formats.

See the class description for a list of error codes returned by this method.

copySamples:at:count:

– (int)copySamples:aSound at:(int)startSample
count:(int)sampleCount

Replaces the Sound ’s sampled data with a copy of a portion of aSound ’s data.
The copied portion starts at aSound ’s startSample ’th sample (zero-based) and
extends over sampleCount samples. The Sound receiving this message must be
editable and the two Sounds must be compatible. If the specified portion of
aSound is fragmented, the Sound receiving this message will also be
fragmented. See the class description for a list of error codes returned by this
method.

copySound:

– (int)copySound:aSound

Replaces the Sound ’s data with a copy of aSound ’s data. The Sound receiving
this message needn’t be editable, nor must the two Sounds be compatible. See
the class description for a list of error codes returned by this method.

Sound 15-19

15

data

– (unsigned char *)data

Returns a pointer to the Sound ’s sampled data. You can use the pointer to
examine, create, and modify the sound data. To intelligently manipulate the
data, you need to be aware of its size, format, sampling rate, and the number of
channels that it contains (a query method for each of these attributes is provided
by the Sound class). The size of the data, in particular, must be respected; it’s set
when the Sound is created or given a new sound (through readSoundfile: ,
for example) and can’t be changed directly. To resize the data, you should invoke
one of the editing methods such as insertSamples:at: or
deleteSamplesAt:count: . To start with a new, unfragmented sound with a
determinate length, invoke the
setDataSize:dataFormat:samplingRate:channelCount:infoSize:
method. Keep in mind that the sound data in a fragmented sound is a pointer to
a NULL-terminated list of pointers to SNDSoundStruct s, one for each fragment.
To examine or manipulate the samples in a fragmented sound, you must
understand the SNDSoundStruct structure.

dataFormat

– (int)dataFormat

Returns the format of the Sound ’s data. If the data is fragmented, the format of
the samples is returned (in other words, SND_FORMAT_INDIRECT is never
returned by this method).

dataForSound

- (NSData *) dataForSound

Returns the Sound object’s data enclosed in an NSData object.

dataSize

– (int)dataSize

Return the size (in bytes) of the Sound ’s data. If you modify the data (through
the pointer returned by the data method) you must be careful not to exceed its
length. If the sound is fragmented, the value returned by this method is the size
of the Sound ’s SNDSoundStruct and doesn’t include the actual data itself.

15-20 OpenStep Programming Reference—September 1996

15

dealloc

– dealloc

Frees the Sound and deallocates its sound data. The Sound is removed from the
named Sound table and its name made eligible for reuse.

delegate

– delegate

Returns the Sound ’s delegate.

deleteSamples

– (int)deleteSamples

Deletes all the samples in the Sound ’s data. The Sound must be editable. An
error code is returned.

deleteSamplesAt:count:

– (int)deleteSamplesAt:(int)startSample count:(int)sampleCount

Deletes a range of samples from the Sound . sampleCount samples are deleted
starting with the startSample ’th sample (zero-based). The Sound must be
editable and may become fragmented. See the class description for a list of error
codes returned by this method.

duration

– (double)duration

Returns the Sound ’s length in seconds.

info

– (char *)info

Returns textual information about the sound. See the class description for more
information.

Sound 15-21

15

infoSize

– (int)infoSize

Returns the size (in bytes) of the Sound ’s info string.

initFromPasteboard:

– initFromPasteboard:(NSPasteboard *)thePboard

Initializes the Sound instance, which must be newly allocated, by copying the
sound data from the Pasteboard object thePboard . A pasteboard can have only
one sound entry at a time. Returns self (an unnamed Sound) if thePboard
currently contains a sound entry; otherwise, frees the newly allocated Sound and
returns nil .

initFromSoundfile:

– initFromSoundfile:(NSString *)filename

Initializes the Sound instance, which must be newly allocated, from the
soundfile filename . Returns self (an unnamed Sound) if the file was
successfully read; otherwise, frees the newly allocated Sound and returns nil .

insertSamples:at:

– (int)insertSamples:aSound at:(int)startSample

Pastes the sound data in aSound into the Sound receiving this message, starting
at the receiving Sound ’s startSample ’th sample (zero-based). The receiving
Sound doesn’t lose any of its original sound data—the samples greater than or
equal to startSample are moved to accommodate the inserted sound data. The
receiving Sound must be editable and the two Sounds must be compatible (as
determined by isCompatible:). If the method is successful, the receiving
Sound is fragmented. See the class description for a list of error codes returned
by this method.

isEditable

– (BOOL)isEditable

15-22 OpenStep Programming Reference—September 1996

15

Returns YES if the Sound ’s format indicates that it can be edited, otherwise
returns NO.

isEmpty

– (BOOL)isEmpty

Returns YES if the Sound doesn’t contain any sound data, otherwise returns NO.
This always returns NO if the Sound isn’t editable, as determined by sending it
the isEditable message.

isPlayable

– (BOOL)isPlayable

Returns YES if the Sound can be played, otherwise returns NO. Some unplayable
Sounds just need to be converted to another format, sampling rate, or number of
channels; others are inherently unplayable, such as those whose format is
SND_FORMAT_DISPLAY.

name

– (NSString *)name

Returns the Sound ’s name.

needsCompacting

– (BOOL)needsCompacting

Returns YES if the Sound ’s data is fragmented. Otherwise returns NO.

pause

– (int)pause

Pauses the Sound during recording or playback. See the class description for a
list of error codes returned by this method.

pause:

– pause:sender

Sound 15-23

15

Action method that pauses the Sound . Other than the argument and the return
type, this is the same as the pause method.

play

– (int)play

Initiates playback of the Sound . The method returns immediately while the
playback continues asynchronously in the background. The playback ends when
the Sound receives the stop message, or when its data is exhausted.

When playback starts, willPlay: is sent to the Sound ’s delegate; when it stops,
didPlay: is sent. See the class description for a list of error codes returned by
this method. For this method to work properly, the main event loop must not be
blocked.

play:

– play:sender

Action method that plays the Sound . Other than the argument and the return
type, this is the same as the play method.

processingError

– (int)processingError

Returns a constant that represents the last error that was generated. See the class
description for a list of error codes returned by this method

readSoundfile:

– (int)readSoundfile:(NSString *)filename

Replaces the Sound ’s contents with those of the soundfile filename . The
Sound loses its current name, if any. See the class description for a list of error
codes returned by this method.

record

– (int)record

15-24 OpenStep Programming Reference—September 1996

15

Initiate recording into the Sound . The method returns immediately while the
recording continues asynchronously in the background. The recording stops
when the Sound receives the stop message or when the recording has gone on
for the duration of the original sound data. The default recording lasts precisely
ten minutes if not stopped. To record for a longer time, first increase the size of
the sound data with setSoundStruct:soundStructSize: or
setDataSize:dataFormat:samplingRate:channelCount:infoSize: .

When the recording begins, willRecord: is sent to the Sound ’s delegate; when
the recording stops, didRecord: is sent. For this method to work properly, the
main event loop must not be blocked. See the class description for a list of error
codes returned by this method.

record:

– record:sender

Action method that initiates a recording. Other than the argument and return
type, this is the same as the record method.

resume

– (int)resume

Resumes the paused Sound ’s activity. See the class description for a list of error
codes returned by this method.

resume:

– resume:sender

Action method that resumes the paused Sound .

sampleCount

– (int)sampleCount

Returns the number of sample frames, or channel count-independent samples, in
the Sound .

Sound 15-25

15

samplesProcessed

– (int)samplesProcessed

If the Sound is currently playing or recording, this returns the number of sample
frames that have been played or recorded so far. Otherwise, the number of
sample frames in the Sound is returned. If the sample frame count can’t be
determined, –1 is returned.

samplingRate

– (double)samplingRate

Returns the Sound ’s sampling rate.

setDataSize:dataFormat:samplingRate:
channelCount:infoSize:

– (int)setDataSize:(int)newDataSize
dataFormat:(int)newDataFormat
samplingRate:(double)newSamplingRate
channelCount:(int)newChannelCount
infoSize:(int)newInfoSize

Allocates new, unfragmented sound data for the Sound , as described by the
arguments. The Sound ’s previous data is freed. This method is useful for setting
a determinate data length prior to a recording or for creating a scratch pad for
algorithmic sound creation. See the class description for a list of error codes
returned by this method.

setDelegate:

– setDelegate:anObject

Sets the Sound ’s delegate to anObject . The delegate may implement the
following methods:

• willPlay:
• didPlay:
• willRecord:
• didRecord:
• hadError:

15-26 OpenStep Programming Reference—September 1996

15

setName:

– setName:(NSString *)aName

Sets the Sound ’s name to aName. If aName is already being used, then the
Sound ’s name isn’t set and nil is returned; otherwise returns self .

setSoundStruct:soundStructSize:

– setSoundStruct:(SNDSoundStruct *)aStruct
soundStructSize:(int)size

Sets the Sound ’s sound structure to aStruct . The size in bytes of the new
structure, including its sound data storage, must be specified by size . This
method can be used to set up a large buffer before recording into an existing
Sound , by passing the existing SNDSoundStruct in the first argument while
making size larger than the current size. (The default buffer holds ten minutes
of mulaw sound.) The method is also useful in cases where aStruct already has
sound data but isn’t encapsulated in a Sound object yet. The Sound ’s status
must be NX_SoundInitialized or NX_SoundStopped for this method to do
anything. See the status method’s description for a sound status list.

soundBeingProcessed

– soundBeingProcessed

Returns the Sound object that’s being performed. The default implementation
always returns self .

soundStruct

– (SNDSoundStruct *)soundStruct

Returns a pointer to the Sound ’s SNDSoundStruct structure that holds the
object’s sound data.

soundStructBeingProcessed

– (SNDSoundStruct *)soundStructBeingProcessed

Sound 15-27

15

Returns a pointer to the SNDSoundStruct structure that’s being performed.
This may not be the same structure as returned by the soundStruct
method—Sound object’s contain a private sound structure that may be used for
playing recordings. If the Sound isn’t currently playing or recording, then this
will return the public structure.

soundStructSize

– (int)soundStructSize

Returns the size, in bytes, of the Sound ’s sound structure (returned by the
soundStruct method). Use of this value requires a knowledge of the
SNDSoundStruct architecture.

status

– (int)status

Return the Sound ’s current status, one of the following integer constants:

• NX_SoundStopped
• NX_SoundRecording
• NX_SoundPlaying
• NX_SoundInitialized
• NX_SoundRecordingPaused
• NX_SoundPlayingPaused
• NX_SoundRecordingPending
• NX_SoundPlayingPending
• NX_SoundFreed

stop

– (int)stop

Terminates the Sound ’s playback or recording. If the Sound was recording, the
didRecord: message is sent to the delegate; if playing, didPlay: is sent. See
the class description for a list of error codes returned by this method.

stop:

– stop:sender

15-28 OpenStep Programming Reference—September 1996

15

Action method that stops the Sound ’s playback or recording. Other than the
argument and the return type, this is the same as the stop method.

tellDelegate:

– tellDelegate:(SEL)theMessage

Sends theMessage to the Sound ’s delegate (only sent if the delegate
implements theMessage). You never invoke this method directly; it’s invoked
automatically as the result of activities such as recording and playing. However,
you can use it in designing a subclass of Sound .

waitUntilStopped

- (int)waitUntilStopped

Causes the system to wait until the Sound playback has stopped. Returns
SND_ERR_NONE if no error occurred.

writeSoundfile:

– (int)writeSoundfile:(NSString *)filename

Writes the Sound ’s contents (its SNDSoundStruct and sound data) to the
soundfile filename . See the class description for a list of error codes returned
by this method.

writeToPasteboard:

– (int)writeToPasteboard:(Pasteboard *)thePboard

Puts a copy of the Sound ’s contents (its SNDSoundStruct and sound data) on
the pasteboard maintained by the Pasteboard object thePboard . If the Sound is
fragmented, it’s compacted before the copy is created. See the class description
for a list of error codes returned by this method.

Sound 15-29

15

Methods Implemented by the Delegate

didPlay:

– didPlay:sender

Sent to the delegate when the Sound stops playing.

didRecord:

– didRecord:sender

Sent to the delegate when the Sound stops recording.

hadError:

– hadError:sender

Sent to the delegate if an error occurs during recording or playback.

willPlay:

– willPlay:sender

Sent to the delegate when the Sound begins to play.

willRecord:

– willRecord:sender

Sent to the delegate when the Sound begins to record.

15-30 OpenStep Programming Reference—September 1996

15

SoundMeter

Class Description

A SoundMeter is a view that displays the amplitude level of a sound as it’s
being recorded or played back. There are two working parts to the meter: A
continuously-updated “running bar” that lengthens ands shrinks to depict the
current amplitude level, and a “peak bubble” that displays and holds the
greatest amplitude that was detected within the last few samples. An optional
bezeled border is drawn around the object’s frame.

To use a SoundMeter , you must first associate it with a Sound object, through
the setSound: method, and then send the SoundMeter a run: message. To
stop the meter’s display, you send the object a stop: message. Neither run:
nor stop: affect the performance of the meter’s sound.

You can retrieve a SoundMeter ’s running and peak values through the
floatValue and peakValue methods. The values that these methods return
are valid only while the SoundMeter is running. A SoundMeter also keeps
track of the minimum and maximum amplitude over the duration of a run; these
can be retrieved through minValue and maxValue . All SoundMeter amplitude
levels are normalized to fit between 0.0 (inaudible) and 1.0 (maximum
amplitude).

Inherits From: NSView: NSResponder: NSObject

Declared In: soundkit/SoundMeter.h

SoundMeter 15-31

15

Method Types

Instance Methods

backgroundGray

– (float)backgroundGray

Returns the SoundMeter ’s background color. The default is dark gray
(NSDarkGray).

Activity Class Method

Initializing a SoundMeter instance – initWithFrame:

Graphic attributes – setBezeled:
– isBezeled
– setBackgroundGray:
– backgroundGray
– setForegroundGray:
– foregroundGray
– setPeakGray:
– peakGray

Metering attributes – setSound:
– sound
– setFloatValue:
– setHoldTime:
– holdTime

Retrieving meter values – floatValue
– maxValue
– minValue
– peakValue

Operating the object – run:
– isRunning
– stop:

Drawing the object – drawCurrentValue
– drawRect:

15-32 OpenStep Programming Reference—September 1996

15

drawCurrentValue

– drawCurrentValue

Draws the SoundMeter ’s running bar and peak bubble. You never invoke this
method directly; it’s invoked automatically while the SoundMeter is running.
You can override this method to change the look of the running bar and peak
bubble.

drawRect:

– drawRect:(NSRect)rect

Draws all the components of the SoundMeter (frame, running bar, and peak
bubble). You never invoke this method directly; however, you can override it in
a subclass to change the way the components are displayed.

encodeWithCoder:

- (void)encodeWithCoder:(NSCoder *) aCoder

Encodes the receiving SoundMeter using aCoder . See the Application Kit’s
NSCoding protocol and NSCoder class documention for more information. See
also initWithCoder: .

floatValue

– (float)floatValue

Returns the current running amplitude value as a floating-point number
between 0.0 and 1.0. This is the amplitude level that’s displayed by the running
bar.

foregroundGray

– (float)foregroundGray

Returns the color of the running bar. The default is light gray (NSLightGray).

holdTime

– (float)holdTime

SoundMeter 15-33

15

Returns the SoundMeter ’s hold time—the amount of time during which a peak
amplitude is detected and displayed by the peak bubble—in seconds. The
default is 0.7 seconds.

initWithCoder:

- initWithCoder: (NSCoder *) aCoder

Initializes and returns a new SoundMeter instance from data in aCoder . See the
Application Kit’s NSCoding protocol and NSCoder class documention for more
information. See also encodeWithCoder: .

initWithFrame:

– initWithFrame:(const NSRect *)frameRect

Initializes the SoundMeter , fitting its graphic components within frameRect .
The object’s attributes are initialized as follows:

isBezeled

– (BOOL)isBezeled

Returns YES (the default) if the SoundMeter has a border; otherwise, returns
NO. Note that the SoundMeter class doesn’t provide a method to change the
type of border—it can display a bezeled border or none at all.

isRunning

– (BOOL)isRunning

Attribute Value

Peak hold time 0.7 seconds

Background gray NSDarkGray

Running bar gray NSLightGray

Peak bubble gray NSWhite

Border bezeled

15-34 OpenStep Programming Reference—September 1996

15

Returns YES if the SoundMeter is currently running; otherwise, returns NO. The
SoundMeter ’s status doesn’t depend on the activity of its Sound object.

maxValue

– (float)maxValue

Returns the maximum running value so far. You can invoke this method after
you stop this SoundMeter to retrieve the overall maximum value for the
previous performance. The maximum value is cleared when you restart the
SoundMeter .

minValue

– (float)minValue

Returns the minimum running value so far. You can invoke this method after
you stop this SoundMeter to retrieve the overall minimum value for the
previous performance. The minimum value is cleared when you restart the
SoundMeter .

peakGray

– (float)peakGray

Returns the SoundMeter ’s peak bubble gray. The default is white (NSWhite).

peakValue

– (float)peakValue

Returns the most recently detected peak value as a floating-point number
between 0.0 and 1.0. This is the amplitude level that’s displayed by the peak
bubble.

run:

– run:sender

SoundMeter 15-35

15

Starts the SoundMeter running. The object SoundMeter must have a Sound
object associated with it for this method to have an effect. Note that this method
only affects the state of the SoundMeter —it doesn’t trigger any activity in the
Sound .

setBackgroundGray:

– setBackgroundGray:(float)aValue

Sets the SoundMeter ’s background color. The default is dark gray
(NSDarkGray).

setBezeled:

– setBezeled:(BOOL)aFlag

If aFlag is YES, a bezeled border is drawn around the SoundMeter . If aFlag is
NO and the SoundMeter has a frame, the frame is removed.

setFloatValue:

– setFloatValue:(float)aValue

Sets the current running value to aValue . You never invoke this method
directly; it’s invoked automatically when the SoundMeter is running. However,
you can reimplement this method in a subclass of SoundMeter .

setForegroundGray:

– setForegroundGray:(float)aValue

Sets the SoundMeter ’s running bar color. The default is light gray
(NSLightGray).

setHoldTime:

– setHoldTime:(float)seconds

Sets the SoundMeter ’s peak value hold time in seconds. This is the amount of
time during which peak amplitudes are detected and held by the peak bubble.

15-36 OpenStep Programming Reference—September 1996

15

setPeakGray:

– setPeakGray:(float)aValue

Sets the SoundMeter ’s peak bubble color. The default is white (NSWhite).

setSound:

– setSound:aSound

Sets the SoundMeter ’s Sound object.

sound

– sound

Returns the Sound object that the SoundMeter is metering.

stop:

– stop:sender

Stops the SoundMeter ’s metering activity. Note that this method only affects
the state of the SoundMeter —it doesn’t trigger any activity in the Sound .

SoundView

Class Description

A SoundView object provides a graphical representation of sound data. This
data is taken from an associated Sound object. In addition to displaying a Sound
object’s data, a SoundView provides methods that let you play and record into
the Sound object, and peform simple cut, copy, and paste editing of its data. A
cursor into the display is provided, allowing the user to set the insertion point
and to create a selection over the sound data.

Inherits From: NSView: NSResponder: NSObject

Declared In: soundkit/SoundView.h

SoundView 15-37

15

Sound Display

Sounds are displayed on a two-dimensional graph. The amplitudes of individual
samples are measured vertically and plotted against time, which proceeds left to
right along the horizontal axis. A SoundView ’s coordinate system is scaled and
translated (vertically) so full amplitude fits within the bounds rectangle with 0.0
amplitude running through the center of the view.

For many sounds, the length of the sound data in samples is greater than the
horizontal measure of the bounds rectangle. A SoundView employs a reduction
factor to determine the ratio of samples to display units and plots the minimum
and maximum amplitude values of the samples within that ratio. For example, a
reduction factor of 10.0 means that the minimum and maximum values among
the first ten samples are plotted in the first display unit, the minimum and
maximum values of the next ten samples are displayed in the second display
unit and so on.

Lines are drawn between the chosen values to yield a continuous shape. Two
drawing modes are provided:

• In NX_SOUNDVIEW_WAVE mode, the drawing is rendered in an oscilloscopic
fashion.

• In NX_SOUNDVIEW_MINMAX mode, two lines are drawn, one to connect the
maximum values, and one to connect the minimum values.

As you zoom in (as the reduction factor decreases), the two drawing modes
become indistinguishable.

Autoscaling the Display

When a SoundView ’s sound data changes (due to editing or recording), the
manner in which the SoundView is redisplayed depends on its autoscale flag.
With autoscaling disabled, the SoundView ’s frame grows or shrinks
(horizontally) to fit the new sound data and the reduction factor is unchanged. If
autoscaling is enabled, the reduction factor is automatically recomputed to
maintain a constant frame size. By default, autoscaling is disabled; this is to
accommodate the use of a SoundView object as the document of an
NSScrollView .

15-38 OpenStep Programming Reference—September 1996

15

Method Types

Activity Class Method

Initializing a SoundView object – initWithFrame:

Freeing a SoundView instance – dealloc

Modifying the object – scaleToFit
– setBackgroundGray:
– setBezeled:
– setContinuous:
– setDelegate:
– setDisplayMode:
– setEnabled:
– setForegroundGray:
– setOptimizedForSpeed:
– setSound:
– sizeToFit

Querying the object – backgroundGray
– delegate
– displayMode
– foregroundGray
– getSelection:size:
– isAutoScale
– isBezeled
– isContinuous
– isEnabled
– isOptimizedForSpeed
– reductionFactor
– sound

Selecting and editing the sound
data

– copy:
– cut:
– delete:
– mouseDown:
– paste:
– selectAll:
– setSelection:size:
– isEditable
– setEditable:

SoundView 15-39

15

Instance Methods

acceptsFirstResponder

– (BOOL)acceptsFirstResponder

Pasteboard and Services support – pasteboard:provideDataForType:
– readSelectionFromPasteboard:
– validRequestorForSendType:andReturnType:
– writeSelectionToPasteboard:types:

Modifying the display coordinates – setAutoscale:
– setReductionFactor:

Drawing the object – drawRect:
– drawSamplesFrom:to:
– hideCursor
– showCursor

Responding to events – acceptsFirstResponder
– becomeFirstResponder
– resignFirstResponder

Performing the sound data – pause:
– isPlayable
– play:
– record:
– resume:
– soundBeingProcessed
– stop:

Communicating with the delegate – tellDelegate:

Methods Implemented by the
delegate

– didPlay:
– didRecord:
– hadError:
– selectionDidChange:
– soundDidChange:
– willPlay:
– willRecord:

Activity Class Method

15-40 OpenStep Programming Reference—September 1996

15

If the SoundView is enabled, this returns YES, allowing the SoundView to
become the first responder. Otherwise, it returns NO. This method is
automatically invoked by objects defined by the Application Kit. You should
never need to invoke it directly.

backgroundGray

– (float)backgroundGray

Returns the SoundView ’s background gray value (NSWhite by default).

becomeFirstResponder

– becomeFirstResponder

Promotes the SoundView to first responder. You never invoke this method
directly.

copy:

– copy:sender

Copies the current selection to the pasteboard.

cut:

– cut:sender

Deletes the current selection from the SoundView , copies it to the pasteboard,
and sends a soundDidChange: message to the delegate. The insertion point is
positioned to where the selection used to start.

dealloc

– dealloc

Frees the SoundView but not its Sound object nor its delegate. The willFree:
message is sent to the delegate.

delegate

– delegate

SoundView 15-41

15

Returns the SoundView ’s delegate object.

delete:

– delete:sender

Deletes the current selection from the SoundView ’s Sound and sends the
soundDidChange: message to the delegate. The deletion isn’t placed on the
pasteboard.

didPlay:

– didPlay:sender

Used to redirect delegate messages from the SoundView ’s Sound object; you
never invoke this method directly.

didRecord:

– didRecord:sender

Used to redirect delegate messages from the SoundView ’s Sound object; you
never invoke this method directly.

displayMode

– (int)displayMode

Returns the SoundView ’s display mode, one of NX_SOUNDVIEW_WAVE
(oscilloscopic display) or NX_SOUNDVIEW_MINMAX (minimum/maximum
display; this is the default).

drawSamplesFrom:to:

– drawSamplesFrom:(int)first to:(int)last

Redisplays the given range of samples.

drawRect:

– drawRect(NSRect)rect

15-42 OpenStep Programming Reference—September 1996

15

Displays the SoundView ’s sound data. The selection is highlighted and the
cursor is drawn (if it isn’t currently hidden). Do not send this message directly to
a SoundView object. To cause a SoundView to draw itself, send it one of the
display messages defined by the NSView class.

foregroundGray

– (float)foregroundGray

Returns the SoundView ’s foreground gray value (NSBlack by default).

getSelection:size:

– getSelection:(int *)firstSample size:(int *)sampleCount

Returns the selection by reference. The index of the selection’s first sample
(counting from 0) is returned in firstSample . The size of the selection in
samples is returned in sampleCount . The method itself returns self .

hadError:

– hadError:sender

Used to redirect delegate messages from the SoundView ’s Sound object; you
never invoke this method directly.

hideCursor

– hideCursor

Hides the SoundView ’s cursor. This is usually handled automatically.

initWithFrame:

– initWithFrame:(NSRect)frameRect

Initializes the SoundView , fitting the object within the rectangle pointing to by
frameRect . The initialized SoundView doesn’t contain any sound data.

isAutoScale

– (BOOL)isAutoScale

SoundView 15-43

15

Returns YES if the SoundView is in autoscaling mode, otherwise returns NO.

isBezeled

– (BOOL)isBezeled

Returns YES if the SoundView has a bezeled border, otherwise returns NO (the
default).

isContinuous

– (BOOL)isContinuous

Returns YES if the SoundView responds to mouse-dragged events (as set
through setContinuous:). The default is NO.

isEditable

– (BOOL)isEditable

Returns YES if the SoundView ’s sound data can be edited.

isEnabled

– (BOOL)isEnabled

Returns YES if the SoundView is enabled, otherwise returns NO. The mouse has
no effect in a disabled SoundView . By default, a SoundView is enabled.

isOptimizedForSpeed

– (BOOL)isOptimizedForSpeed

Returns YES if the SoundView is optimized for speedy display. SoundView s are
optimized by default.

isPlayable

– (BOOL)isPlayable

Returns YES if the SoundView ’s sound data can be played without first being
converted.

15-44 OpenStep Programming Reference—September 1996

15

mouseDown:

– mouseDown:(NSEvent *)theEvent

Allows a selection to be defined by clicking and dragging the mouse. This
method takes control until a mouse-up occurs. While dragging, the selected
region is highlighted. On mouse up, the delegate is sent the
selectionDidChange: message. If isContinuous is YES,
selectionDidChange: messages are also sent while the mouse is being
dragged. You never invoke this method; it’s invoked automatically in response
to the user’s actions.

paste:

– paste:sender

Replaces the current selection with a copy of the sound data currently on the
pasteboard. If there is no selection the pasteboard data is inserted at the cursor
position. The pasteboard data must be compatible with the SoundView ’s data,
as determined by the Sound method compatibleWith: . If the paste is
successful, the soundDidChange: message is sent to the delegate.

pasteboard:provideDataForType:

– pasteboard:(NSPasteboard *) pboard
provideDataForType:(NSString *)pboardType

Places the SoundView ’s entire sound on the given pasteboard. Currently, the
pboardType argument must be “NSSoundPboardType”, the pasteboard type
that represents sound data.

pause:

– pause:sender

Pauses the current playback or recording session by invoking Sound ’s pause:
method. If no sound is being processed, returns nil ; otherwise, returns self .

play:

– play:sender

SoundView 15-45

15

Play the current selection by invoking Sound ’s play: method. If there is no
selection, the SoundView ’s entire Sound is played. The willPlay: message is
sent to the delegate before the selection is played; didPlay: is sent when the
selection is done playing.

readSelectionFromPasteboard:

– readSelectionFromPasteboard:(NSPasteboard *)pboard

Replaces the SoundView ’s current selection with the sound data on the given
pasteboard. The pasteboard data is converted to the format of the data in the
SoundView (if possible). If the SoundView has no selection, the pasteboard data
is inserted at the cursor position. Sets the current error code for the SoundView ’s
Sound object (which you can retrieve by sending processingError to the
Sound) and returns self .

record:

– record:sender

Replaces the SoundView ’s current selection with newly recorded material. If
there is no selection, the recording is inserted at the cursor. The willRecord:
message is sent to the delegate before the recording is started; didRecord: is
sent after the recording has completed. Recorded data is always taken from the
CODEC microphone input.

reductionFactor

– (float)reductionFactor

Returns the SoundView ’s reduction factor, computed as

reductionFactor = sampleCount / displayUnits

resignFirstResponder

– resignFirstResponder

Resigns the position of first responder.

15-46 OpenStep Programming Reference—September 1996

15

resume:

– resume:sender

Resumes the current playback or recording session by invoking Sound ’s
resume: method. If no sound is being processed, returns nil ; otherwise,
returns self .

scaleToFit

– scaleToFit

Recomputes the SoundView ’s reduction factor to fit the sound data
(horizontally) within the current frame. Invoked automatically when the
SoundView ’s data changes and the SoundView is in autoscale mode. If the
SoundView isn’t in autoscale mode, sizeToFit is invoked when the data
changes. You never invoke this method directly; a subclass can reimplement this
method to provide specialized behavior.

selectAll:

– selectAll:sender

Creates a selection over the SoundView ’s entire Sound .

setAutoscale:

– setAutoscale:(BOOL)aFlag

Sets the SoundView ’s automatic scaling mode, used to determine how the
SoundView is redisplayed when its data changes. With autoscaling enabled
(aFlag is YES), the SoundView ’s reduction factor is recomputed so the sound
data fits within the view frame. If it’s disabled (aFlag is NO), the frame is resized
and the reduction factor is unchanged. If the SoundView is in a ScrollingView,
autoScaling should be disabled (autoscaling is disabled by default).

setBackgroundGray:

– setBackgroundGray:(float)aGray

Sets the SoundView ’s background gray value to aGray ; the default is NSWhite .

SoundView 15-47

15

setBezeled:

– setBezeled:(BOOL)aFlag

If aFlag is YES, the display is given a bezeled border. By default, the border of a
SoundView display isn’t bezeled. If autodisplaying is enabled, the Sound is
automatically redisplayed.

setContinuous:

– setContinuous:(BOOL)aFlag

Sets the state of continuous action messages. If aFlag is YES,
selectionDidChange: messages are sent to the delegate as the mouse is
being dragged. If NO, the message is sent only on mouse up. The default is NO.

setDelegate:

– setDelegate:anObject

Sets the SoundView ’s delegate to anObject . The delegate is sent messages
when the user changes or acts on the selection.

setDisplayMode:

– setDisplayMode:(int)aMode

Sets the SoundView ’s display mode, either NX_SOUNDVIEW_WAVE or
NX_SOUNDVIEW_MINMAX (the default). If autodisplaying is enabled, the Sound
is automatically redisplayed.

setEditable:

– setEditable:(BOOL)aFlag

Enables or disables editing in the SoundView as aFlag is YES or NO. By default,
a SoundView is editable.

setEnabled:

– setEnabled:(BOOL)aFlag

15-48 OpenStep Programming Reference—September 1996

15

Enables or disables the SoundView as aFlag is YES or NO. The mouse has no
effect in a disabled SoundView . By default, a SoundView is enabled.

setForegroundGray:

– setForegroundGray:(float)aGray

Sets the SoundView ’s foreground gray value to aGray . The default is NSWhite .

setOptimizedForSpeed:

– setOptimizedForSpeed:(BOOL)flag

Sets the SoundView to optimize its display mechanism. Optimization greatly
increases the speed with which data can be drawn, particularly for large sounds.
It does so at the loss of some precision in representing the sound data; however,
these inaccuracies are corrected as you zoom in on the data. All SoundView ’s
are optimized by default.

setReductionFactor:

– setReductionFactor:(float)reductionFactor

Recomputes the size of the SoundView ’s frame, if autoscaling is disabled. The
frame’s size (in display units) is set according to the formula

displayUnits = sampleCount / reductionFactor

Increasing the reduction factor zooms out, decreasing zooms in on the data. If
autodisplaying is enabled, the Sound is automatically redisplayed.

If the SoundView is in autoscaling mode, or reductionFactor is less than 1.0,
the method avoids computing the frame size and returns nil . (In autoscaling
mode, the reduction factor is automatically recomputed when the sound data
changes—see scaleToFit: .) Otherwise, the method returns self . If
reductionFactor is the same as the current reduction factor, the method
returns immediately without recomputing the frame size.

setSelection:size:

– setSelection:(int)firstSample size:(int)sampleCount

SoundView 15-49

15

Sets the selection to be sampleCount samples wide, starting with sample
firstSample (samples are counted from 0).

setSound:

– setSound:aSound

Sets the SoundView ’s Sound object to aSound . If autoscaling is enabled, the
drawing coordinate system is adjusted so aSound ’s data fits within the current
frame. Otherwise, the frame is resized to accommodate the length of the data. If
autodisplaying is enabled, the SoundView is automatically redisplayed.

showCursor

– showCursor

Displays the SoundView ’s cursor. This is usually handled automatically.

sizeToFit

– sizeToFit

Resizes the SoundView ’s frame (horizontally) to maintain a constant reduction
factor. This method is invoked automatically when the SoundView ’s data
changes and the SoundView isn’t in autoscale mode. If the SoundView is in
autoscale mode, scaleToFit is invoked when the data changes. You never
invoke this method directly; a subclass can reimplement this method to provide
specialized behavior.

sound

– sound

Returns a pointer to the SoundView ’s Sound object.

soundBeingProcessed

– soundBeingProcessed

Returns the Sound object that’s currently being played or recorded into. Note
that the actual Sound object that’s being performed isn’t necessarily the
SoundView ’s sound (the object returned by the sound method); for efficiency,

15-50 OpenStep Programming Reference—September 1996

15

SoundView creates a private performance Sound object. While this is generally
an implementation detail, this method is supplied in case the SoundView ’s
delegate needs to know exactly which object will be (or was) performed.

stop:

– stop:sender

Stops the SoundView ’s current recording or playback.

tellDelegate:

– tellDelegate:(SEL)theMessage

Sends theMessage to the SoundView ’s delegate with the SoundView as the
argument. If the delegate doesn’t respond to the message, then it isn’t sent. You
normally never invoke this method; it’s invoked automatically when an action,
such as playing or editing, is performed. However, you can invoke it in the
design of a SoundView subclass.

validRequestorForSendType:andReturnType:

– validRequestorForSendType:(NSString)sendType
andReturnType:(NSString)returnType

You never invoke this method; it’s implemented to support services that act on
sound data.

willPlay:

– willPlay:sender

Used to redirect delegate messages from the SoundView ’s Sound object; you
never invoke this method directly.

willRecord:

– willRecord:sender

Used to redirect delegate messages from the SoundView ’s Sound object; you
never invoke this method directly.

SoundView 15-51

15

writeSelectionToPasteboard:types:

– writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types;

Places a copy of the SoundView ’s current selection on the given pasteboard. The
types argument is currently ignored.

Methods Implemented by the Delegate

didPlay:

– didPlay:sender

Sent to the delegate just after the SoundView ’s sound is played.

didRecord:

– didRecord:sender

Sent to the delegate just after the SoundView ’s sound is recorded into.

hadError:

– hadError:sender

Sent to the delegate if an error is encountered during recording or playback of
the SoundView ’s sound.

selectionDidChange:

– selectionDidChange:sender

Sent to the delegate when the SoundView ’s selection changes.

soundDidChange:

– soundDidChange:sender

Sent to the delegate when the SoundView ’s sound data is edited.

15-52 OpenStep Programming Reference—September 1996

15

willFree:

– willFree:sender

Sent to the delegate when the SoundView is freed.

willPlay:

– willPlay:sender

Sent to the delegate just before the SoundView ’s sound is played.

willRecord:

– willRecord:sender

Sent to the delegate just before the SoundView ’s sound is recorded into.

Index-1

Index

Symbols
.bundle, 662
.clr files, 1-165
.lproj, 5-26
.service, 3-14
@encode directive, 5-270
@protocol, xix
@protocol() directive, 5-174
__FILE__, 5-18
__LINE__, 5-18

A
abbreviationDictionary, 5-251
abortEditing, 1-184
abortModal, 1-18
acceptInputForMode:beforeDate:, 5-203
acceptsArrowKeys, 1-60
acceptsBinary, 1-415
acceptsFirstMouse:, 1-344, 1-477, 1-574
acceptsFirstResponder, 1-440, 1-560
acceptsFirstResponder (SoundView), 39
acceptsMouseMovedEvents, 1-613
accessoryView, 1-169, 1-249, 1-287, 1-380,

1-448, 1-491, 1-500
action, 1-8, 1-113, 1-184, 1-277, 1-401, 679

activate:, 1-176
activateIgnoringOtherApps:, 1-18
addCharactersInRange:, 5-130
addCharactersInString:, 5-130
addColumn, 1-60, 1-80
addColumnWithCells:, 1-344, 1-369
addCursorRect:cursor:, 1-574
addEntriesFromDictionary:, 5-138, 5-148
addEntry:, 1-291, 1-296
addFontTrait:, 1-277
addItemsWithTitles:, 1-401
addItemWithTitle:, 1-401
addItemWithTitle:action:keyEquivalent:,

1-369
addName:fromBundle: (Sound), 15
addName:fromSoundfile: (Sound), 15
addName:sound: (Sound), 15
addObject:, 5-25, 5-68, 5-125, 5-139, 5-141
addObjectsFromArray:, 5-125, 5-142
addObserver:selector:name:object:, 5-151
addRepresentation:, 1-313, 1-336
addRepresentations:, 1-313
addRequestMode:, 5-63
addRow, 1-344
addRowWithCells:, 1-344
addSubview:, 1-574

Index-2 OpenStep Programming Reference—September 1996

addSubview:positioned:relativeTo:, 1-575
addSupplement:inPath:, 1-303
addTimeInterval:, 5-81
addTimer:forMode:, 5-203
addToPageSetup, 1-575
addTrackingRect:owner:userData:assume

Inside:, 1-575
addTypes:owner:, 1-394
addWindowsItem:title:filename:, 1-19
addYear:month:day:hour:minute:second:,

5-37
adjustPageHeightNew:top:bottom:limit:,

1-207, 1-576
adjustPageWidthNew:left:right:limit:, 1-5

76
adjustScroll:, 1-576
adjustSubviews, 1-502
advancementForGlyph:, 1-268
afmDictionary, 1-268
afmFileContents, 1-268
alignCenter:, 1-542
alignLeft:, 1-542
alignment, 1-113, 1-184, 1-542
alignRight:, 1-542
allConnections, 5-62
allKeys, 1-162, 1-165
allKeysForObject:, 5-94
allObjects, 5-101, 5-215
alloc, 5-172, 5-199
allocateGState, 1-576
allocWithZone:, 5-10, 5-71, 5-92, 5-124,

5-133, 5-138, 5-139, 5-141, 5-172,
5-199, 5-214

allowsBranchSelection, 1-61, 1-80
allowsEmptySelection, 1-61, 1-81, 1-345
allowsMultipleSelection, 1-61, 1-82, 1-376
allowsNaturalLanguage, 5-86
allSelection, 1-473, 1-476
allValues, 5-94
alpha, 1-169
alpha (color component), 1-145, 1-160

alphaComponent, 1-155
alphaControlAddedOrRemoved:, 663
alphanumericCharacterSet, 5-43
alternateImage, 1-81, 1-87, 1-98
alternateTitle, 1-87, 1-99, 1-100
altIncrementValue, 1-482, 1-489
ancestorSharedWithView:, 1-577
anyObject, 5-215
appendBytes:length:, 5-134
application:openFile:, 1-35
application:openFileWithoutUI:, 1-36
application:openTempFile:, 1-36
applicationDidBecomeActive:, 1-34
applicationDidFinishLaunching:, 1-34
applicationDidHide:, 1-34
applicationDidResignActive:, 1-34
applicationDidUnhide:, 1-35
applicationDidUpdate:, 1-35
applicationIconImage, 1-19
applicationOpenUntitledFile:, 1-36
applicationShouldTerminate:, 1-36
applicationWillBecomeActive:, 1-36
applicationWillFinishLaunching:, 1-37
applicationWillHide:, 1-37
applicationWillResignActive:, 1-37
applicationWillTerminate:, 1-37
applicationWillUnhide:, 1-38
applicationWillUpdate:, 1-38
archivedDataWithRootObject:, 5-4
archivedRootObject:toFile:, 5-4
archiverData, 5-5
areAllContextsOutputTraced, 9-5
areAllContextsSynchronized, 9-5
areCursorRectsEnabled, 1-613
argumentInfoAtIndex:, 5-120
arguments, 5-196
argumentsRetained, 5-115
arrangeInFront:, 1-19
array, 5-10
arrayByAddingObject:, 5-11

Index-3

arrayByAddingObjectsFromArray:, 5-11
arrayForKey:, 5-264
arrayWithCapacity:, 5-125, 5-139
arrayWithContentsOfFile:, 5-10
arrayWithObject:, 5-10
arrayWithObjects:, 5-10
arrowCursor, 1-233, 1-240
arrowsPosition, 1-457
ascender, 1-269
assertion, 5-18
Associated Classes and Protocols, 1-166
Associating Help Text with Objects, 1-300,

1-305
@protocol, xix
attachColorList:, 1-169, 1-173, 663
attachedMenu, 1-369
attachHelpFile:markerName:to:, 1-302
autoenablesItems, 1-369, 1-374, 1-401
autorelease, 285
autoresizesSubviews, 1-577
autoresizing masks, 1-577
autoresizingMask, 1-577
autoscroll:, 1-140, 1-577
autosizesCells, 1-345
availableColorLists, 1-161
availableFontNamesWithTraits:, 1-278
availableFonts, 1-278
availableStringEncodings, 5-222
availableTypeFromArray:, 1-394
awaitReturnValues, 9-6
awakeAfterUsingCoder:, 5-180
awakeFromNib, 682

B
backgroundColor, 1-140, 1-313, 1-345,

1-465, 1-543, 1-561, 1-567, 1-614
backgroundGray (SoundMeter), 31
backgroundGray (SoundView), 40
backingType, 1-614
bag, 5-67

becomeFirstResponder, 1-441
becomeFirstResponder (SoundView), 40
becomeKeyWindow, 1-208, 1-614
becomeMainWindow, 1-614
becomesKeyOnlyIfNeeded, 1-385
beginModalSessionForWindow:, 1-20
beginPage:label:bBox:fonts:, 1-578
beginPageSetupRect:placement:, 1-578
beginPrologueBBox:creationDate:created

By:fonts:forWhom:pages:title:, 1
-578

beginSetup, 1-579, 1-615
beginTrailer, 1-579
bestRepresentationForDevice:, 1-314
binary object sequence, 9-10, 9-11
bitmapData, 1-42
bitmapRepresentation, 5-46
bitsPerPixel, 1-43
bitsPerSample, 1-334
blackColor, 1-149
blackComponent, 1-155
blendedColorWithFraction:ofColor:, 1-15

5
blueColor, 1-149
blueComponent, 1-155
boldSystemFontOfSize:, 1-266
booleanForKey:inTable:, 1-416
boolForKey:, 5-264
boolValue, 5-163
borderRect, 1-50
borderType, 1-50, 1-466
bottomMargin, 1-424, 1-434
boundingBox, 1-252, 1-255
boundingRectForFont, 1-269, 1-280
boundingRectForGlyph:, 1-269
bounds, 1-579
bounds rectangle, 1-569, 1-606
boundsRotation, 1-579
branchImage, 1-80
breakTable, 1-208

Index-4 OpenStep Programming Reference—September 1996

brightnessComponent, 1-155
brownColor, 1-150
browser:createRowsForColumn:inMatrix:

, 1-76
browser:isColumnValid:, 1-77
browser:numberOfRowsInColumn:, 1-77
browser:selectCellWithString:inColumn:,

1-77
browser:selectRow:inColumn:, 1-78
browser:titleOfColumn:, 1-78
browser:willDisplayCell:atRow:column:,

1-78
browserDidScroll:, 1-79
browserWillScroll:, 1-79
bundle, 5-25
bundleForClass:, 5-28
bundlePath, 5-29
bundleWithPath:, 5-29
button types, 1-94, 1-103
buttonType, 1-99
bytes, 5-73
bytesPerPlane, 1-43
bytesPerRow, 1-43

C
cacheDepthMatchesImageDepth, 1-314
cacheImageInRect:, 1-615
Caching Representations, 1-307, 1-330
calcDrawInfo:, 1-113
calcLine, 1-208
calcSize, 1-185
calendarDate, 5-35
calendarFormat, 5-37
canBecomeKeyWindow, 1-615
canBecomeMainWindow, 1-615
canBeCompressedUsing:, 1-43
canBeConvertedToEncoding:, 5-225
cancel:, 1-448, 1-454
cancelPreviousPerformRequestsWithTarg

et:selector:object:, 5-173

canChooseDirectories, 1-377
canChooseFiles, 1-377
canDraw, 1-579
canInitWithData:, 1-330
canInitWithPasteboard:, 1-311
canStoreColor, 1-615
capHeight, 1-269
capitalizedString, 5-225
caseInsensitiveCompare:, 5-225, 5-253
caseSensitive, 5-207
catalogNameComponent, 1-156
cell, 1-185
cellAtIndex:, 1-291, 1-296
cellAtRow:column:, 1-345
cellAttribute:, 1-114
cellClass, 1-60, 1-87, 1-183, 1-290, 1-343,

1-476
cellPrototype, 1-61, 1-81
cells, 1-346
cellSize, 1-114, 1-208
cellSizeForBounds:, 1-114, 1-295, 1-301,

1-482
cellWithTag:, 1-346, 1-374
center, 1-616
centerScanRect:, 1-580
chainChildContext:, 9-6
changeCount, 1-394, 5-37
changeFont:, 1-543
changeTabStopAt:to:, 1-209
changeWindowsItem:title:filename:, 1-20
Changing the NSCell Class, 1-179
channelCount (Sound), 17
characterAtIndex:, 5-225, 5-252
characterIsMember:, 5-46
characters, 1-259
characterSetWithBitmapRepresentation:,

5-44
characterSetWithCharactersInString:, 5-4

4
characterSetWithRange:, 5-44
charactersIgnoringModifiers, 1-260

Index-5

charactersToBeSkipped, 5-207
charCategoryTable, 1-209
charFilter, 1-209
charValue, 5-163
charWrap, 1-209
checkForRemovableMedia, 1-652
checkSpaceForParts, 1-458, 1-466
checkSpelling:, 1-543
checkSpellingOfString:startingAt:, 1-491,

1-500
checkSpellingOfString:startingAt:languag

e:wrap:inSpellDocumentWithTa
g:wordCount:, 1-491

childContext, 9-6
Choosing Representations, 1-307
class, 5-173, 5-199, 285
classForArchiver, 5-180
classForCoder, 5-180
classNamed:, 5-29
classNameDecodedForArchiveClassNam

e:, 5-257, 5-258
classNameEncodedForTrueClassName:,

5-5
cleanUpOperation, 1-434
clear:, 1-209
clearColor, 1-150
clickCount, 1-260
clickTable, 1-210
close, 1-616
closeSpellDocumentWithTag:, 1-492
.clr files, 1-165
color, 1-169, 1-176
Color Mask Constants, 1-165
color space, 1-145
colorFromPasteboard:, 1-150
colorListNamed:, 1-161, 1-165
colorNameComponent, 1-156
colorPanel, 1-173
ColorPickers directory, 662
colorspace names, 4-15
colorSpaceName, 1-156, 1-334

colorUsingColorSpaceName:, 1-156
colorUsingColorSpaceName:device:, 1-15

6
colorWithAlphaComponent:, 1-157
colorWithCalibratedHue:saturation:brigh

tness:alpha:, 1-150
colorWithCalibratedRed:green:blue:alpha

:, 1-150
colorWithCalibratedWhite:alpha:, 1-151
colorWithCatalogName:colorName:, 1-15

1
colorWithDeviceCyan:magenta:yellow:bl

ack:alpha:, 1-151
colorWithDeviceHue:saturation:brightnes

s:alpha:, 1-152
colorWithDeviceRed:green:blue:alpha:, 1-

152
colorWithDeviceWhite:alpha:, 1-152
colorWithKey:, 1-162
columnAtPoint:, 1-511
columnOfMatrix:, 1-61, 1-82
commonPrefixWithString:options:, 5-225,

5-251
compactSamples (Sound), 17
compare:, 1-115, 5-81, 5-163, 5-226
compare:options:, 5-226
compare:options:range:, 5-226
compatibleWith: (Sound), 17
completePathIntoString:caseSensitive:mat

chesIntoArray:filterTypes:, 5-226
componentsJoinedByString:, 5-11
componentsSeparatedByString:, 5-227
composite (DPS operator), 11-1
compositerect (DPS operator), 11-3
compositeToPoint:fromRect:operation:, 1-

315
compositeToPoint:operation:, 1-314
compositing operations, 14-2
concludeDragOperation:, 668
condition, 5-58
conformsToProtocol:, 5-173, 286

Index-6 OpenStep Programming Reference—September 1996

connectionForProxy, 5-99
connectionWithRegisteredName:host:, 5-

63
constrainFrameRect:toScreen:, 1-616,

1-655
constrainScrollPoint:, 1-141
containsObject:, 5-11, 5-215
content rectangle, 1-606
content view, 1-463, 1-606
contentRectForFrameRect:styleMask:, 1-6

12
contentsAsData, 5-38
contentSize, 1-466
contentSizeForFrameSize:hasHorizontalS

croller:hasVerticalScroller:border
Type:, 1-465

contentView, 1-51, 1-466, 1-616
contentViewMargins, 1-51
context, 1-20, 1-260, 1-434
contextFinishedExecuting:, 10-1
continueTracking:at:inView:, 1-115, 1-142
control:textShouldBeginEditing:, 1-196,

1-215
control:textShouldEndEditing:, 1-196,

1-216
controlCharacterSet, 5-44
controlTextDidBeginEditing:, 1-196, 1-216
controlTextDidChange:, 1-197
controlTextDidEndEditing:, 1-196
controlView, 1-8, 1-115, 1-143
convertBaseToScreen:, 1-617
convertFont:, 1-279
convertFont:toFace:, 1-279
convertFont:toFamily:, 1-279
convertFont:toHaveTrait:, 1-279
convertFont:toNotHaveTrait:, 1-280
convertFont:toSize:, 1-280
convertOldFactor:newFactor:, 1-380
convertPoint:fromView:, 1-580
convertPoint:toView:, 1-580
convertRect:fromView:, 1-581

convertRect:toView:, 1-581
convertScreenToBase:, 1-617
convertSize:fromView:, 1-581
convertSize:toView:, 1-581
convertToFormat: (Sound), 17
convertToFormat:samplingRate:channelC

ount: (Sound), 18
convertWeight:ofFont:, 1-280
Coordinate Systems, 1-308
Coordinated Universal Time, 5-78
copiesOnScroll, 1-141
copy, 5-181
copy:, 1-543
copy: (SoundView), 40
copyBlock:range:, 5-38
copyFont:, 1-544, 1-564
copyRuler:, 1-544, 1-560
copySamples:at:count: (Sound), 18
copySound: (Sound), 18
copyWithZone:, 5-174, 279
count, 5-11, 5-94, 5-216
counted set, 5-67
countForObject:, 5-68
countWordsInString:language:, 1-492
createBlockOfSize:, 5-39
createContext, 1-435
Creating New NSControls, 1-180
cString, 5-227
cStringLength, 5-227
cStringTextInternalState, 1-210
current context, 9-2
currentalpha (DPS operator), 11-5
currentContext, 9-5
currentCursor, 1-233
currentEditor, 1-185
currentEvent, 1-21, 1-617
currentHandler, 5-19
currentMod, 660
currentMode, 5-204
currentOperation, 1-432

Index-7

currentPage, 1-435
currentRunLoop, 5-203
currentSelection, 1-474, 1-479
currentSourceFilename, 1-242
currentThread, 5-243
Cursor-Update Events, 1-256
cut:, 1-544
cut: (SoundView), 40
cyanColor, 1-152
cyanComponent, 1-157

D
darkGrayColor, 1-153
data, 5-72
data compression, 1-40
data (Sound), 19
Data Types, 1-389
data1, 1-260
data2, 1-260
dataCell, 1-505
dataForKey:, 5-265
dataFormat (Sound), 19
dataForSound, 19
dataForType:, 1-394
dataSize (Sound), 19
dataUsingEncoding:, 5-227
dataUsingEncoding:allowLossyConversio

n:, 5-227
dataWithBytes:length:, 5-72, 5-88
dataWithBytesNoCopy:length:, 5-72
dataWithCapacity:, 5-133, 5-144
dataWithContentsOfFile:, 5-72
dataWithContentsOfMappedFile:, 5-72
dataWithEPSInsideRect:, 1-582, 1-617
dataWithLength:, 5-134
dateFormat, 5-87
dateWithCalendarFormat:timeZone:, 5-8

2
dateWithString:calendarFormat:, 5-36

dateWithString:calendarFormat:locale:, 5
-36

dateWithTimeIntervalSince1970:, 5-80
dateWithTimeIntervalSinceReferenceDate

:, 5-80
dateWithYear:month:day:hour:minute:sec

ond:timeZone:, 5-36
dayOfCommonEra, 5-37
dayOfWeek, 5-38
dayOfYear, 5-38
deactivate, 1-21, 1-176
dealloc, 5-181, 5-199, 20, 40
decimalDigitCharacterSet, 5-44
declareTypes:owner:, 1-395
decodeArrayOfObjCType:count:at:, 5-51
decodeBytesWithReturnedLength:, 5-52
decodeClassName:asClassName:, 5-257,

5-259
decodeDataObject, 5-52
decodeNXColor, 1-144
decodeObject, 5-52
decodePoint, 5-52
decodePropertyList, 5-52
decodeRect, 5-52
decodeSize, 5-53
decodeValueOfObjCType:at:, 5-53
decodeValuesOfObjCTypes:, 5-53
decomposableCharacterSet, 5-45
deep copy, 281
deepestScreen, 1-617
defaultCenter, 5-151
defaultConnection, 5-63, 5-73
defaultCStringEncoding, 5-223
defaultDepthLimit, 1-612
defaultFont, 1-205
defaultParagraphStyle, 1-210
defaultPrinter, 1-423, 1-433
defaultQueue, 5-156
defaults, 8-12
defaultTimeZone, 5-251
Defining an Image, 1-305

Index-8 OpenStep Programming Reference—September 1996

delegate, 1-21, 1-62, 1-81, 1-240, 1-281,
1-316, 1-346, 1-498, 1-502, 1-504,
1-545, 1-561, 1-568, 1-617, 5-63

delegate (Sound), 20
delegate (SoundView), 40
delete:, 1-545
delete: (SoundView), 41
deleteCharactersInRange:, 5-145
deleteSamples (Sound), 20
deleteSamplesAt:count: (Sound), 20
deliverResult, 1-435
deminiaturize:, 1-618
depth, 1-455, 1-458
depthLimit, 1-618
dequeueNotificationsMatching:coalesceM

ask:, 5-156
descender, 1-269
descentLine, 1-210
description, 5-12, 5-38, 5-73, 5-82, 5-94,

5-174, 5-200, 5-216, 5-228, 286
descriptionData, 1-474
descriptionInStringsFileFormat, 5-95
descriptionWithCalendarFormat:timeZon

e:locale:, 5-82
descriptionWithLocale:, 5-12, 5-39, 5-82,

5-95, 5-163, 5-216, 5-245
descriptionWithLocale:indent:, 5-12, 5-95
deselectAllCells, 1-347
deselectSelectedCell, 1-347
deserializeBytes:length:atCursor:, 5-73
deserializeDataAt:ofObjCType:atCursor:c

ontext:, 5-73
deserializeIntAtCursor:, 5-74
deserializeIntAtIndex:, 5-74
deserializeInts:count:atCursor:, 5-74
deserializeInts:count:atIndex:, 5-74
deserializeObjectAt:ofObjCType:fromDat

a
atCursor:, 284

deserializePropertyListFromData:atCurso
r:mutableContainers:, 5-89

deserializePropertyListFromData:mutabl
eContainers:, 5-89

deserializePropertyListLazilyFromData:at
Cursor:length:mutableContainer
s:, 5-90

designated initializer, 5-183
destinationApplicationName, 1-242
destinationFilename, 1-243
destinationLinkEnumerator, 1-246
destinationSelection, 1-243
destroyContext, 1-435
detachColorList:, 1-169, 1-173, 664
detachHelpFrom:, 1-302
detachNewThreadSelector:toTarget:with

Object:, 5-244
device dictionary keys, 4-15
deviceDescription, 1-416, 1-455, 1-618
Device-Description Dictionary

Keys, 1-453
Dictionaries and Word Lists, 1-488
dictionary, 1-424, 5-93
dictionaryForKey:, 5-265
dictionaryRepresentation, 5-265
dictionaryWithCapacity:, 5-138
dictionaryWithContentsOfFile:, 5-93
dictionaryWithObjects:forKeys:, 5-93,

5-101
dictionaryWithObjects:forKeys:count:, 5-

93
dictionaryWithObjectsAndKeys:, 5-93
didPlay: (Sound), 29
didPlay: (SoundView), 41, 51
didRecord: (Sound), 29
didRecord: (SoundView), 41, 51
directory, 1-448, 1-454
disableCursorRects, 1-652
disableFlushWindow, 1-656
discardCursorRects, 1-582, 1-618, 1-656
discardEventsMatchingMask:beforeEvent

:, 1-21, 1-619, 1-656
display, 1-582, 1-618, 1-620, 1-656

Index-9

Display PostScript
client-library functions, 12-1
display context class, 9-1
exceptions, 14-4
operators, 11-1
protocol, 10-1
single-operator functions, 13-1
types and constants, 14-1

Display PostScript operators, 11-1
Display PostScript System (DPS), 9-1
displayAllColumns, 1-62, 1-82
displayColumn:, 1-62, 1-82
displayIfNeeded, 1-582, 1-618, 1-620,

1-657
displayIfNeededIgnoringOpacity, 1-582
displayIfNeededInRect:, 1-583
displayIfNeededInRectIgnoringOpacity:,

1-583
displayMode (SoundView), 41
displayName, 1-269
displayRect:, 1-583, 1-618
displayRectIgnoringOpacity:, 1-583,

1-619
disposition, 1-243
dissolve (DPS operator), 11-4
dissolveToPoint:fraction:, 1-316
dissolveToPoint:fromRect:fraction:, 1-316
distantFuture, 5-81, 5-94
distantPast, 5-81
divider, 1-501
dividerThickness, 1-502
doClick:, 1-62, 1-82
document view, 1-138, 1-463
documentCursor, 1-141, 1-466
documentRect, 1-141
documentView, 1-141, 1-466
documentVisibleRect, 1-142, 1-467
doDoubleClick:, 1-62
doesNotRecognizeSelector:, 5-181
doubleAction, 1-63, 1-347

doubleValue, 1-9, 1-116, 1-141, 1-185,
5-163, 5-228

DPS, 9-1
DPS context, 1-434
DPS_OPENSTEP_ERROR_BASE, 14-4
DPSCantConnectException, 14-4
DPScomposite(), 13-2
DPScompositerect(), 13-2
DPSConnectionClosedException, 14-4
DPSContext, 9-6
DPSContextObject(), 12-1
DPScurrentalpha(), 13-2
DPSdissolve(), 13-3
DPSDoUserPath(), 12-2
DPSDoUserPathWithMatrix(), 12-2
DPSInvalidContextException, 14-4
DPSInvalidFDException, 14-4
DPSInvalidPortException, 14-4
DPSInvalidTEException, 14-4
DPSNameTooLongException, 14-4
DPSNullObject, 14-4
DPSNumberFormat, 14-1
DPSOutOfMemoryException, 14-4
DPSPostscriptErrorException, 14-4
DPSReadException, 14-4
DPSResultTagCheckException, 14-4
DPSResultTypeCheckException, 14-4
DPSSelectException, 14-4
DPSsetalpha(), 13-3
DPSUserPathOp, 14-3
DPSWriteException, 14-4
dragColor:withEvent:fromView:, 1-167
dragFile:fromRect:slideBack:event:, 1-583

, 1-619
draggedColumn, 1-511
draggedDistance, 1-511
draggedImage, 671

endedAt:deposited:, 675
draggedImage:beganAt:, 674
draggedImage:endedAt:deposited:, 675

Index-10 OpenStep Programming Reference—September 1996

draggedImageLocation, 671
draggingDestinationWindow, 672
draggingEntered:, 668
draggingExited:, 669
draggingLocation, 672
draggingPasteboard, 672
draggingSequenceNumber, 672
draggingSource, 672
draggingSourceOperationMask, 672
draggingSourceOperationMaskForLocal:,

675
draggingUpdated:, 669
dragImage:at:offset:event:pasteboard:sou

rce:slideBack:, 1-584, 1-620, 1-657
draw, 1-334, 1-345
drawArrow:highlight:, 1-458
drawAtPoint:, 1-335, 1-345
drawBarInside:flipped:, 1-482
drawCell:, 1-186
drawCellAtIndex:, 1-291, 1-296
drawCellAtRow:column:, 1-347
drawCellInside:, 1-186
drawCurrentValue (SoundMeter), 32
drawDividerInRect:, 1-503
drawFunc, 1-210
drawGridInClipRect:, 1-522
drawingRectForBounds:, 1-117
drawInRect:, 1-335, 1-346
drawInteriorWithFrame:inView:, 1-116,

1-143, 1-295, 1-301
drawKnob, 1-459, 1-467, 1-482
drawKnob:, 1-483
drawPageBorderWithSize:, 1-585
drawParts, 1-459, 1-467
drawRect:, 1-585, 1-621, 32, 41
drawRepresentation:inRect:, 1-317
drawRow:clipRect:, 1-523
drawSamplesFrom:to: (SoundView), 41
drawsBackground, 1-347, 1-545, 1-561,

1-567
drawsCellBackground, 1-348

drawSelector, 1-240
drawSheetBorderWithSize:, 1-586
drawSwatchInRect:, 1-157
drawTitleOfColumn:inRect:, 1-63
drawWellInside:, 1-176
drawWithFrame:inView:, 1-9, 1-116, 1-211
duration (Sound), 20
Dynamically Loadable Classes, 5-27

E
earlierDate:, 5-83
editColumn:row:withEvent:select

, 1-523
editingStringForObjectValue:, 5-111
editWithFrame:inView:editor:delegate:ev

ent:, 1-117
empty, 5-40
emptySelection, 1-474
enableCursorRects, 1-620, 1-657
enableFlushWindow, 1-621, 1-653
Encapsulated PostScript (EPS), 1-430
Encapsulated PostScript code

(EPS), 1-305, 1-389
enclosingScrollView, 1-586
encodeArrayOfObjCType:count:at:, 5-5,

5-53
encodeBycopyObject:, 5-53
encodeBytes:length:, 5-54
encodeClassName:intoClassName:, 5-6
encodeConditionalObject:, 5-6, 5-54
encodeDataObject:, 5-54
encodeObject:, 5-54
encodePoint:, 5-54
encodePropertyList:, 5-54
encodeRect:, 5-55
encodeRootObject:, 5-7, 5-55
encodeSize:, 5-55
encodeValueOfObjCType:at:, 5-55
encodeValuesOfObjCTypes:, 5-55
encodeWithCoder:, 5-49, 278, 32

Index-11

encodingScheme, 1-270
endEditing:, 1-118
endEditingFor:, 1-621, 1-653
endHeaderComments, 1-586
endModalSession:, 1-21
endPage, 1-586
endPageSetup, 1-586
endPrologue, 1-587
endSetup, 1-587
endTrailer, 1-587
enqueueNotification:postingStyle:, 5-156
enqueueNotification:postingStyle:coalesc

eMask:forModes:, 5-157
Enqueuing with the Different Posting

Styles, 5-155
enterExitEventWithType:location:modifie

rFlags:timestamp:windowNumb
er:context:eventNumber:tracking
Number:userData:, 1-258

entryType, 1-118
environment, 5-196
EPS, 1-222, 1-430, 1-546, 1-552
EPSOperationWithView:insideRect:toDat

a:, 1-433
EPSOperationWithView:insideRect:toDat

a:printInfo:, 1-433
EPSOperationWithView:insideRect:toPat

h:printInfo:, 1-433
EPSRepresentation, 1-252
errorAction, 1-348, 1-561
errorProc, 9-6
Errors, 1-390
Event Handling, 1-606
event masks, 4-10
Event types, 4-7
eventNumber, 1-260
exception strings, 4-10
exceptionWithName:reason:userInfo:, 5-1

07
excludeFromServicesMenu:, 1-206
exit, 5-244

extendPowerOffBy:, 1-652

F
familyName, 1-270
fastestEncoding, 5-228
fax:, 1-587, 1-653
field editor, 1-559, 1-607
fieldEditor:forObject:, 1-621, 1-654
filename, 1-448, 1-454
filenames, 1-377
fileSystemChanged, 1-652
fileSystemRepresentation, 5-229
finalWritePrintInfo, 1-438
findApplications, 1-652
findSoundFor: (Sound), 15
findText:ignoreCase:backwards:wrap:, 1-

211
finishLaunching, 1-22
finishReadingRichText, 1-211
fire, 5-247, 5-258
fireDate, 5-248
first responder, 1-386, 1-439, 1-607
firstObjectCommonWithArray:, 5-12
firstResponder, 1-622
firstTextBlock, 1-211
firstVisibleColumn, 1-63
flagsChanged:, 1-441
floatForKey:, 5-265
floatForKey:inTable:, 1-416
floatValue, 1-9, 1-118, 1-186, 5-164, 5-228
floatValue (SoundMeter), 32
flush, 9-7
flushWindow, 1-622
flushWindowIfNeeded, 1-623
focusView, 1-573
font, 1-119, 1-186, 1-401, 1-545
font manager dictionary keys, 4-13
font trait masks, 4-11
Font Traits, 1-274
fontManager:willIncludeFont:, 1-285

Index-12 OpenStep Programming Reference—September 1996

fontMenu:, 1-281
fontName, 1-270
fontPanel:, 1-281
fontWithFamily:traits:weight:size:, 1-281
fontWithName:matrix:, 1-266
fontWithName:size:, 1-266, 1-277
foregroundGray (SoundMeter), 32
foregroundGray (SoundView), 42
formal protocols, xix
formatter, 1-119
formIntersectionWithCharacterSet:, 5-130
formUnionWithCharacterSet:, 5-130
forwardInvocation:, 5-182, 5-200
frame, 1-455, 1-588, 1-623
Frame rectangle, 1-606
frame rectangle, 1-569
frame view, 1-606
frameAutosaveName, 1-623
frameLength, 5-120
frameOfColumn:, 1-63
frameOfInsideOfColumn:, 1-63
frameRectForContentRect:styleMask:, 1-6

12
frameRotation, 1-588
frameSizeForContentSize:hasHorizontalS

croller:hasVerticalScroller:border
Type:, 1-465

fullPathForApplication:, 1-653
function key codes, 4-8
function key masks, 4-9

G
General Exception Conditions, 5-24
generalPasteboard, 1-391
Generic Help Files, 1-299
getArgument:atIndex:, 5-116
getArgumentTypeAtIndex:, 5-120
getBitmapDataPlanes:, 1-44
getBytes:, 5-74
getBytes:length:, 5-75

getBytes:range:, 5-75
getCharacters:, 5-229
getCharacters:range:, 5-229
getCompression:factor:, 1-44
getCString:, 5-229
getCString:maxLength:, 5-230
getCString:maxLength:range:remainingR

ange:, 5-230
getCyan:magenta:yellow:black:alpha:, 1-

157
getFileSystemInfoForPath:isRemovable:is

Writable:isUnmountable:descript
ion:, 1-653

getFileSystemRepresentation:maxLength:,
5-230

getForeground:andBackground:, 1-234
getHue:saturation:brightness:alpha:, 1-15

7
getInfoForFile:application:type:, 1-653
getLink:manager:isMultiple:, 1-248, 1-249
getMarginLeft:right:top:bottom:, 1-212
getMinWidth:minHeight:maxWidth:max

Height:, 1-212, 1-237
getNumberOfRows:columns:, 1-348
getObjects:, 5-12
getObjects:range:, 5-13
getObjectValue:forString:errorDescription

:, 5-112
getPeriodicDelay:interval:, 1-88, 1-99,

1-100, 1-108, 1-119
getRed:green:blue:alpha:, 1-158
getReturnValue:, 5-116
getRow:column:forPoint:, 1-348
getRow:column:ofCell:, 1-348
getSelection:size: (SoundView), 42
getSelectionStart:end:, 1-212
getTIFFCompressionTypes:count:, 1-40,

1-52
getValue:, 5-274
getVolume:: (Sound), 16
getWhite:alpha:, 1-158

Index-13

globallyUniqueString, 5-197
glyphIsEncoded:, 1-270
glyphWithName:, 1-270
gray values, 4-15
grayColor, 1-153
greenColor, 1-153
greenComponent, 1-158
gState, 1-588, 1-623
Guaranteeing the Foundation Ownership

Policy, 5-23

H
hadError: (Sound), 29
hadError: (SoundView), 42, 51
handleFailureInFunction:file:lineNumber:

description:, 5-19
handleFailureInMethod:object:file:lineNu

mber:description:, 5-20
Handling an Exception, 5-103
hasAlpha, 1-335, 1-346
hasDynamicDepthLimit, 1-624
hash, 5-231, 286
hash table, 8-4
hasHorizontalScroller, 1-64, 1-467
hasPrefix:, 5-230
hasSubmenu, 1-374, 679
hasSuffix:, 5-231
hasValidObjectValue, 1-119
hasVerticalScroller, 1-467
headerCell, 1-506
headerRectOfColumn:, 1-511
heightAdjustLimit, 1-588
helpDirectory, 1-303
helpFile, 1-304
helpRequested:, 1-441
hidden arguments, 5-121, 5-134
Hidden Files, 1-300
hide, 1-234
hide:, 1-22
hideCaret, 1-212, 1-238

hideCursor (SoundView), 42
hideOtherApplications, 1-653
hidesOnDeactivate, 1-624
highlight:, 1-88, 1-100, 1-459, 1-468
highlight:withFrame:inView:, 1-120,

1-213, 1-239
highlightCell:atRow:column:, 1-349
highlightedBranchImage, 1-80
highlightsBy, 1-99, 1-108
highlightSelectionInClipRect:, 1-524
hitPart, 1-459, 1-468
hitTest:, 1-588, 1-624
holdTime (SoundMeter), 32
horizontalPagination, 1-424
horizontalScroller, 1-467
host, 1-416
hostName, 5-197
hotSpot, 1-235
hourOfDay, 5-39
hueComponent, 1-158

I
IBeamCursor, 1-234
iconForFile:, 1-654
iconForFiles:, 1-654
iconForFileType:, 1-654
identifier, 1-506
ignoredWordsInSpellDocumentWithTag:,

1-492
ignoreModifierKeysWhileDragging, 675
ignoresAlpha, 1-153
ignoresMultiClick, 1-186
ignoreSpelling:, 677
ignoreWord:inSpellDocumentWithTag:, 1

-492
illegalCharacterSet, 5-45
image, 1-88, 1-120, 1-235, 1-477
Image Filtering Services, 1-309
Image Representations, 1-306
Image Size, 1-308

Index-14 OpenStep Programming Reference—September 1996

imageDidNotDraw:inRect:, 1-327
imageFileTypes, 1-312, 1-330
imageNamed:, 1-312
imagePasteboardTypes, 1-312, 1-330
imagePosition, 1-88, 1-100, 1-108
imageRectForBounds:, 1-120
imageRectForPaper:, 1-416, 1-426
imageRepClassForData:, 1-331
imageRepClassForFileType:, 1-331
imageRepClassForPasteboardType:, 1-33

1
imageRepsWithContentsOfFile:, 1-331
imageRepsWithData:, 1-41, 1-54
imageRepsWithPasteboard:, 1-332
imageRepWithContentsOfFile:, 1-331
imageRepWithData:, 1-41, 1-54, 1-252,

1-255
imageRepWithPasteboard:, 1-332
imageUnfilteredFileTypes, 1-313, 1-332,

1-335
imageUnfilteredPasteboardTypes, 1-313,

1-333, 1-336, 1-344
Implementing Subclasses of

NSMutableArray, 5-122
importsGraphics, 1-545
increaseLengthBy:, 5-134, 5-144
independentConversationQueueing, 5-64
indexOfCellWithTag:, 1-292
indexOfItemWithTitle:, 1-401
indexOfObject:, 5-13
indexOfObject:inRange:, 5-14
indexOfObjectIdenticalTo:, 5-13
indexOfObjectIdenticalTo:inRange:, 5-13
indexOfSelectedItem, 1-292, 1-402, 1-410
info (Sound), 20
informal protocols, xix
infoSize (Sound), 21
init, 5-64, 5-83, 5-157, 5-182, 5-231, 5-265
initByReferencingFile:, 1-317
initEPSOperationWithView:insideRect:to

Data:printInfo:, 1-435

initForReadingWithData:, 5-259
initForWritingWithMutableData:, 5-7
initFromPasteboard: (Sound), 21
initFromSoundfile: (Sound), 21
initialize, 5-175
Initializing an Object to Its Class, 5-168
initImageCell:, 1-120
initTextCell:, 1-121, 1-295
initWithArray:, 5-14, 5-69, 5-79, 5-216
initWithBitmapDataPlanes:pixelsWide:pi

xelsHigh:bitsPerSample:samples
PerPixel:hasAlpha:isPlanar:color
SpaceName:bytesPerRow:bitsPer
Pixel:, 1-44

initWithBytes:length:, 5-75
initWithBytes:objCType:, 5-274
initWithBytesNoCopy:length:, 5-75
initWithCapacity:, 5-69, 5-80, 5-125, 5-134,

5-138, 5-142, 5-145
initWithCharacters:length:, 5-232
initWithCharactersNoCopy:length:freeW

henDone:, 5-232
initWithCoder:, 5-49, 278, 33
initWithCondition:, 5-58
initWithContentRect:styleMask:backing:d

efer:, 1-624
initWithContentRect:styleMask:backing:d

efer:screen:, 1-625
initWithContentsOfFile:, 1-318, 5-14, 5-75,

5-95, 5-232
initWithContentsOfMappedFile:, 5-76
initWithCString:, 5-231
initWithCString:length:, 5-231
initWithCStringNoCopy:length:freeWhen

Done:, 5-232
initWithData:, 1-47, 1-253, 1-318, 5-76
initWithData:encoding:, 5-233
initWithDelegate:, 1-246
initWithDescriptionData:, 1-478
initWithDictionary:, 1-424, 5-95
initWithFloat:, 5-164

Index-15

initWithFocusedViewRect:, 1-47
initWithFormat:, 5-233
initWithFormat:arguments:, 5-233
initWithFormat:locale:, 5-233
initWithFormat:locale:arguments:, 5-234
initWithFrame:, 1-187, 1-349, 1-589, 1-624,

33, 42
initWithFrame:mode:cellClass:numberOf

Rows:numberOfColumns:, 1-349
initWithFrame:mode:prototype:numberO

fRows:numberOfColumns:, 1-35
0

initWithFrame:pullsDown:, 1-402
initWithFrame:text:alignment:, 1-213,

1-233
initWithIdentifier:, 1-506
initWithImage:, 1-240
initWithImage:foregroundColor:backgrou

ndColor:, 1-235, 1-240
initWithImage:foregroundColor:backgrou

ndColor:hotSpot, 1-236
initWithImage:hotSpot:, 1-236
initWithInt:, 5-164
initWithLength:, 5-134
initWithLocal:connection:, 5-100
initWithLong:, 5-165
initWithLongLong:, 5-165
initWithMutableData

forDebugging:languageEncoding:na
meEcoding:textProc:errorPr
oc:, 9-7

initWithName:, 1-162
initWithName:fromFile:, 1-162
initWithName:reason:userInfo:, 5-108
initWithNotificationCenter:, 5-157
initWithObjects:, 5-14, 5-216
initWithObjects:count:, 5-14, 5-216
initWithObjects:forKeys:, 5-96
initWithObjects:forKeys:count:, 5-96
initWithObjectsAndKeys:, 5-96
initWithPasteboard:, 1-318, 1-478

initWithPath:, 5-30
initWithPickerMask:colorPanel:, 1-173
initWithSet:, 5-69, 5-80, 5-217
initWithSet:copyItems:, 5-217
initWithShort:, 5-165
initWithSize:, 1-318
initWithSize:depth:separate:alpha:, 1-108
initWithString:, 5-39, 5-83, 5-207, 5-234
initWithString:calendarFormat:locale:, 5-

40
initWithTarget:connection:, 5-100
initWithTimeInterval:sinceDate:, 5-83
initWithTimeIntervalSinceNow:, 5-83
initWithTimeIntervalSinceReferenceDate:,

5-84
initWithTitle:, 1-369, 1-374
initWithUnsignedChar:, 5-165
initWithUnsignedInt:, 5-165
initWithUnsignedLong:, 5-165
initWithUnsignedLongLong:, 5-165
initWithUnsignedShort:, 5-166
initWithUser:, 5-266
initWithView:printInfo:, 1-436
initWithWindow:rect:, 1-108
initWithYear:month:day:hour:minute:seco

nd:timeZone:, 5-40
insertColor:key:atIndex:, 1-162
insertColumn:, 1-350
insertColumn:withCells:, 1-351
insertEntry:atIndex:, 1-292
insertItemWithTitle:action:keyEquivalent:

atIndex:, 1-370, 1-374
insertItemWithTitle:atIndex:, 1-402
insertNewButtonImage:in:, 1-174
insertObject:atIndex:, 5-125
insertRow:, 1-351
insertRow:withCells:, 1-351
insertSamples:at: (Sound), 21
insertString:atIndex:, 5-145
Instance and Class Methods, 5-169
instanceMethodForSelector:, 5-176

Index-16 OpenStep Programming Reference—September 1996

instancesRespondToSelector:, 5-176
integerForKey:, 5-266
intercellSpacing, 1-352
Interface Builder, 1-286
International Atomic Time, 5-78
interruptExecution, 9-7
intersectSet:, 5-142
intersectsSet:, 5-217
intForKey:inTable:, 1-417
intValue, 1-9, 1-121, 1-187, 5-166, 5-234
invalidate, 5-64, 5-248
invalidateCursorRectsForView:, 1-625
invert, 5-131
invertedSet, 5-46
invocationWithMethodSignature:, 5-115
invoke, 5-116
invokeWithTarget:, 5-116
isa, 5-168, 5-177
isActive, 1-22, 1-177
isARepeat, 1-261
isAtEnd, 5-207, 5-260
isAttached, 1-370
isAutodisplay, 1-626
isAutoScale (SoundView), 42
isAutoscroll, 1-352
isBaseFont, 1-271
isBezeled, 1-121, 1-561
isBezeled (SoundMeter), 33
isBezeled (SoundView), 43
isBordered, 1-89, 1-101, 1-121, 1-177, 1-561
isCachedSeparately, 1-319
isColor, 1-417
isContinuous, 1-122, 1-170, 1-187
isContinuous (SoundView), 43
isDataRetained, 1-319, 1-335
isDaylightSavingTimeZone, 5-255
isDescendantOf:, 1-589
isDrawingToScreen, 9-7
isEditable, 1-122, 1-163, 1-506, 1-546, 1-562
isEditable (Sound), 21

isEditable (SoundView), 43
isEmpty (Sound), 22
isEnabled, 1-122, 1-187, 1-282, 1-287, 680
isEnabled (SoundView), 43
isEntryAcceptable:, 1-122
isEPSOperation, 1-436
isEqual:, 5-97, 286
isEqualToArray:, 5-15
isEqualToData:, 5-76
isEqualToDate:, 5-84
isEqualToDictionary:, 5-96
isEqualToNumber:, 5-166
isEqualToSet:, 5-217
isEqualToString:, 5-234
isEqualToValue:, 5-274
isFieldEditor, 1-546
isFixedPitch, 1-271
isFlipped, 1-319, 1-589
isFloatingPanel, 1-385
isFlushWindowDisabled, 1-626
isFontAvailable:, 1-417
isHidden, 1-22
isHighlighted, 1-123
isHorizontallyCentered, 1-424
isHorizontallyResizable, 1-546
isKey:inTable:, 1-417
isKeyWindow, 1-626
isKindOfClass:, 286
isLeaf, 1-81
isLoaded, 1-64, 1-81
isMainWindow, 1-626
isMemberOfClass:, 286
isMiniaturized, 1-627
isMultiple, 1-282
isMultiThreaded, 5-244
isMuted (Sound), 16
isOneShot, 1-627
isOneway, 5-121
isOpaque, 1-100, 1-123, 1-296, 1-335, 1-589
isOptimizedForSpeed (SoundView), 43

Index-17

isOutputStackInReverseOrder, 1-417
isOutputTraced, 9-7
isPartialStringValid:newEditingString:

errorDescription:, 5-113
isPlanar, 1-47
isPlayable (Sound), 22
isPlayable (SoundView), 43
isProxy, 286
isReleasedWhenClosed, 1-627
isResizable, 1-506
isRetainedWhileDrawing, 1-214
isRichText, 1-546
isRotatedFromBase, 1-590
isRotatedOrScaledFromBase, 1-590
isRulerVisible, 1-546
isRunning, 1-22
isRunning (SoundMeter), 33
isScrollable, 1-123
isSelectable, 1-123, 1-547, 1-562
isSelectionByRect, 1-352
isSetOnMouseEntered, 1-236
isSetOnMouseExited, 1-236
isSubsetOfSet:, 5-217
isSynchronized, 9-8
isTitled, 1-64
isTornOff, 1-370
isTransparent, 1-89, 1-100
isValid, 1-319, 5-64, 5-248
isVertical, 1-477, 1-483
isVerticallyCentered, 1-425
isVerticallyResizable, 1-547
isVisible, 1-627
isWellKnownSelection, 1-474
isWordInUserDictionaries:caseSensitive:,

1-498, 1-504
italicAngle, 1-271
itemArray, 1-402
itemAtIndex:, 1-402
itemMatrix, 1-371, 1-403
itemTitleAtIndex:, 1-403

itemTitles, 1-403
itemWithTag:, 1-371
itemWithTitle:, 1-403

J
jobDisposition, 1-425

K
key window, 1-384, 1-606
Keyboard Events, 1-254
keyCode, 1-261
keyDown:, 1-441, 1-627
keyEnumerator, 5-96
keyEquivalent, 1-89, 1-100, 1-123, 680
keyEquivalentModifierMask, 1-90, 1-101
keyEventWithType:location:modifierFlag

s:timestamp:windowNumber:co
ntext:characters:charactersIgnori
ngModifiers:isARepeat:keyCode:
, 1-258

keyUp:, 1-442
keyWindow, 1-23
knobProportion, 1-460
knobRectFlipped:, 1-483
knobThickness, 1-478, 1-483
knowsPagesFirst:last:, 1-590, 1-626

L
language, 1-493
languageLevel, 1-418
lastColumn, 1-64
lastItem, 1-403
lastObject, 5-15
lastPathComponent, 5-234
lastUpdateTime, 1-243
lastVisibleColumn, 1-64
laterDate:, 5-84, 5-97
launchApplication:, 1-654
launchApplication:showIcon:autolaunch:,

1-654

Index-18 OpenStep Programming Reference—September 1996

leftMargin, 1-425
length, 5-76, 5-235
letterCharacterSet, 5-45
level, 1-628
lightGrayColor, 1-153
limitDateForMode:, 5-204
lineFromPosition:, 1-214
lineHeight, 1-214
linkNumber, 1-244
load, 5-177
loadColumnZero, 1-64
loadedCellAtRow:column:, 1-65
loadNibFile:externalNameTable:withZon

e:, 1-83
loadNibNamed:owner:, 1-84
locale, 5-207
Localizable.strings, 7-29
Localized Resources, 5-26
localizedCatalogNameComponent, 1-158
localizedColorNameComponent, 1-158
localizedNameForTIFFCompressionType:

, 1-42, 1-54
localizedNameOfStringEncoding:, 5-223
localizedScannerWithString:, 5-206
localizedStringForKey:value:table:, 5-30
localizedStringWithFormat:, 5-144, 5-223
localTimeZone, 5-252
locationForSubmenu:, 1-371
locationInWindow, 1-261
locationOfCell:, 1-214
locationOfPrintRect:, 1-590, 1-626
lock, 280
lockFocus, 1-320, 1-591
lockFocusOnRepresentation:, 1-321
lockWhenCondition:, 5-59
longLongValue, 5-166
longValue, 5-166
lossyCString, 5-235
lowercaseLetterCharacterSet, 5-45
lowercaseString, 5-235

M
magentaColor, 1-153
magentaComponent, 1-159
Main Bundle, 5-27
mainBundle, 5-29
mainMenu, 1-23
mainWindow, 1-23
makeCellAtRow:column:, 1-352
makeFirstResponder:, 1-628
makeKeyAndOrderFront:, 1-628
makeKeyWindow, 1-629
makeMainWindow, 1-629
makeNewConnection:sender:, 5-66
makeObjectsPerform:, 5-15, 5-217
makeObjectsPerform:withObject:, 5-15,

5-218
makeWindowsPerform:inOrder:, 1-23
manager, 1-244
map table, 8-6
matchesOnMultipleResolution, 1-321
matrix, 1-271, 1-281
matrixClass, 1-65
matrixInColumn:, 1-65
maxSize, 1-547, 1-629
maxValue, 1-484
maxValue (SoundMeter), 34
maxVisibleColumns, 1-65
maxWidth, 1-507
member:, 5-218
menuZone, 1-368
method signature, 5-119
methodForSelector:, 5-185
methodReturnLength, 5-121
methodReturnType, 5-121
methodSignature, 5-116
methodSignatureForSelector:, 5-186,

5-200, 5-207
minColumnWidth, 1-66
minFrameWidthWithTitle:styleMask:, 1-6

13, 1-655

Index-19

miniaturize:, 1-629
miniaturizeAll:, 1-23
miniwindowImage, 1-630
miniwindowTitle, 1-630
minSize, 1-547, 1-629
minusSet:, 5-142
minuteOfHour, 5-40
minValue, 1-484
minValue (SoundMeter), 34
minWidth, 1-507
mode, 1-170, 1-353
modifierFlags, 1-261
modifyFont:, 1-282
modifyFontViaPanel:, 1-282
monthOfYear, 5-41
mountedRemovableMedia, 1-655
mountNewRemovableMedia, 1-655
Mouse Events, 1-255
mouse:inRect:, 1-591
mouseDown:, 1-187, 1-208, 1-353, 1-442
mouseDown: (SoundView), 44
mouseDownFlags, 1-124, 1-353
mouseDragged:, 1-442
mouseEntered:, 1-237, 1-442
mouseEventWithType:location:modifierFl

ags:timestamp:windowNumber:
context:eventNumber:clickCount
:pressure:, 1-258

mouseExited:, 1-237, 1-442
mouseLocationOutsideOfEventStream, 1

-630
mouseMoved:, 1-443
mouseUp:, 1-443
moveCaret:, 1-214
mutableBytes, 5-135
mutableCopy, 5-187
mutableCopyWithZone:, 5-177, 281
mutableData, 9-8

N
name, 1-163, 1-321, 1-395, 1-418, 5-108,

5-148
name (Sound), 22
Named Images, 1-308
Named Pasteboards, 1-388
NClosableWindowMask, 1-624
needsCompacting (Sound), 22
needsDisplay, 1-591
Nested Exception Handlers, 5-105
Nesting Autorelease Pools, 5-22
Network Name Server, 5-60, 5-63
Network Time Protocol (NTP), 5-78
new, 5-177
next responder, 1-438
nextEventMatchingMask:, 1-630
nextEventMatchingMask:untilDate:inMo

de:dequeue:, 1-24, 1-630
nextObject, 5-101
nextResponder, 1-443
nextText, 1-354, 1-562
nonBaseCharacterSet, 5-45
nonretainedObjectValue, 5-274
noResponderFor:, 1-443
note, 1-418
noteFileSystemChanged, 1-655
noteUserDefaultsChanged, 1-655
notification object, 5-146
notification queue, 8-9
notifications, 4-16
notificationWithName:object:, 5-148
notifyObjectWhenFinishedExecuting:, 9-

8
NS_DURING, 7-7
NS_DURING macro, 5-103
NS_ENDHANDLER, 7-7
NS_ENDHANDLER macro, 5-103
NS_HANDLER, 7-8
NS_HANDLER macro, 5-103
NS_VALUERETURN, 7-8

Index-20 OpenStep Programming Reference—September 1996

NS_VOIDRETURN, 7-8
NSAbortModalException, 1-18, 4-10
NSAbortPrintingException, 4-10
NSAboveBottom, 4-2
NSAboveTop, 4-2
NSActivateContextNumber(), 3-15
NSActivateNextApp(), 3-15
NSAddTabParagraph, 1-226, 4-28
NSAddTraitFontAction, 4-13
NSAFMAscender, 4-13
NSAFMCapHeight, 4-13
NSAFMCharacterSet, 4-13
NSAFMDescender, 4-13
NSAFMEncodingScheme, 4-13
NSAFMFamilyName, 4-13
NSAFMFontName, 4-13
NSAFMFormatVersion, 4-13
NSAFMFullName, 4-13
NSAFMItalicAngle, 4-13
NSAFMMappingScheme, 4-13
NSAFMNotice, 4-13
NSAFMUnderlinePosition, 4-13
NSAFMUnderlineThickness, 4-13
NSAFMVersion, 4-13
NSAFMWeight, 4-13
NSAFMXHeight, 4-13
NSAlertAlternateReturn, 4-18
NSAlertDefaultReturn, 4-18
NSAlertErrorReturn, 4-18
NSAlertOtherReturn, 4-18
NSAllHashTableObjects(), 7-21
NSAllMapTableKeys(), 7-26
NSAllMapTableValues(), 7-26
NSAllocateMemoryPages(), 7-2
NSAllocateObject(), 7-5
NSAllScrollerParts, 1-462, 4-24
NSAlphaAlwaysOne, 14-4
NSAlphaEqualToData, 14-4
NSAlphaShiftKeyMask, 1-104, 1-105, 4-9
NSAlternateKeyMask, 1-104, 1-105, 4-9

NSAMPMDesignation, 8-12
NSAnchoredSearch, 5-237, 8-10
NSAnyEventMask, 1-125, 4-10
NSAnyType, 1-118, 1-128, 4-4
NSApp, 4-1
NSAppKitIgnoredException, 4-10
NSAppKitVirtualMemoryException, 4-10
NSApplicationDidBecomeActive, 1-28
NSApplicationDidBecomeActiveNotificat

ion, 1-34, 4-16
NSApplicationDidFinishLaunchingNotifi

cation, 4-16
NSApplicationDidHideNotification, 1-22,

4-16
NSApplicationDidResignActiveNotificati

on, 1-28, 1-35, 4-16
NSApplicationDidUnhideNotification, 1-

35, 4-16
NSApplicationDidUpdateNotification, 1-

35, 4-16
NSApplicationFileType, 4-40
NSApplicationMain(), 3-15
NSApplicationWillBecomeActive, 1-28
NSApplicationWillBecomeActiveNotificat

ion, 1-37, 4-16
NSApplicationWillFinishLaunchingNotifi

cation, 1-37, 4-16
NSApplicationWillHideNotification, 1-22

, 1-37, 4-16
NSApplicationWillResignActiveNotificati

on, 1-28, 1-37, 4-16
NSApplicationWillTerminateNotification,

1-37, 4-16
NSApplicationWillUnhideNotification, 4-

16
NSApplicationWillUpdateNotification, 1-

38, 4-16
NSArchiver class, 5-3
NSArgumentDomain, 5-261, 5-264, 8-12
NSArgumentInfo, 8-13
NSArray class, 5-7
NSAscendingPageOrder, 1-436, 4-20

Index-21

NSASCIIStringEncoding, 8-11
NSAssert(), 7-9
NSAssert1(), 7-9
NSAssert2(), 7-9
NSAssert3(), 7-9
NSAssert4(), 7-9
NSAssert5(), 7-10
NSAssertionHandler class, 5-18
NSAtBottom, 4-2
NSAtTop, 4-2
NSAutoPagination, 1-421, 1-424, 1-426,

1-429, 1-430, 4-21
NSAutoreleasePool class, 5-20
NSBackingStoreBuffered, 1-614, 1-624,

1-637
NSBackingStoreNonretained, 1-614,

1-624, 1-637
NSBackingStoreRetained, 1-614, 1-624,

1-637
NSBackingStoreType, 1-614, 1-624, 1-637,

14-2
NSBackspaceKey, 4-32
NSBacktabKey, 4-32
NSBacktabTextMovement, 4-32
NSBackwardsSearch, 5-236, 5-237, 8-10
NSBadBitmapParametersException, 4-10
NSBadComparisonException, 1-115, 4-10
NSBadRTFColorTableException, 4-10
NSBadRTFDirectiveException, 4-10
NSBadRTFFontTableException, 4-10
NSBadRTFStyleSheetException, 4-11
NSBecomingMultiThreaded, 5-244, 8-12
NSBeep(), 3-16
NSBelowBottom, 4-2
NSBelowTop, 4-2
NSBestDepth(), 3-4
NSBezelBorder, 1-51, 1-465, 1-466, 4-38
NSBitsPerPixelFromDepth(), 3-4
NSBitsPerSampleFromDepth(), 3-5
NSBlack, 4-15
NSBoldFontMask, 1-278, 1-282, 4-11

NSBorderlessWindowMask, 1-612, 1-624,
1-643, 4-39

NSBorderType, 1-51, 1-465, 1-466, 4-38
NSBreakArray, 4-25
NSBrowserIllegalDelegateException, 4-11
NSBundle class, 5-25
NSBundleDidLoadNotification, 8-1
NSButtonType, 1-106, 4-2
NSCalendarDate class, 5-33
NSCalibratedBlackColorSpace, 3-5, 4-15
NSCalibratedRGBColorSpace, 1-146,

1-334, 3-5, 4-15
NSCalibratedWhiteColorSpace, 1-146,

3-5, 4-15
NSCancelButton, 1-377, 1-383, 1-449, 4-18
NSCarriageReturnKey, 4-32
NSCaseInsensitiveSearch, 5-225, 5-236,

5-237, 8-10
NSCAssert(), 7-10
NSCAssert1(), 7-10
NSCAssert2(), 7-10
NSCAssert3(), 7-10
NSCAssert4(), 7-10
NSCAssert5(), 7-11
NSCBreakTable, 4-33
NSCBreakTableSize, 4-33
NSCClickTable, 4-33
NSCClickTableSize, 4-33
NSCellAttribute, 1-126, 4-4
NSCellChangesContents, 4-4
NSCellDisabled, 1-127, 4-3
NSCellEditable, 1-127, 4-3
NSCellHasImageHorizontal, 4-4
NSCellHasImageOnLeftOrBottom, 4-4
NSCellHasOverlappingImage, 4-4
NSCellHighlighted, 1-127, 4-3
NSCellImagePosition, 1-91, 1-100, 4-3
NSCellIsBordered, 4-4
NSCellIsInsetButton, 4-4
NSCellLightsByBackground, 4-4
NSCellLightsByContents, 4-3

Index-22 OpenStep Programming Reference—September 1996

NSCellLightsByGray, 4-3
NSCellState, 1-127, 4-3
NSCellType, 1-137, 4-3
NSCenterAlignedParagraph, 1-226, 4-28
NSCenterAlignment, 1-92
NSCenteredTextAlignment, 1-293, 1-294
NSCenterTextAlignment, 1-10, 1-126,

1-184, 1-190, 1-213, 1-296, 1-543,
1-551, 4-31

NSChangeBackgroundCell, 4-3
NSChangeBackgroundCellMask, 1-102,

4-4
NSChangeGrayCell, 4-3
NSChangeGrayCellMask, 1-102, 4-4
NSChangeSpelling, 1-488, 659
NSCharacterConversionException, 8-2
NSCharacterSet class, 5-42
NSCharArray, 4-25
NSCharFilterFunc, 4-25
NSChunkCopy(), 3-8
NSChunkGrow(), 3-8
NSChunkMalloc(), 3-8
NSChunkRealloc(), 3-8
NSChunkZoneCopy(), 3-9
NSChunkZoneGrow(), 3-9
NSChunkZoneMalloc(), 3-9
NSChunkZoneRealloc(), 3-9
NSClassFromString(), 7-29
NSClipPagination, 1-421, 1-424, 1-426,

1-429, 1-430, 4-21
NSClosableWindowMask, 1-612, 1-643,

4-39
NSCMYKModeColorPanel, 1-166, 660,

665, 4-5
NSCoder class, 5-47
NSCoding protocol, 277
NSColorListChangedNotification, 1-162,

1-163
NSColorListDidChangNotification, 4-16
NSColorListIOException, 4-11

NSColorListModeColorPanel, 1-166, 661,
665, 4-5

NSColorListNotEditableException, 1-163,
4-11

NSColorPanelAllModesMask, 1-165, 664,
4-5

NSColorPanelChangedNotification, 1-17
1

NSColorPanelCMYKModeMask, 1-165,
4-5

NSColorPanelColorDidChangeNotificatio
n, 4-16

NSColorPanelColorListModeMask, 4-5
NSColorPanelCustomPaletteModeMask,

4-5
NSColorPanelGrayModeMask, 1-165, 4-5
NSColorPanelHSBModeMask, 1-165, 4-5
NSColorPanelRGBModeMask, 1-165, 4-5
NSColorPanelWheelModeMask, 1-165,

4-5
NSColorPboardType, 1-389, 4-19
NSColorPickingCustom, 660
NSColorPickingDefaul, 662
NSColorSpaceFromDepth(), 3-5
NSCommandKeyMask, 1-104, 1-105, 4-9
NSCompareHashTables(), 7-21
NSCompareMapTables(), 7-24
NSComparisonResult, 1-451, 5-81, 5-163,

5-226, 8-10
NSCompositeClear, 1-314
NSCompositeDataAtop, 1-314
NSCompositePlusLighter, 1-314
NSCompositeSourceOut, 1-314
NSCompositingOperation, 1-314, 14-2
NSCompressedFontMask, 1-278, 4-12
NSCondensedFontMask, 1-278, 1-280,

4-12
NSConditionLock class, 5-57
NSConnection class, 5-60
NSConnectionReplyMode, 5-202, 8-9
NSContainsRect(), 7-15

Index-23

NSContentsCellMask, 1-102, 4-4
NSControlKeyMask, 1-104, 1-105, 4-9
NSControlTextDidBeginEditingNotificati

on, 1-196, 1-365, 4-17
NSControlTextDidChangeNotification, 1-

197, 1-365, 1-565, 4-17
NSControlTextDidEndEditingNotification

, 1-196, 1-366, 1-565, 4-17
NSCopyBitmapFromGState(), 3-10
NSCopyBits(), 3-10
NSCopyHashTableWithZone(), 7-20
NSCopying protocol, 278
NSCopyMapTableWithZone(), 7-24
NSCopyMemoryPages(), 7-2
NSCopyObject(), 7-5
NSCountedSet class, 5-67
NSCountHashTable(), 7-21
NSCountMapTable(), 7-25
NSCParameterAssert, 7-11
NSCreateFileContentsPboardType(), 1-39

8, 3-17
NSCreateFilenamePboardType(), 3-17
NSCreateHashTable(), 7-19
NSCreateHashTableWithZone(), 7-20
NSCreateMapTable(), 7-23
NSCreateMapTableWithZone(), 7-24
NSCreateZone(), 7-3
NSCSmartLeftChars, 4-33
NSCSmartRightChars, 4-33
NSCStringTextInternalState, 4-37
NSCurrencyString, 8-12
NSCurrencySymbol, 8-12
NSCursorUpdate, 1-256, 4-7
NSCursorUpdateMask, 1-125, 4-10
NSCustomColorSpace, 4-15
NSCustomPaletteModeColorPanel, 1-166

, 661, 665, 4-5
NSDarkGray, 4-15
NSData class, 5-70
NSDataLinkDisposition, 1-243, 4-6
NSDataLinkNumber, 4-6

NSDataLinkPboardType, 1-389, 4-19
NSDataLinkUpdateMode, 4-6
NSDataWithWordTable(), 3-7
NSDate class, 5-77
NSDateFormatString, 8-12
NSDateFormatter, 5-85
NSDeallocateMemoryPages(), 7-2
NSDeallocateObject(), 7-5
NSDecimalDigits, 8-12
NSDecimalSeparator, 8-12
NSDecrementExtraRefCountWasZero(), 7

-6
NSDefaultDepth, 1-638
NSDefaultMallocZone(), 7-3
NSDefaultRunLoopMode, 5-202, 8-10
NSDeleteKey, 4-32
NSDescendingPageOrder, 1-436, 4-20
NSDeserializer class, 5-88
NSDeviceBitsPerSample, 1-453, 4-15
NSDeviceBlackColorSpace, 3-5, 4-15
NSDeviceCMYKColorSpace, 1-145, 3-5,

4-15
NSDeviceColorSpaceName, 1-453, 4-15
NSDeviceIsPrinter, 4-15
NSDeviceIsScreen, 1-453, 4-15
NSDeviceResolution, 1-453, 4-15
NSDeviceRGBColorSpace, 1-145, 3-5, 4-15
NSDeviceSize, 1-453, 4-15
NSDeviceWhiteColorSpace, 1-145, 3-5,

4-15
NSDictionary class, 5-90
NSDirectoryFileType, 4-40
NSDistantObject class, 5-98
NSDivideRect(), 7-14
NSDockWindowLevel, 1-628, 1-641, 4-39
NSDoubleType, 1-118, 1-128, 4-4
NSDownTextMovement, 1-214, 4-33
NSDPSContext, 9-2
NSDPSContextNotification protocol, 10-1
NSDraggingDestination, 666

Index-24 OpenStep Programming Reference—September 1996

NSDraggingException, 4-11
NSDraggingInfo, 670
NSDraggingSource, 1-584, 674
NSDragOperation, 675, 4-7
NSDragOperationAll, 4-7
NSDragOperationCopy, 673, 675, 4-6, 4-7
NSDragOperationGeneric, 673, 675, 4-7
NSDragOperationLink, 673, 675, 4-6, 4-7
NSDragOperationNone, 669, 675, 4-6, 4-7
NSDragOperationPrivate, 673, 4-7
NSDragPboard, 1-388, 1-393, 4-20
NSDrawALine(), 3-6
NSDrawBitmap(), 3-10
NSDrawButton(), 3-2
NSDrawGrayBezel(), 3-3
NSDrawGroove(), 3-3
NSDrawTiledRects(), 3-3
NSDrawWhiteBezel(), 3-3
NSEditorFilter(), 3-6
NSEightBitGrayDepth, 1-638, 3-4
NSEightBitRGBDepth, 3-4
NSEnglishBreakTable, 4-33
NSEnglishBreakTableSize, 4-33
NSEnglishClickTable, 4-33
NSEnglishClickTableSize, 4-33
NSEnglishNoBreakTable, 4-33
NSEnglishNoBreakTableSize, 4-33
NSEnglishSmartLeftChars, 4-33
NSEnglishSmartRightChars, 4-33
NSEnumerateHashTable(), 7-22
NSEnumerateMapTable(), 7-25
NSEnumerator class, 5-100
NSEqualPoints(), 7-15
NSEqualRanges(), 7-18
NSEqualRects(), 7-15
NSEqualSizes(), 7-15
NSEraseRect(), 3-1
NSEventMaskFromType(), 3-18
NSEventTrackingRunLoopMode, 1-631,

4-2

NSEventType, 1-254, 1-262, 4-7
NSException class, 5-102
NSExpandedFontMask, 1-278, 4-12
NSExposedRect, 1-636
NSExtraRefCount(), 7-6
NSFaxButton, 4-21
NSFieldEditor, 1-565
NSFieldFilter(), 3-6
NSFileContentsPboardType, 1-389, 1-398,

4-19
NSFileHandlingPanelBrowser, 4-23
NSFileHandlingPanelCancelButton, 4-23
NSFileHandlingPanelDiskButton, 4-23
NSFileHandlingPanelDiskEjectButton, 4-

23
NSFileHandlingPanelForm, 4-23
NSFileHandlingPanelHomeButton, 4-23
NSFileHandlingPanelImageButton, 4-23
NSFileHandlingPanelOKButton, 4-23
NSFileHandlingPanelTitleField, 4-23
NSFilenamesPboardType, 1-311, 1-318,

1-389, 4-19
NSFilesystemFileType, 4-40
NSFindPboard, 1-388, 1-393, 4-20
NSFirstIndentParagraph, 1-226, 4-28
NSFitPagination, 1-421, 1-424, 1-426,

1-429, 1-430, 4-21
NSFixedPitchFontMask, 1-278, 4-12
NSFlagsChanged, 1-255, 4-7
NSFlagsChangedMask, 1-125, 4-10
NSFloatingWindowLevel, 1-628, 1-641,

4-39
NSFloatType, 1-118, 1-128, 4-4
NSFontAction

NSHeavierFontAction, 4-13
NSLighterFontAction, 4-13

NSFontAction enum, 4-13
NSAddTraitFontAction, 4-13
NSNoFontChangeAction, 4-13
NSRemoveTraitFontAction, 4-13
NSSizeDownFontAction, 4-13
NSSizeUpFontAction, 4-13

Index-25

NSViaPanelFontAction, 4-13
NSFontIdentityMatrix, 1-264, 1-268, 4-12
NSFontPboard, 1-388, 1-393, 4-20
NSFontPboardType, 1-389, 4-19
NSFontTraitMask, 1-279
NSFontUnavailableException, 1-264, 4-11
NSFormatter, 5-109
NSFPCurrentField, 4-12
NSFPPreviewButton, 4-12
NSFPPreviewField, 4-12
NSFPRevertButton, 4-12
NSFPSetButton, 4-12
NSFPSizeField, 4-12
NSFPSizeTitle, 4-12
NSFrameLinkRect(), 3-18
NSFrameRect(), 3-3
NSFrameRectWithWidth(), 3-4
NSFreeHashTable(), 7-20
NSFreeMapTable(), 7-24
NSFSM, 4-25
NSFunctionKeyMask, 1-104, 1-105, 4-10
NSGeneralPboard, 1-388, 1-393, 4-20
NSGenericException, 8-2
NSGetFileType(), 3-17
NSGetFileTypes(), 3-17
NSGetSizeAndAlignment(), 7-30
NSGetUncaughtExceptionHandler(), 7-7
NSGlobalDomain, 5-261, 5-264, 8-12
NSGlyph, 4-12
NSGrayModeColorPanel, 1-166, 660, 665,

4-5
NSGrooveBorder, 1-51, 1-465, 4-38
NSHandler, 8-1
NSHashEnumerator, 7-22, 8-4
NSHashGet(), 7-21
NSHashInsert(), 7-22
NSHashInsertIfAbsent(), 7-22
NSHashInsertKnownAbsent(), 7-22
NSHashRemove(), 7-23
NSHashTable, 8-4

NSHashTableCallBacks, 7-19, 8-5
NSHeavierFontAction, 4-13
NSHeight(), 7-13
NSHeightChange, 4-26
NSHeightInfo, 4-26
NSHelpKeyMask, 1-104, 1-105, 4-10
NSHideAppsExcept(), 3-15
NSHighlightModeMatrix, 1-339, 1-349,

1-350, 1-362, 4-15
NSHighlightRect(), 3-1
NSHomeDirectory(), 7-28
NSHomeDirectoryForUser(), 7-28
NSHSBModeColorPanel, 1-166, 661, 665,

4-5
NSIconSize, 4-39
NSIgnoreMisspelledWords, 1-488, 676
NSIllegalSelectorException, 4-11
NSIllegalTextMovement, 4-32
NSImageAbove, 1-91, 1-103, 4-3
NSImageBelow, 1-91, 1-100, 1-103, 4-3
NSImageCacheException, 4-11
NSImageCellType, 1-138, 4-3
NSImageLeft, 1-91, 1-100, 1-103, 4-3
NSImageOnly, 1-91, 1-103, 4-3
NSImageOverlaps, 1-91, 1-100, 1-103, 4-3
NSImageRepMatchesDevice, 1-334,

1-336, 4-14
NSImageRepRegistryChangedNotificatio

n, 1-333
NSImageRepRegistryDidChangeNotificat

ion, 4-17
NSImageRight, 1-91, 1-103, 4-3
NSInconsistentArchiveException, 5-256,

8-2
NSIncrementExtraRefCount(), 7-6
NSIndentParagraph, 1-226, 4-28
NSInsetRect(), 7-13
NSIntegralRect(), 7-14
NSInternalInconsistencyException, 5-20,

5-98, 5-213, 5-271, 8-2
NSInternationalCurrencyString, 8-12

Index-26 OpenStep Programming Reference—September 1996

NSIntersectionRange(), 7-18
NSIntersectionRect(), 7-14
NSIntersectsRect(), 7-15
NSIntHashCallBacks, 8-5
NSIntMapKeyCallBacks, 8-7
NSIntMapValueCallBacks, 8-7
NSIntType, 1-118, 1-128, 4-4
NSInvalidArgumentException, 5-6, 5-7,

5-10, 5-14, 5-15, 5-24, 5-34, 5-50,
5-61, 5-93, 5-96, 5-115, 5-116,
5-125, 5-139, 5-152, 5-182, 5-200,
5-259, 5-269, 5-271, 7-22, 7-26,
7-27, 8-2

NSInvocation class, 5-114
NSIsEmptyRect(), 7-15
NSISOLatin1StringEncoding, 8-11
NSISOLatin2StringEncoding, 8-11
NSItalicFontMask, 1-278, 4-11
NSJapaneseEUCStringEncoding, 8-11
NSJustificationAlignedParagraph, 1-226,

4-28
NSJustifiedTextAlignment, 1-10, 1-126,

1-184, 1-190, 1-213, 1-543, 1-551,
4-31

NSKeyDown, 1-255, 1-627, 4-7
NSKeyDownMask, 1-125, 4-10
NSKeyUp, 1-255, 4-7
NSKeyUpMask, 1-125, 4-10
NSLandscapeOrientation, 1-381, 1-425,

1-427, 4-20
NSLay, 4-26
NSLayArray, 4-26
NSLayFlags, 4-27
NSLayInfo, 3-6, 4-27
NSLeftAlignedParagraph, 1-226, 4-28
NSLeftMarginParagraph, 1-226, 4-28
NSLeftMouseDown, 4-7
NSLeftMouseDownMask, 1-125, 1-189,

4-10
NSLeftMouseDragged, 4-7

NSLeftMouseDraggedMask, 1-125,
1-189, 4-10

NSLeftMouseUp, 1-255, 4-7
NSLeftMouseUpMask, 1-125, 1-189, 4-10
NSLeftRightAlignment, 1-184
NSLeftTab, 4-32
NSLeftTextAlignment, 1-10, 1-126, 1-184,

1-190, 1-213, 1-223, 1-293, 1-294,
1-543, 1-551, 4-31

NSLeftTextMovement, 1-214, 4-33
NSLighterFontAction, 4-13
NSLightGray, 4-15
NSLineBorder, 1-51, 1-465, 1-466, 4-38
NSLineDesc, 4-25, 4-27
NSLinkBroken, 1-243, 4-6
NSLinkFrameThickness(), 3-18
NSLinkInDestination, 1-243, 4-6
NSLinkInSource, 1-243, 4-6
NSListModeMatrix, 1-339, 1-349, 1-350,

1-362, 4-16
NSLiteralSearch, 5-225, 5-236, 5-237, 8-10
NSLoadedClasses, 5-28
NSLocalizedString(), 7-29
NSLocalizedStringFromTable(), 7-29
NSLocalizedStringFromTableInBundle(),

7-29
NSLocationInRange(), 7-18
NSLock class, 5-118
NSLocking protocol, 279
NSLog(), 5-181, 7-28
NSLogPageSize(), 7-1
NSLogv(), 7-28
NSMainMenuWindowLevel, 1-628, 1-641,

4-39
NSMakePoint(), 7-11
NSMakeRange(), 7-12
NSMakeRect(), 7-12
NSMakeSize(), 7-11
NSMallocException, 8-2
NSMapEnumerator, 7-25, 8-6
NSMapGet(), 7-25

Index-27

NSMapInsert(), 7-26
NSMapInsertIfAbsent(), 7-26
NSMapInsertKnownAbsent(), 7-27
NSMapMember(), 7-25
NSMapRemove(), 7-27
NSMapTable, 8-6
NSMapTableKeyCallBacks, 7-23, 7-26, 8-6
NSMapTableValueCallBacks, 8-7
NSMatrixMode, 1-362, 4-16
NSMaxRange(), 7-18
NSMaxX(), 7-12
NSMaxXEdge, 7-14
NSMaxY(), 7-12
NSMaxYEdge, 7-14
NSMenuActionResponde, 677
NSMenuActionResponder, 1-401, 1-405
NSmenuArrow, 1-80
NSMenuItem, 679
NSMethodSignature class, 5-119
NSMidX(), 7-12
NSMidY(), 7-12
NSMiniaturizableWindowMask, 1-643,

4-39
NSMiniturizableWindowMask, 1-612
NSMinX(), 7-13
NSMinXEdge, 7-14
NSMinY(), 7-13
NSMinYEdge, 7-14
NSModalPanelRunLoopMode, 4-2
NSModalPaneRunLoopMode, 1-631
NSModalSession, 4-1
NSMomemtaryChangeButton, 1-95
NSMomentaryChangeButton, 1-106, 4-2
NSMomentaryLight, 1-106
NSMomentaryLightButton, 4-2
NSMomentaryPushButton, 1-94, 1-106,

4-2
NSMonthNameArray, 8-12
NSMouseEntered, 1-256, 4-7
NSMouseEnteredMask, 1-125, 4-10

NSMouseExited, 1-256, 4-7
NSMouseExitedMask, 1-125, 4-10
NSMouseInRect(), 7-16
NSMouseMoved, 1-255, 4-7
NSMouseMovedMask, 1-125, 4-10
NSMouseScreenLocation(), 3-15
NSMutableArray class, 5-122
NSMutableCharacterSet class, 5-129
NSMutableCopying protocol, 281
NSMutableData class, 5-131
NSMutableDictionary class, 5-137
NSMutableSet class, 5-140
NSMutableString class, 5-143
NSNamedColorSpace, 1-146, 4-15
NSNarrowFontMask, 1-278, 4-12
NSNaturalTextAlignment, 1-10, 1-126,

1-184, 1-190, 1-213, 1-543, 1-551,
4-31

NSNextHashEnumeratorItem(), 7-22
NSNextMapEnumeratorPair(), 7-25
NSNEXTSTEPStringEncoding, 8-11
NSNibAwaking, 681
NSNibLoadingException, 4-11
NSNoBorder, 1-51, 1-465, 1-466, 4-38
NSNoCellMask, 1-102, 4-4
NSNoFontChangeAction, 4-13
NSNoImage, 1-91, 1-100, 1-103, 4-3
NSNonLossyASCIIStringEncoding, 8-11
NSNonOwnedPointerHashCallBacks, 8-5
NSNonOwnedPointerMapKeyCallBacks,

8-7
NSNonOwnedPointerMapValueCallBack

s, 8-8
NSNonOwnedPointerOrNullMapKeyCall

Backs, 8-8
NSNonRetainedObjectHashCallBacks, 8-

5
NSNonRetainedObjectMapKeyCallBacks,

8-8
NSNonRetainedObjectMapValueCallBack

s, 8-9

Index-28 OpenStep Programming Reference—September 1996

NSNonStandardCharacterSetFontMask,
1-278, 4-12

NSNormalWindowLevel, 1-628, 1-641,
4-39

NSNoScrollerParts, 1-462, 4-24
NSNotAnIntMapKey, 8-7
NSNotAPointerMapKey, 8-7
NSNotFound, 5-13, 5-14, 8-10
NSNotification class, 5-146
NSNotificationCenter class, 5-149
NSNotificationCoalescing, 5-154, 8-9
NSNotificationCoalescingOnName, 5-154
NSNotificationCoalescingOnSender, 5-15

4
NSNotificationQueue class, 5-153
NSNoTitle, 4-2
NSNullCellType, 1-137, 4-3
NSNullObject, 3-10
NSNumber class, 5-158
NSNumberOfColorComponents(), 3-5
NSNumericPadKeyMask, 1-104, 1-105,

4-10
NSObjCTypeSerializationCallBack

protocol, 282
NSObject protocol, 285
NSObjectMapKeyCallBacks, 8-8
NSObjectMapValueCallBacks, 8-8
NSOffsetRect(), 7-13
NSOKButton, 1-377, 1-383, 1-449, 4-18
NSOnlyScrollerArrows, 1-462, 4-24
NSOnOffButton, 1-95, 1-106, 4-2
NSOpenStepUnicodeReservedBase, 8-11
NSOrderedAscending, 1-451, 5-82, 5-226,

8-10
NSOrderedDescending, 1-451, 5-82,

5-226, 8-10
NSOrderedSame, 1-451, 5-82, 5-226, 8-10
NSOwnedObjectIdentityHashCallBacks,

8-6
NSOwnedPointerHashCallBacks, 8-5
NSOwnedPointerMapKeyCallBacks, 8-8

NSOwnedPointerMapValueCallBacks, 8-
8

NSPageSize(), 7-1
NSParagraphProperty, 1-225, 4-28
NSParameterAssert(), 7-11
NSPasteboardCommunicationException,

1-390, 4-11
NSpecialPageOrder, 1-436
NSPerformService(), 3-14
NSPeriodic, 1-256, 4-7
NSPeriodicMask, 1-125, 1-189, 4-10
NSPlainFileType, 4-40
NSPlanarFromDepth(), 3-5
NSPLCancelButton, 4-19
NSPLHeightForm, 4-19
NSPLImageButton, 4-19
NSPLOKButton, 4-19
NSPLOrientationMatrix, 4-19
NSPLPaperNameButton, 4-19
NSPLTitleField, 4-19
NSPLUnitsButton, 4-19
NSPLWidthForm, 4-19
NSPoint, 8-3
NSPointerToStructHashCallBacks, 8-5
NSPointFromString(), 7-16
NSPointInRect(), 7-16
NSPortraitOrientation, 1-381, 1-425,

1-427, 4-20
NSPositiveDoubleType, 1-118, 1-128, 4-4
NSPositiveFloatType, 1-118, 1-128, 4-4
NSPositiveIntType, 1-118, 1-128, 4-4
NSPosixFileDescriptor class, 5-188
NSPostASAP, 5-155
NSPosterFontMask, 1-278, 4-12
NSPostingStyle, 5-156, 8-9
NSPostNow, 5-155
NSPostScriptPboardType, 1-311, 1-312,

1-389, 4-19
NSPostscriptPboardType, 1-318
NSPostWhenIdle, 5-155
NSPPCopiesField, 4-21

Index-29

NSPPDIncludeNotFoundException, 4-11
NSPPDIncludeStackOverflowException,

4-11
NSPPDIncludeStackUnderflowException,

4-11
NSPPDParseException, 4-11
NSPPImageButton, 4-21
NSPPLayoutButton, 4-21
NSPPNameField, 4-21
NSPPNameTitle, 4-21
NSPPNoteField, 4-21
NSPPNoteTitle, 4-21
NSPPOptionsButton, 4-21
NSPPPageChoiceMatrix, 4-21
NSPPPageRangeFrom, 4-21
NSPPPageRangeTo, 4-21
NSPPPaperFeedButton, 4-21
NSPPPreviewButton, 4-21
NSPPSaveButton, 4-21
NSPPScaleField, 4-21
NSPPStatusField, 4-21
NSPPStatusTitle, 4-21
NSPPTitleField, 4-21
NSPrintAllPages, 4-22
NSPrintBottomMargin, 4-22
NSPrintCancelJob, 1-427, 4-22
NSPrintCopies, 4-22
NSPrinter Tables, 1-410
NSPrinterTableError, 1-419, 4-20
NSPrinterTableNotFound, 1-419, 4-20
NSPrinterTableOK, 1-419, 4-20
NSPrinterTableStatus, 1-419, 4-20
NSPrintFaxCoverSheetName, 4-23
NSPrintFaxHighResolution, 4-23
NSPrintFaxJob, 1-427, 4-22, 4-23
NSPrintFaxModem, 4-23
NSPrintFaxReceiverNames, 4-23
NSPrintFaxReceiverNumbers, 4-23
NSPrintFaxReturnReceipt, 4-23
NSPrintFaxSendTime, 4-23

NSPrintFaxTrimPageEnds, 4-23
NSPrintFaxUseCoverSheet, 4-23
NSPrintFirstPage, 4-22
NSPrintHorizonalPagination, 4-22
NSPrintHorizontallyCentered, 4-22
NSPrintingCommunicationException, 4-1

1
NSPrintingOrientation, 1-425, 1-427, 4-20
NSPrintingPageOrder, 1-436, 4-20
NSPrintingPaginationMode, 1-429, 4-21
NSPrintJobDisposition, 4-22
NSPrintJobFeatures, 4-22
NSPrintLastPage, 4-22
NSPrintLeftMargin, 4-22
NSPrintManualFeed, 4-22
NSPrintOperationExistsException, 1-433,

1-434, 4-11
NSPrintOrientation, 4-22
NSPrintPackageException, 4-11, 4-22
NSPrintPagesPerSheet, 4-22
NSPrintPaperFeed, 4-22
NSPrintPaperName, 4-22
NSPrintPaperSize, 4-22
NSPrintPreviewJob, 1-427, 4-22
NSPrintPrinter, 4-22
NSPrintReversePageOrder, 4-22
NSPrintRightMargin, 4-22
NSPrintSaveJob, 1-427, 4-22
NSPrintSavePath, 4-22
NSPrintScalingFactor, 4-22
NSPrintSpoolJob, 1-427, 4-22
NSPrintTopMargin, 4-22
NSPrintVerticallyCentered, 4-22
NSPrintVerticalPagination, 4-22
NSProcessInfo class, 5-195
NSProxy class, 5-198
NSPushInCell, 4-3
NSPushInCellMask, 1-102, 4-4
NSPushOnPushOffButton, 1-94, 1-106,

4-2

Index-30 OpenStep Programming Reference—September 1996

NSRadioButton, 1-94, 1-106, 4-2
NSRadioModeMatrix, 1-339, 1-347, 1-349,

1-350, 1-356, 1-359, 1-362, 4-15
NSRange, 8-13
NSRangeException, 5-75, 5-76, 5-125,

5-126, 5-127, 5-135, 8-2
NSRangeFromString(), 7-19
NSReadPixel(), 3-5
NSReadWordTable(), 3-7
NSRealMemoryAvailable(), 7-2
NSRect, 8-3
NSRectClip(), 3-1
NSRectClipList(), 3-2
NSRectEdge, 7-14, 8-3
NSRectFill(), 3-2
NSRectFillList(), 3-2
NSRectFillListWithGrays(), 3-2
NSRectFromString(), 7-17
NSRecursiveLock class, 5-200
NSRecycleZone(), 7-4
NSRegisterServicesProvider(), 3-12
NSRegistrationDomain, 5-261, 5-264, 8-12
NSReleaseAlertPanel(), 3-12
NSRemoveTabParagraph, 1-226, 4-28
NSRemoveTraitFontAction, 4-13
NSResetHashTable(), 7-20
NSResetMapTable(), 7-24
NSResizableWindowMask, 1-612, 1-624,

1-643, 4-39
NSReturnTextMovement, 4-32
NSRGBModeColorPanel, 1-166, 660, 665,

4-5
NSRightAlignedParagraph, 1-226, 4-28
NSRightMarginParagraph, 1-226, 4-28
NSRightMouseDown, 1-255, 4-7
NSRightMouseDownMask, 1-125, 4-10
NSRightMouseDragged, 1-255, 4-7
NSRightMouseDraggedMask, 1-125, 4-10
NSRightMouseUp, 1-255, 4-7
NSRightMouseUpMask, 1-125, 4-10

NSRightTextAlignment, 1-10, 1-126,
1-190, 1-213, 1-293, 1-294, 1-543,
1-551, 4-31

NSRightTextMovement, 1-214, 4-33
NSRoundDownToMultipleOfPageSize(),

7-1
NSRoundUpToMultipleOfPageSize(), 7-2
NSRTFPboardType, 1-389, 1-544, 4-19
NSRTFPropertyStackOverflowException,

4-11
NSRulerPboard, 1-388, 1-393, 4-20
NSRulerPboardType, 1-389, 1-544, 4-19
NSRun, 4-28
NSRunAbortedResponse, 1-18, 4-1
NSRunAlertPanel(), 3-11
NSRunArray, 4-28
NSRunContinuesResponse, 4-1
NSRunFlags, 4-29
NSRunLoop class, 5-202
NSRunStoppedResponse, 1-30, 4-1
NSScanALine(), 3-7
NSScanner class, 5-205
NSScrollArrowPosition, 1-457, 4-24
NSScrollerArrow, 4-23
NSScrollerArrowsMaxEnd, 1-458, 4-24
NSScrollerArrowsMinEnd, 1-458, 4-24
NSScrollerArrowsNone, 1-458, 4-24
NSScrollerDecrementArrow, 1-458, 4-23
NSScrollerDecrementLine, 1-460, 4-24
NSScrollerDecrementPage, 1-460, 4-24
NSScrollerIncrementArrow, 1-458, 4-23
NSScrollerIncrementLine, 1-460, 4-24
NSScrollerIncrementPage, 1-460, 4-24
NSScrollerKnob, 1-460, 4-24
NSScrollerKnobSlot, 1-460, 4-24
NSScrollerNoPart, 1-460, 4-24
NSScrollerPart, 1-459, 4-24
NSScrollerWidth, 4-24
NSSelectionPboardType, 1-389, 4-19
NSSelectorFromString(), 7-29
NSSelPt, 4-29

Index-31

NSSerializer class, 5-210
NSServicesRequests, 683
NSSet class, 5-212
NSSetShowsServicesMenuItem(), 3-12
NSSetUncaughtExceptionHandler(), 7-7
NSSetWindowLevel(), 3-15
NSSetZoneName(), 7-4
NSShellCommandFileType, 4-40
NSShiftJISStringEncoding, 8-11
NSShiftKeyMask, 1-104, 1-105, 1-353, 4-9
NSShortMonthNameArray, 8-12
NSShortTimeDateFormatString, 8-12
NSShortWeekDayNameArray, 8-12
NSShouldRetainWithZone(), 7-6
NSShowsServicesMenuItem(), 3-13
NSSize, 8-3
NSSizeDownFontAction, 4-13
NSSizeFromString(), 7-17
NSSizeUpFontAction, 4-13
NSSmallCapsFontMask, 1-278, 4-12
NSSpecialPageOrder, 4-20
NSSplitViewDidResizeSubviewsNotificati

on, 4-17
NSSplitViewWillResizeSubviewsNotificat

ion, 1-504, 4-17
NSsquare16, 1-133
NSString class, 5-218
NSStringBoundsError, 5-145, 5-146, 5-229,

5-230, 5-241, 5-242
NSStringEncoding, 8-11
NSStringFromClass(), 7-30
NSStringFromHashTable(), 7-23
NSStringFromMapTable(), 7-27
NSStringFromPoint(), 7-16
NSStringFromRange(), 7-19
NSStringFromRect(), 7-16
NSStringFromSelector(), 7-30
NSStringFromSize(), 7-17
NSStringPboardType, 1-389, 1-544, 4-19
NSSubmenuWindowLevel, 1-628, 1-641,

4-39

NSswitch, 1-94
NSSwitchButton, 1-106, 4-2
NSswitchH, 1-94
NSSymbolStringEncoding, 8-11
NSTableColumn, 1-504
NSTableDataSource protocol, 684
NSTableHeaderCell class, 1-510
NSTableHeaderView class, 1-510
NSTableView class, 1-512
NSTabStop, 4-29
NSTabTextMovement, 4-32
NSTabularTextPboardType, 1-389, 4-19
NSText, 1-346
NSTextAlignment, 1-126, 1-184, 1-189,

1-213, 1-296, 1-542, 1-550, 4-31
NSTextBlock, 4-30
NSTextBlockSize, 4-30
NSTextCache, 4-30
NSTextCellType, 1-10, 1-137, 4-3
NSTextChunk, 3-8, 4-25, 4-30
NSTextDidBeginEditingNotification, 1-54

7, 1-558, 4-17
NSTextDidChangeNotification, 1-545,

1-547, 1-548, 1-558, 4-17
NSTextDidEndEditingNotification, 1-442,

1-545, 1-558, 4-17
NSTextField, 1-346
NSTextFilterFunc, 4-31
NSTextFontInfo(), 3-7
NSTextFunc, 4-31
NSTextLineTooLongException, 4-11
NSTextNoSelectionException, 4-11
NSTextReadException, 4-11
NSTextStyle, 4-32
NSTextWriteException, 4-11
NSThousandsSeparator, 8-12
NSThread class, 5-242
NSThreadExiting, 5-244, 8-12
NSThreadPriority, 8-12
NSTIFFCompression, 1-40
NSTIFFException, 4-11

Index-32 OpenStep Programming Reference—September 1996

NSTIFFPboardType, 1-311, 1-312, 1-318,
1-389, 4-19

NSTimeDateFormatString, 8-12
NSTimeFormatString, 8-12
NSTimeInterval, 8-13
NSTimer class, 5-245
NSTimeZone class, 5-249
NSTimeZoneDetail class, 5-254
NSTitledWindowMask, 1-612, 1-643, 4-39
NSTitlePosition, 4-2
NSToggleButton, 1-94, 1-106, 4-2
NSTokenSize, 4-39
NSTrackingRectTag, 4-38
NSTrackModeMatrix, 1-338, 1-349, 1-350,

1-362, 4-16
NSTwelveBitRGBDepth, 1-618, 1-638, 3-4
NSTwentyFourBitRGBDepth, 1-638, 3-4
NSTwoBitGrayDepth, 1-618, 1-638, 3-4
NSTypedStreamVersionException, 4-11
NSUnarchiver class, 5-256
NSUnboldFontMask, 1-278, 1-282, 4-12
NSUncaughtExceptionHandler, 8-1
NSUnicodeStringEncoding, 8-11
NSUnionRange(), 7-18
NSUnionRect(), 7-14
NSUnitalicFontMask, 1-278, 4-12
NSUnknownPageOrder, 1-436, 4-20
NSUnregisterServicesProvider(), 3-12
NSUpdateContinuously, 4-6
NSUpdateDynamicServices(), 3-14
NSUpdateManually, 4-6
NSUpdateNever, 4-6
NSUpdateWhenSourceSaved, 4-6
NSUpTextMovement, 1-214, 4-33
NSUsableScrollerParts, 1-462, 4-24
NSUserDefaults class, 5-260
NSUserDefaultsChanged, 5-267, 8-12
NSUserName(), 7-27
NSUTF8StringEncoding, 8-11
NSValue class, 5-270

NSViaPanelFontAction, 4-13
NSViewBoundsDidChangeNotification, 4

-17
NSViewFocusChangedNotification, 1-596

, 1-597, 1-599, 1-600, 1-603
NSViewFocusDidChangeNotification, 4-

17
NSViewFrameChangedNotification, 1-60

0
NSViewFrameDidChangeNotification, 4-

17
NSViewHeightSizable, 1-577, 4-38
NSViewHeightsSizable, 1-598
NSViewMaxXMargin, 1-577, 1-598, 4-38
NSViewMaxYMargin, 1-577, 1-598, 4-38
NSViewMinXMargin, 1-577, 1-598, 4-38
NSViewMinYMargin, 1-577, 1-598, 4-38
NSViewNotSizable, 1-577, 4-38
NSViewNotSizeable, 1-598
NSViewWidthSizable, 1-577, 1-598, 4-38
NSWeekDayNameArray, 8-12
NSWheelModeColorPanel, 1-166, 661,

665, 4-5
NSWhite, 4-15
NSWidth(), 7-13
NSWidthArray, 4-32
NSWindowAbove, 1-288, 1-575, 1-632,

14-2
NSWindowBelow, 1-288, 1-575, 1-632,

14-2
NSWindowCurrentMouse(), 3-14
NSWindowDepth, 1-455, 1-618, 1-638, 3-4
NSWindowDidBecomeKeyNotification, 1

-614, 1-646, 4-17
NSWindowDidBecomeMainNotification,

1-614, 1-646, 4-17
NSWindowDidChangeScreenNotification

, 1-636, 1-646, 4-17
NSWindowDidDeminiaturizeNotification

, 1-631, 1-632, 1-647, 4-17
NSWindowDidExposeNotification, 1-636,

1-647, 4-17

Index-33

NSWindowDidMiniaturizeNotification, 1
-629, 1-647, 4-17

NSWindowDidMoveNotification, 1-636,
1-647, 4-17

NSWindowDidResignKeyNotification, 1-
634, 1-648, 4-17

NSWindowDidResignMainNotification,
1-635, 1-648, 4-17

NSWindowDidResizeNotification, 1-493,
1-639, 1-648, 4-18

NSWindowDidUpdateNotification, 1-644
, 1-648, 4-18

NSWindowOrderingMode, 1-288, 1-575,
1-632, 14-2

NSWindowOut, 1-288, 1-575, 1-632, 14-2
NSWindowServerCommunicationExcepti

on, 1-454, 4-11
NSWindowStillDown(), 3-14
NSWindowWillCloseNotification, 1-616,

1-649, 4-18
NSWordTablesReadException, 4-11
NSWordTablesWriteException, 4-11
NSWorkspaceCompressOperation, 4-40
NSWorkspaceCopyOperation, 4-40
NSWorkspaceDecompressOperation, 4-4

0
NSWorkspaceDecryptOperation, 4-40
NSWorkspaceDestroyOperation, 4-40
NSWorkspaceDidLaunchApplicationNoti

fication, 4-18
NSWorkspaceDidMountNotification, 4-1

8
NSWorkspaceDidPerformFileOperationN

otification, 4-18
NSWorkspaceDidTerminateApplicationN

otification, 4-18
NSWorkspaceDidUnmountNotification,

4-18
NSWorkspaceDuplicateOperation, 4-40
NSWorkspaceEncryptOperation, 4-40
NSWorkspaceLinkOperation, 4-40
NSWorkspaceMoveOperation, 4-40

NSWorkspaceRecycleOperation, 4-40
NSWorkspaceWillLaunchApplicationNoti

fication, 4-18
NSWorkspaceWillPowerOffNotification,

4-18
NSWorkspaceWillUnmountNotification,

4-18
NSZeroPoint, 8-3
NSZeroRect, 8-4
NSZeroSize, 8-4
NSZone, 8-13
NSZoneCalloc(), 7-4
NSZoneFree(), 7-4
NSZoneFromPointer(), 7-3
NSZoneMalloc(), 7-3
NSZoneName(), 7-5
NSZoneRealloc(), 7-4
numberOfArguments, 5-121
numberOfColumns, 1-353
numberOfItems, 1-403
numberOfPlanes, 1-48
numberOfRows, 1-353
numberOfRowsInTableView:, 686
numberOfVisibleColumns, 1-66
numberWithBool:, 5-161
numberWithChar:, 5-161
numberWithDouble:, 5-161
numberWithFloat:, 5-161
numberWithInt:, 5-161
numberWithLong:, 5-161
numberWithLongLong:, 5-162
numberWithShort:, 5-162
numberWithUnsignedChar:, 5-162
numberWithUnsignedInt:, 5-162
numberWithUnsignedLong:, 5-162
numberWithUnsignedLongLong:, 5-162
numberWithUnsignedShort:, 5-163

O
objCType, 5-274

Index-34 OpenStep Programming Reference—September 1996

object, 5-148
objectAtIndex:, 5-15
objectEnumerator, 5-16, 5-69, 5-218
objectForKey:, 5-266
objectsForKeys:notFoundMarker:, 5-97
objectZone, 5-55, 5-260
ok:, 1-448
opaqueAncestor, 1-591
openFile:, 1-656
openFile:fromImage:at:inView:, 1-656
openFile:withApplication:, 1-656
openFile:withApplication:andDeactivate:,

1-656
openPanel, 1-376
openTempFile:, 1-657
orangeColor, 1-154
orderBack:, 1-631
orderFront:, 1-631
orderFrontColorPanel:, 1-24
orderFrontDataLinkPanel:, 1-24
orderFrontFontPanel:, 1-283
orderFrontHelpPanel:, 1-24
orderFrontRegardless, 1-631
orderOut:, 1-632
orderWindow:relativeTo:, 1-288, 1-632
orientation, 1-425
Other Bundles, 5-27
otherEventWithType:location:modifierFla

gs:timestamp:windowNumber:c
ontext:subtype:data1:data2:, 1-2
59

P
pageLayout, 1-380
pageOrder, 1-436
pageSizeForPaper:, 1-418
panel:compareFilename:with:caseSensitiv

e:, 1-451
panel:isValidFilename:, 1-452
panel:shouldShowFilename:, 1-452

panelConvertFont:, 1-288
paperName, 1-425
paperSize, 1-426
paragraphRect:start:end:, 1-215
paragraphStyleForFont:alignment:, 1-215
parentContext, 9-8
paste:, 1-547
paste: (SoundView), 44
pasteboard:provideDataForType:, 1-396,

44
pasteboardByFilteringData:ofType:, 1-392
pasteboardByFilteringFile:, 1-392
pasteboardByFilteringTypesInPasteboard:

, 1-392
pasteboardChangedOwner:, 1-396
pasteboardWithName:, 1-393
pasteboardWithUniqueName, 1-393
pasteFont:, 1-547
pasteRuler:, 1-548
path, 1-66
pathExtension, 5-235
pathForImageResource:, 1-84
pathForResource:ofType:, 5-30
pathForResource:ofType:inDirectory:, 5-2

9, 5-31
pathSeparator, 1-66
pathsForResourcesOfType:inDirectory:, 5

-31
pathToColumn:, 1-66
pause (Sound), 22
pause: (Sound), 22
pause: (SoundView), 44
peakGray (SoundMeter), 34
peakValue (SoundMeter), 34
performClick:, 1-90, 1-101
performClose:, 1-632
performDragOperation:, 669
performFileOperation:source:destination:

files:tag:, 1-657
performKeyEquivalent:, 1-90, 1-354,

1-443, 1-592

Index-35

performMiniaturize:, 1-632
performSelector:, 287
performSelector:object:afterDelay:, 5-187
performSelector:withObject:, 287
performSelector:withObject:withObject:,

287
Periodic Events, 1-256
persistentDomainForName:, 5-266
persistentDomainNames, 5-266
pickedBreakAllLinks:, 1-249
pickedBreakLink:, 1-250
pickedButton:, 1-381
pickedOpenSource:, 1-250
pickedOrientation:, 1-381
pickedPaperSize:, 1-381
pickedUnits:, 1-382
pickedUpdateDestination:, 1-250
pickedUpdateMode:, 1-250
pipes, 5-188
pixelsWide, 1-336
play (Sound), 23
play: (Sound), 23
play: (SoundView), 44
point size, 1-275
pointerValue, 5-275
pointSize, 1-271
pointValue, 5-274
pop, 1-234, 1-237
poseAsClass:, 5-178
positionFromLine:, 1-215
positionOfGlyph:precededByGlyph:isNo

minal:, 1-271
POSIX, 5-202
postEvent:atStart:, 1-24, 1-633
postNotification:, 5-152
postNotificationName:object:, 5-152
postNotificationName:object:userInfo:, 5-

152
postsBoundsChangedNotifications, 1-592
PostScript, 1-415

PostScript Language Level, 1-418
PostScript Printer Description

(PPD), 1-407, 1-431
PostScript unit, 1-264
Postscript units, 1-275
postSelSmartTable, 1-215
postsFrameChangedNotifications, 1-592
PPD, 1-407, 1-410, 1-431
PPD Format, 1-408
PPDArgumentTranslation, 1-410
PPDOptionTranslation, 1-410
PPDOrderDependency, 1-410, 1-412
Predefined Exceptions, 5-106
prefersColorMatch, 1-321
prefersTrackingUntilMouseUp, 1-112,

1-481
prepareForDragOperation:, 670
prepareGState, 1-253
pressure, 1-261
preventWindowOrdering, 1-25
previousText, 1-354, 1-562
principalClass, 5-32
print:, 1-304, 1-592, 1-633
printer, 1-426
printerFont, 1-272
printerNames, 1-414
printerTypes, 1-415
printerWithName:, 1-415
printerWithType:, 1-415
printFormat:, 9-8
printFormat:arguments:, 9-8
printInfo, 1-382, 1-436
printOperationWithView:, 1-434
printOperationWithView:printInfo:, 1-43

4
processInfo, 5-196
processingError (Sound), 23
processName, 5-197
prompt, 1-448
propertyList, 5-235

Index-36 OpenStep Programming Reference—September 1996

propertyListForType:, 1-397
propertyListFromStringsFileFormat, 5-23

6
protocols, 5-173
prototype, 1-354
provideNewButtonImage, 1-174, 665
provideNewView:, 661
proxyWithLocal:connection:, 5-99
proxyWithTarget:connection:, 5-99
PScomposite(), 13-2
PScompositerect(), 13-2
PScurrentalpha(), 13-2
PSdissolve(), 13-2
PSDoUserPath(), 12-2
PSDoUserPathWithMatrix(), 12-2
PSFlush(), 12-3
PSsetalpha(), 13-2
PSWait(), 12-3
pullsDown, 1-404
punctuationCharacterSet, 5-45
purpleColor, 1-154
push, 1-237
putCell:atRow:column:, 1-355

R
raise, 5-108
raise:format:, 5-107
raise:format:arguments:, 5-107
Raising an Exception, 5-102
Raising an Exception Outside of an

Exception Handler, 5-106
rangeOfCharacterFromSet:, 5-236
rangeOfCharacterFromSet:options:, 5-236
rangeOfCharacterFromSet:options:range:,

5-236
rangeOfComposedCharacterSequenceAtI

ndex:, 5-237
rangeOfString:, 5-237
rangeOfString:options:, 5-237
rangeOfString:options:range:, 5-237

readFileContentsType:toFile:, 1-397
readPrintInfo, 1-383
readRTFDFromFile:, 1-548
readSelectionFromPasteboard:

(SoundView), 45
readSoundfile: (Sound), 23
reason, 5-108
recache, 1-322
record (Sound), 23
record: (Sound), 24
record: (SoundView), 45
rect, 1-108
Rectangles, Views, and the View

Hierarchy, 1-606
rectForKey:inTable:, 1-418
rectForPage:, 1-593
rectForPart:, 1-460
rectValue, 5-275
redColor, 1-154
redComponent, 1-159
reductionFactor (SoundView), 45
reflectScrolledClipView:, 1-593
registerDefaults:, 5-266
registerDirective:forClass:, 1-206
registeredImageRepClasses, 1-334
registerForDraggedTypes:, 1-593, 1-633
registerImageRepClass:, 1-333
registerLanguage:byVendor:, 1-499
registerName:, 5-64
registerServicesMenuSendTypes:returnTy

pes:, 1-25
release, 287
releaseGlobally, 1-397
releaseGState, 1-593
reloadColumn:, 1-67
removeAllItems, 1-404
removeAllObjects, 5-126, 5-142
removeCharactersInRange:, 5-131
removeCharactersInString:, 5-131
removeColorWithKey:, 1-163

Index-37

removeColumn:, 1-355
removeCursorRect:cursor:, 1-594
removeEntryAtIndex:, 1-292
removeFile, 1-163
removeFontTrait:, 1-283
removeFrameUsingName:, 1-613
removeFromSuperview, 1-594
removeItemAtIndex:, 1-404
removeItemWithTitle:, 1-404
removeLastObject, 5-126
removeObject:, 5-69, 5-126, 5-142
removeObject:inRange:, 5-127
removeObjectAtIndex:, 5-126
removeObjectForKey:, 5-267
removeObjectIdenticalTo:, 5-126
removeObjectIdenticalTo:inRange:, 5-127
removeObjectsFromIndices:numIndices:,

5-127
removeObjectsInArray:, 5-127
removeObjectsInRange:, 5-127
removeObserver:, 5-152
removeObserver:name:object:, 5-152
removePersistentDomainForName:, 5-26

7
removeRepresentation:, 1-322
removeRequestMode:, 5-64
removeRow:, 1-355
removeSoundForName: (Sound), 16
removeTrackingRect:, 1-594
removeVolatileDomainForName:, 5-267
removeWindowsItem:, 1-25
renewFont:size:style:text:frame:tag:, 1-21

7
renewFont:text:frame:tag:, 1-216
renewGState, 1-594
renewRows:columns:, 1-355
renewRuns:text:frame:tag:, 1-217
replaceBytesInRange:withBytes:, 5-135
replaceCharactersInRange:withRTF:, 1-54

9

replaceCharactersInRange:withRTFD:, 1-
549

replaceCharactersInRange:withString:, 1-
549, 5-146

replacementObjectForArchiver:, 5-187
replacementObjectForCoder:, 5-187
replaceObjectAtIndex:withObject:, 5-128
replaceObjectsInRange:withObjectsFrom

Array:, 5-128
replaceObjectsInRange:withObjectsFrom

Array:range:, 5-128
replaceRange:withRTF:, 1-549
replaceRange:withRTFD:, 1-549
replaceSel:, 1-217
replaceSel:length:, 1-217
replaceSel:length:runs:, 1-218
replaceSelWithCell:, 1-218
replaceSubview:with:, 1-594
replyTimeout, 5-65
reportException:, 1-26
representations, 1-322
representedFilename, 1-634
representedObject, 1-124
requestModes, 5-65
requestTimeout, 5-65
requiredFileType, 1-449
reset, 1-82
resetBytesInRange:, 5-135
resetCommunication, 9-9
resetCursorRect:inView:, 1-124
resetCursorRects, 1-355, 1-595, 1-634
resignFirstResponder, 1-444
resignFirstResponder (SoundView), 45
resignKeyWindow, 1-218, 1-634
resignMainWindow, 1-634
resizedColumn, 1-512
resizeFlags, 1-635
resizeSubviewsWithOldSize:, 1-596
resizeTextWithOldBounds:maxRect:, 1-21

8
resizeWithOldSuperviewSize:, 1-596

Index-38 OpenStep Programming Reference—September 1996

resourcePath, 5-32
responder chain, 1-2, 1-439
respondsToSelector:, 287
restoreCachedImage, 1-635
resume (Sound), 24
resume: (Sound), 24
resume: (SoundView), 46
retain, 288
retainArguments, 5-117
retainCount, 288
Retrieving Values from the Option and

Argument Translation
Tables, 1-412

Retrieving Values from the Order
Dependency Table, 1-412

Retrieving Values from the PPD
Table, 1-411

Retrieving Values from the UIConstraints
Table, 1-413

reusesColumns, 1-67
reverseObjectEnumerator, 5-16
RGB, 1-145
Rich Text Format (RTF), 1-299
richTextForView:, 1-219
rightMargin, 1-426
rightMouseDown:, 1-444
rightMouseDragged:, 1-444
rightMouseUp:, 1-444
root class, xvii
rootObject, 5-65
rootProxy, 5-65
rootProxyForConnectionWithRegistered

Name:host:, 5-63
rotateByAngle:, 1-596
RTF, 1-224, 1-537, 1-553
RTFD, 1-224, 1-535, 1-548, 1-553
RTFDFromRange:, 1-550
RTFFromRange:, 1-550
run, 1-26, 1-499, 5-204
run loop, 8-9
run: (SoundMeter), 34

runColor:, 1-219
runModal, 1-383, 1-449
runModalForDirectory:file:, 1-449
runModalForDirectory:file:types:, 1-377
runModalForTypes:, 1-377
runModalForWindow:, 1-26
runModalSession:, 1-27
runModalWithPrintInfo:, 1-383
runMode:beforeDate:, 5-204
runOperation, 1-436
runPageLayout:, 1-27
runUntilDate:, 5-204

S
sampleCount (Sound), 24
samplesPerPixel, 1-48
samplesProcessed (Sound), 25
samplingRate (Sound), 25
saturationComponent, 1-159
saveFrameUsingName:, 1-635
savePanel, 1-447
scalesWhenResized, 1-323
scaleToFit (SoundView), 46
scaleUnitSquareToSize:, 1-597
scanDouble:, 5-208
scanFloat:, 5-208
scanFunc, 1-219
scanHexInt:, 5-208
scanInt:, 5-208
scanLocation, 5-208
scanLongLong:, 5-209
scannerWithString:, 5-206
scanString:intoString:, 5-209
scanUpToCharactersFromSet:intoString:,

5-209
scanUpToString:intoString:, 5-209
scheduledTimerWithTimeInterval:invocat

ion:repeats:, 5-246
scheduledTimerWithTimeInterval:target:s

elector:userInfo:repeats:, 5-247

Index-39

screen, 1-636
screen depth, 1-453
screenFont, 1-272
scrollCellToVisibleAtRow:column:, 1-356
scrollClipView:toPoint:, 1-597
scrollColumnsLeftBy:, 1-67
scrollColumnsRightBy:, 1-67
scrollColumnToVisible:, 1-67
scrollerWidth, 1-457
scrollPoint:, 1-597
scrollRangeToVisible:, 1-550
scrollRect:by:, 1-597
scrollRectToVisible:, 1-597
scrollsDynamically, 1-468
scrollSelToVisible, 1-219
scrollToPoint:, 1-142
scrollViaScroller:, 1-68
Searching the Help Text, 1-301
searchList, 5-267
secondOfMinute, 5-41
selColor, 1-219
selecselectionDidChange:, 51
selectAll:, 1-68, 1-356, 1-550
selectAll: (SoundView), 46
selectCell:, 1-188
selectCellAtRow:column:, 1-356
selectCellWithTag:, 1-356
selectedCell, 1-68, 1-188, 1-357
selectedCellInColumn:, 1-68
selectedCells, 1-68, 1-357
selectedColumn, 1-68, 1-357
selectedFont, 1-283
selectedItem, 1-405
selectedRange, 1-550
selectedRow, 1-357
selectedRowInColumn:, 1-69
selectedTag, 1-188
selectError, 1-219
selectFile:inFileViewerRootedAtPath:, 1-6

57

selectItemAtIndex:, 1-404
selectItemWithTitle:, 1-404
selectNull, 1-220
selector, 5-117
selectRow:inColumn:, 1-69
selectText:, 1-220, 1-357, 1-449, 1-562
selectTextAtIndex:, 1-292
selectTextAtRow:column:, 1-357
selectWithFrame:inView:editor:delegate:s

tart:length:, 1-124
self, 288
sendAction, 1-69, 1-283, 1-358
sendAction:to:, 1-189
sendAction:to:forAllCells:, 1-358
sendAction:to:from:, 1-27
sendActionOn:, 1-125, 1-189
sendDoubleAction, 1-359
sendEvent:, 1-28, 1-636
sendsActionOnArrowKeys, 1-69
separatesColumns, 1-69
serializeAlignedBytesLength:, 5-135
serializeDataAt:ofObjCType:context:, 5-1

35
serializeInt:, 5-136
serializeInt:atIndex:, 5-136
serializeInts:count:, 5-136
serializeInts:count:atIndex:, 5-136
serializeObjectAt:ofObjCType:intoData:,

284
serializePropertyList:, 5-212
serializePropertyList:intoData:, 5-212
service descriptor, 1-496
servicesMenu, 1-28
servicesProvider, 1-28
set, 1-82, 1-159, 1-237, 1-272, 5-214
setAcceptsArrowKeys:, 1-70
setAcceptsMouseMovedEvents:, 1-636
setAccessoryView:, 1-170, 1-250, 1-288,

1-383, 1-437, 1-449, 1-493
setAction:, 1-10, 1-125, 1-170, 1-189, 1-284,

1-405, 680

Index-40 OpenStep Programming Reference—September 1996

setAlignment:, 1-10, 1-126, 1-189, 1-550
setAllContextsOutputTraced:, 9-5
setAllContextsSynchronized:, 9-5
setAllowsBranchSelection:, 1-70
setAllowsEmptySelection:, 1-70, 1-359
setAllowsMultipleSelection:, 1-70, 1-378
setalpha (DPS operator), 11-5
setAlpha:, 1-336
setAlternateImage:, 1-82, 1-90, 1-101
setAlternateTitle:, 1-90, 1-101
setAltIncrementValue:, 1-484
setApplicationIconImage:, 1-29
setArgument:atIndex:, 5-117
setArray:, 5-129
setArrowsPosition:, 1-461
setAutodisplay:, 1-636
setAutoenablesItems:, 1-372, 1-405
setAutoresizesSubviews:, 1-598
setAutoresizingMask:, 1-598
setAutoscale: (SoundView), 46
setAutoscroll:, 1-359
setAutosizesCells:, 1-359
setBackgroundColor:, 1-142, 1-323, 1-360,

1-468, 1-551, 1-562, 1-567, 1-637
setBackgroundGray: (SoundMeter), 35
setBackgroundGray: (SoundView), 46
setBackingType:, 1-637
setBecomesKeyOnlyIfNeeded:, 1-385
setBezeled:, 1-10, 1-126, 1-292, 1-563
setBezeled: (SoundMeter), 35
setBezeled: (SoundView), 47
setBitsPerSample:, 1-336
setBool:forKey:, 5-267
setBordered:, 1-11, 1-91, 1-126, 1-177,

1-293, 1-563
setBorderType:, 1-51, 1-468
setBottomMargin:, 1-426
setBounds:, 1-599
setBoundsOrigin:, 1-599
setBoundsRotation:, 1-599

setBoundsSize:, 1-599
setBreakTable:, 1-220
setButtonType:, 1-93, 1-106
setCacheDepthMatchesImageDepth:, 1-3

23
setCachedSeparately:, 1-323
setCalendarFormat:, 5-41
setCanChooseDirectories:, 1-378
setCanChooseFiles:, 1-378
setCaseSensitive:, 5-209
setCell:, 1-190
setCellAttribute:to:, 1-126
setCellBackgroundColor:, 1-360
setCellClass:, 1-70, 1-87, 1-183, 1-291,

1-343, 1-360
setCellPrototype:, 1-71
setCellSize:, 1-360
setCharactersToBeSkipped:, 5-210
setCharCategoryTable:, 1-220
setCharFilter:, 1-220
setCharWrap:, 1-221
setClickTable:, 1-221
setColor:, 1-170, 1-177, 661
setColor:forKey:, 1-163
setColorSpaceName:, 1-336
setCompression:factor:, 1-48
setContentSize:, 1-637
setContentView:, 1-51, 1-468, 1-637
setContentViewMargins:, 1-51
setContinuous:, 1-127, 1-171, 1-190
setContinuous: (SoundView), 47
setCopiesOnScroll:, 1-143
setCurrentContext:, 9-5
setData:forType:, 1-397
setDataCell:, 1-507
setDataRetained:, 1-324
setDataSize:dataFormat:samplingRate:ch

annelCount:infoSize:
(Sound), 25

setDefaultFont:, 1-207
setDefaultPrinter:, 1-423

Index-41

setDefaultTimeZone:, 5-252
setDelegate:, 1-29, 1-71, 1-284, 1-324,

1-361, 1-450, 1-499, 1-503, 1-551,
1-563, 1-638, 5-65

setDelegate: (Sound), 25
setDelegate: (SoundView), 47
setDepthLimit:, 1-638
setDescentLine:, 1-221
setDictionary:, 5-139
setDirectory:, 1-450
setDisplayMode: (SoundView), 47
setDocumentCursor:, 1-143, 1-469
setDocumentEdited:, 1-638
setDocumentView:, 1-143, 1-469
setDoubleAction, 1-71
setDoubleAction:, 1-361
setDoubleValue:, 1-127, 1-190
setDrawFunc:, 1-221
setDrawsBackground:, 1-361, 1-551,

1-563, 1-567
setDrawsCellBackground:, 1-361
setDynamicDepthLimit:, 1-638
setEditable:, 1-128, 1-507, 1-551, 1-563
setEditable: (SoundView), 47
setEnabled:, 1-11, 1-128, 1-190, 1-284,

1-289, 680
setEnabled: (SoundView), 47
setEntryType:, 1-128
setEntryWidth:, 1-293
setErrorAction:, 1-361, 1-564
setErrorProc:, 9-9
setExcludedFromWindowsMenu:, 1-639
setFieldEditor:, 1-552
setFlipped:, 1-324
setFloat:forKey:, 5-267
setFloatingPanel:, 1-386
setFloatingPointFormat:left:right:, 1-11,

1-129, 1-191
setFloatValue:, 1-129, 1-191
setFloatValue: (SoundMeter), 35
setFloatValue:knobProportion:, 1-461

setFont:, 1-11, 1-102, 1-130, 1-191, 1-405,
1-552

setFont:paragraphStyle:, 1-221
setFont:range:, 1-552
setFontMenu:, 1-284
setFontPanelFactory:, 1-277
setForeground:andBackground:, 1-238
setForegroundGray: (SoundMeter), 35
setForegroundGray: (SoundView), 48
setFormatter:, 1-130
setFrame:, 1-599
setFrame:display:, 1-639
setFrameAutosaveName:, 1-639
setFrameFromContentFrame:, 1-52
setFrameFromString:, 1-639
setFrameOrigin:, 1-600, 1-640
setFrameRotation:, 1-600
setFrameSize:, 1-600
setFrameTopLeftPoint:, 1-640
setFrameUsingName:, 1-640
setHasHorizontalScroller:, 1-71, 1-469
setHasVerticalScroller:, 1-469
setHeaderCell:, 1-507
setHelpDirectory:, 1-303
setHiddenUntilMouseMoves:, 1-234
setHidesOnDeactivate:, 1-640
setHighlightsBy:, 1-102
setHoldTime: (SoundMeter), 35
setHorizontallyCentered:, 1-427
setHorizontallyResizable:, 1-552
setHorizontalPagination:, 1-426
setHorizontalScroller:, 1-470
setIdentifier:, 1-508
setIgnoredWords:inSpellDocumentWithT

ag:, 1-493
setIgnoresAlpha:, 1-154
setIgnoresMultiClick:, 1-191
setImage:, 1-11, 1-91, 1-130, 1-238, 1-478
setImage:foregroundColor:backgroundCo

lor:, 1-238

Index-42 OpenStep Programming Reference—September 1996

setImagePosition:, 1-91, 1-103
setImportsGraphics:, 1-222, 1-552
setIndependentConversationQueueing:,

5-65
setInteger:forKey:, 5-268
setIntercellSpacing:, 1-362
setInterlineSpacing:, 1-293
setIntValue:, 1-130, 1-192
setItemMatrix:, 1-372
setJobDisposition:, 1-427
setKeyEquivalent:, 1-92, 1-103, 680
setKeyEquivalentFont:, 1-104
setKeyEquivalentFont:size:, 1-104
setKeyEquivalentModifierMask:, 1-92,

1-104
setKnobThickness:, 1-478, 1-484
setLanguage:, 1-493
setLastColumn:, 1-72
setLeaf:, 1-82
setLeftMargin:, 1-427
setLength:, 5-136
setLevel:, 1-640
setLineHeight:, 1-222
setLineScroll:, 1-470
setLink:manager:isMultiple:, 1-248, 1-251
setLoaded:, 1-82
setLocale:, 5-210
setLocation:ofCell:, 1-222
setMainMenu:, 1-29
setMarginLeft:right:top:bottom:, 1-222
setMatchesOnMultipleResolution:, 1-324
setMatrixClass:, 1-72
setMaxSize:, 1-553, 1-641
setMaxValue:, 1-478, 1-484
setMaxVisibleColumns:, 1-72
setMaxWidth:, 1-508
setMenuZone:, 1-368
setMinColumnWidth:, 1-73
setMiniwindowImage:, 1-641
setMiniwindowTitle:, 1-641

setMinSize:, 1-553, 1-641
setMinValue:, 1-479, 1-485
setMinWidth:, 1-508
setMode:, 1-171, 1-174, 1-362, 665
setMute: (Sound), 16
setName:, 1-325
setName: (Sound), 26
setNeedsDisplay, 1-192
setNeedsDisplay:, 1-600
setNeedsDisplayInRect:, 1-601
setNextResponder:, 1-444
setNextText:, 1-362, 1-564
setNoWrap, 1-223
setObject:forKey:, 5-139, 5-268
setObjectValue:, 1-131
setObjectZone:, 5-56, 5-260
setOneShot:, 1-642
setOnMouseEntered:, 1-238
setOnMouseExited:, 1-239
setOpaque:, 1-336
setOptimizedForSpeed: (SoundView), 48
setOrientation:, 1-427
setOutputTraced:, 9-9
setPageOrder:, 1-437
setPageScroll:, 1-470
setPanelFont:isMultiple:, 1-289
setPaperName:, 1-428
setPaperSize:, 1-428
setParagraphStyle:, 1-223
setPath:, 1-73
setPathSeparator:, 1-73
setPeakGray: (SoundMeter), 36
setPeriodicDelay:interval:, 1-92, 1-105
setPersistentDomain:forKey:forName:, 5-

268
setPickerMask:, 1-168
setPickerMode:, 1-168
setPixelsHigh:, 1-337
setPixelsWide:, 1-337

Index-43

setPostsBoundsChangedNotifications:, 1-
601

setPostSelSmartTable:, 1-223
setPostsFrameChangedNotifications:, 1-6

01
setPrefersColorMatch:, 1-325
setPreSelSmartTable:, 1-223
setPreviousText:, 1-362, 1-564
setPrinter:, 1-428
setPrintInfo:, 1-437
setProcessName:, 5-197
setPrompt:, 1-450
setPropertyList:forType:, 1-397
setProtocolForProxy:, 5-100
setPrototype:, 1-363
setPullsDown:, 1-405
setReductionFactor: (SoundView), 48
setReleasedWhenClosed:, 1-642
setReplyTimeout:, 5-66
setRepresentedFilename:, 1-642
setRepresentedObject:, 1-131
setRequestTimeout:, 5-66
setRequiredFileType:, 1-450
setResizable:, 1-508
setRetainedWhileDrawing:, 1-223
setReturnValue:, 5-117
setReusesColumns:, 1-74
setRichText:, 1-224, 1-553
setRightMargin:, 1-428
setRootObject:, 5-66
setScalesWhenResized:, 1-325
setScanFunc:, 1-224
setScanLocation:, 5-210
setScrollable:, 1-131, 1-363
setScrollsDynamically:, 1-470
setSearchList:, 5-268
setSelColor:, 1-224
setSelectable:, 1-131, 1-553, 1-564
setSelectedFont:isMultiple:, 1-284
setSelectedRange:, 1-553

setSelection:size: (SoundView), 48
setSelectionByRect:, 1-363
setSelectionFrom:to:anchor:highlight:, 1-

363
setSelectionStart:end:, 1-227
setSelector:, 5-117
setSelFont:, 1-225
setSelFont:paragraphStyle:, 1-225
setSelFontFamily:, 1-225
setSelFontSize:, 1-225
setSelFontStyle:, 1-225
setSelProp:to:, 1-225
setSendsActionOnArrowKeys:, 1-74
setSeparatesColumns:, 1-74
setServicesMenu:, 1-29
setServicesProvider:, 1-29
setSharedPrintInfo:, 1-423
setShowPanels:, 1-437
setShowsAlpha:, 1-171
setShowsStateBy:, 1-105
setSize:, 1-325, 1-337
setSound: (SoundMeter), 36
setSound: (SoundView), 49
setSoundStruct:soundStructSize:

(Sound), 26
setState:, 1-93, 1-132
setState:atRow:column:, 1-364
setString:, 5-146
setString:forType:, 1-398
setStringValue:, 1-12, 1-131, 1-192
setSubmenu:forItem:, 1-372
setSynchronized:, 9-9
setTableView:, 1-508, 1-512
setTag:, 1-12, 1-132, 1-192, 1-227, 680
setTakesTitleFromPreviousColumn:, 1-74
setTarget:, 1-12, 1-132, 1-171, 1-192, 1-405,

680, 5-117
setText:, 1-554
setText:range:, 1-554
setTextAlignment:, 1-293

Index-44 OpenStep Programming Reference—September 1996

setTextColor:, 1-554, 1-564, 1-568
setTextColor:range:, 1-554
setTextFilter:, 1-227
setTextFont:, 1-294
setTextProc:, 9-9
setTimeZone:, 5-41
Setting Up an NSBitmapImageRep, 1-39
setTitle:, 1-93, 1-105, 1-296, 1-406, 1-450,

1-479, 1-485, 1-642, 681
setTitle:ofColumn:, 1-75
setTitleAlignment:, 1-294, 1-296
setTitleCell:, 1-479, 1-485
setTitleColor:, 1-479, 1-485
setTitled:, 1-75
setTitleFont:, 1-52, 1-294, 1-296, 1-479,

1-485
setTitlePosition:, 1-52
setTitleWidth:, 1-296
setTitleWithRepresentedFilename:, 1-643
setTopMargin:, 1-428
setTransparent:, 1-93, 1-106
setTreatsFilePackagesAsDirectories:, 1-45

1
setType:, 1-132
setUpFieldEditorAttributes:, 1-133, 1-568
setUpGState, 1-601
setUpPrintOperationDefaultValues, 1-428
setUserFixedPitchFont:, 1-266
setUserFont:, 1-266
setUsesEPSOnResolutionMismatch:, 1-32

6
setUsesFontPanel:, 1-555
setUsesUserKeyEquivalents:, 1-374
setValidateSize:, 1-364
setVersion:, 5-179
setVerticallyCentered:, 1-429
setVerticallyResizable:, 1-555
setVerticalPagination:, 1-429
setVerticalScroller:, 1-471
setViewsNeedDisplay:, 1-643
setVolatileDomain:forName:, 5-268

setVolume:: (Sound), 16
setWidth:, 1-508
setWindowsMenu:, 1-30
setWindowsNeedUpdate:, 1-30
setWithArray:, 5-215
setWithCapacity:, 5-141
setWithObject:, 5-215
setWithObjects:, 5-215
setWordFieldStringValue:, 1-494
setWorksWhenModal:, 1-386
setWraps:, 1-133
shallow copy, 281
sharedApplication, 1-18
sharedColorPanel, 1-168
sharedColorPanelExists, 1-169
sharedDataLinkPanel, 1-249
sharedFontManager, 1-277
sharedFontPanel, 1-287
sharedHelpPanel, 1-303
sharedHelpPanelWithDirectory:, 1-303
sharedPrintInfo, 1-423
sharedSpellChecker, 1-490
sharedSpellCheckerExists, 1-490
sharedWorkspace, 1-652
shortValue, 5-166
shouldDelayWindowOrderingForEvent:,

1-601
shouldDrawColor, 1-602
showCaret, 1-227
showCursor (SoundView), 49
showFile:atMarker:, 1-304
showGuessPanel:, 1-555
showHelpAttachedTo:, 1-304
showPanels, 1-437
showsAlpha, 1-171
showsStateBy, 1-106
size, 1-326, 1-337
sizeForKey:inTable:, 1-418
sizeForPaperName:, 1-423
sizeToCells, 1-364

Index-45

sizeToFit, 1-53, 1-193, 1-372, 1-509, 1-555
sizeToFit (SoundView), 49
sizeValue, 5-275
sleepUntilDate:, 5-244
slideDraggedImageTo:, 673
slideImage:from:to:, 1-657
smallestEncoding, 5-238
sockets, 5-188
sortedArrayUsingFunction:context:, 5-16
sortedArrayUsingFunction:context:hint:,

5-16
sortedArrayUsingSelector:, 5-17
sortSubviewsUsingFunction:context:, 1-6

02
sortUsingFunction:context:, 1-364, 5-129
sortUsingSelector:, 1-365, 5-129
Sound class, 9
sound (SoundMeter), 36
sound (SoundView), 49
soundBeingProcessed (Sound), 26
soundBeingProcessed (SoundView), 49
soundDidChange: (SoundView), 51
SoundMeter class:specification, 30
soundStruct (Sound), 26
soundStructBeingProcessed (Sound), 26
soundStructSize (Sound), 27
sourceApplicationName, 1-244
sourceFilename, 1-244
sourceLinkEnumerator, 1-246
sourceSelection, 1-244
spellingPanel, 1-494
spellServer:didForgetWord:inLanguage:,

1-499
spellServer:didLearnWord:inLanguage:,

1-500
splitView:constrainMinCoordinate:maxC

oordinate:ofSubviewAt:, 1-503
splitView:resizeSubviewsWithOldSize:, 1

-503
splitViewWillResizeSubviews:, 1-504
standardUserDefaults, 5-263

startPeriodicEventsAfterDelay:withPerio
d:, 1-259

startReadingRichText, 1-228
startTrackingAt:inView:, 1-134
state, 1-95, 1-134
statistics, 5-66
status (Sound), 27
statusForTable:, 1-419
stderr, 7-28
stop (Sound), 27
stop:, 1-30
stop: (Sound), 27
stop: (SoundMeter), 36
stop: (SoundView), 50
stopModal, 1-30
stopModalWithCode:, 1-30
stopPeriodicEvents, 1-259
stopTracking:at:inView:mouseIsUp:, 1-13

4
string, 5-210
string (NSText method), 1-556
stringArrayForKey:, 5-269
stringByAbbreviatingWithTildeInPath, 5-

238
stringByAppendingFormat:, 5-238
stringByAppendingPathComponent:, 5-2

38
stringByAppendingPathExtension:, 5-239
stringByAppendingString:, 5-239
stringByDeletingLastPathComponent, 5-

239
stringByDeletingPathExtension, 5-240
stringByExpandingTildeInPath, 5-240
stringByResolvingSymlinksInPath, 5-241
stringByStandardizingPath, 5-241
stringForDPSError:, 9-6
stringForKey:, 5-269
stringForKey:inTable:, 1-419
stringForObjectValue:, 5-113
stringForType:, 1-398
stringListForKey:inTable:, 1-419

Index-46 OpenStep Programming Reference—September 1996

stringsByAppendingPaths:, 5-241
stringValue, 1-12, 1-135, 1-193, 1-406,

5-167
stringWithCharacters:length:, 5-224
stringWithContentsOfFile:, 5-224
stringWithCString:, 5-223
stringWithCString:length:, 5-223
stringWithFormat:, 5-224
stringWithSavedFrame, 1-643
styleMask, 1-643
subarrayWithRange:, 5-17
subdataWithRange:, 5-76
submenuAction:, 1-372
subscript:, 1-556
substringFromIndex:, 5-241
substringToIndex:, 5-242
substringWithRange:, 5-241
subtype, 1-261
subview, 1-568
subviews, 1-602
superclass, xvii, 5-179, 288
supermenu, 1-373
superscript:, 1-556
superview, 1-568, 1-603
supportedWindowDepths, 1-455
supportsMode:, 661
synchronize, 5-269
synchronizeTitleAndSelectedItem, 1-406
systemFontOfSize:, 1-267
systemVersion, 5-56, 5-260

T
Table-of-Contents and Index Files, 1-299
tableView, 1-509, 1-512
tableView:objectValueForTableColumn:ro

w:, 686
tableView:setObjectValue:forTableColum

n:row:, 686
tag, 1-12, 1-135, 1-193, 1-228, 1-603, 681

Tag Image File Format (TIFF), 1-38, 1-305,
1-389

takeColorFrom:, 1-177
takeDoubleValueFrom:, 1-135, 1-193
takeFloatValueFrom:, 1-135, 1-193
takeIntValueFrom:, 1-136, 1-194
takeObjectValueFrom:, 1-136
takesTitleFromPreviousColumn, 1-75
takeStringValueFrom:, 1-136, 1-194
target, 1-13, 1-136, 1-194, 1-406, 681, 5-118
Target and Action, 1-178
targeted/action paradigm, 1-2
targetForAction:, 1-31
tellDelegate: (Sound), 28
tellDelegate: (SoundView), 50
terminate:, 1-31
testPart:, 1-461
textColor, 1-556, 1-565, 1-568
textDidBeginEditing:, 1-365, 1-557, 1-565
textDidChange:, 1-365, 1-558, 1-565
textDidEndEditing:, 1-365, 1-558, 1-565
textDidRead:paperSize:, 1-230
textDidResize:oldBounds:, 1-230
textFilter, 1-228
textProc, 9-9
textShouldBeginEditing:, 1-366, 1-558,

1-566
textShouldEndEditing:, 1-366, 1-558,

1-566
textWillConvert:fromFont:toFont:, 1-230
textWillFinishReadingRichText:, 1-230
textWillResize:, 1-230
textWillSetSel:toFont:, 1-231
textWillStartReadingRichText:, 1-231
textWillWrite:, 1-231
The Delegate and Observers, 1-15
The Help Text, 1-298
thread, 5-243
thread priorities, 8-12
threadDictionary, 5-244

Index-47

threads, 5-242
TIFF, 1-38, 1-222, 1-546, 1-552
TIFF Compression, 1-39
TIFFRepresentation, 1-48, 1-326
TIFFRepresentationOfImageRepsInArray:

, 1-42
TIFFRepresentationOfImageRepsInArray:

usingCompression:factor:, 1-42
TIFFRepresentationUsingCompression:

factor:, 1-49
TIFFRepresentationUsingCompression:fa

ctor:, 1-326
tile, 1-75, 1-471
timeIntervalSince1970, 5-84
timeIntervalSinceDate:, 5-84
timeIntervalSinceNow, 5-84
timeIntervalSinceReferenceDate, 5-81,

5-85
timerWithTimeInterval:invocation:repeats

:, 5-247
timerWithTimeInterval:target:selector:use

rInfo:repeats:, 5-247
timestamp, 1-262
timeZoneAbbreviation, 5-255
timeZoneArray, 5-252
timeZoneDetail, 5-41
timeZoneDetailArray, 5-253
timeZoneDetailForDate:, 5-253
timeZoneForSecondsFromGMT:, 5-252
timeZoneName, 5-253
timeZoneSecondsFromGMT, 5-255
timeZoneWithAbbreviation:, 5-252
timeZoneWithName:, 5-253
title, 1-54, 1-95, 1-107, 1-297, 1-451, 1-479,

1-486, 1-643, 681
titleAlignment, 1-297
titleCell, 1-54, 1-480, 1-486
titleColor, 1-480, 1-486
titleFont, 1-297, 1-480, 1-486
titleFrameOfColumn:, 1-75
titleHeight, 1-76

titleOfColumn:, 1-76
titleOfSelectedItem, 1-406
titleRectForBounds:, 1-136
titleWidth, 1-297
titleWidth:, 1-297
toggleRuler:, 1-471, 1-556
topMargin, 1-430
trackingNumber, 1-262
Tracking-Rectangle Events, 1-256
trackKnob:, 1-461
trackMouse:inRect:ofView:untilMouseUp

:, 1-137, 1-228
trackRect, 1-486
trackScrollButtons:, 1-461
traitsOfFont:, 1-285
translateOriginToPoint:, 1-603
treatsFilePackagesAsDirectories, 1-451
tryLock, 5-59, 5-119, 5-201
tryLockWhenCondition:, 5-59
tryToPerform:with:, 1-31, 1-445, 1-644
type, 1-137, 1-262, 1-420
type descriptors, 5-5
types, 1-244, 1-398
typesFilterableTo:, 1-393

U
unarchiveObjectWithData:, 5-257
unarchiveObjectWithFile:, 5-258
unchainContext, 9-9
underline:, 1-557
underlinePosition, 1-272
underlineThickness, 1-272
unhide, 1-234
unhide:, 1-31
unhideWithoutActivation, 1-32
Unicode, 5-45, 5-231
Unicode string encodings, 8-11
unionSet:, 5-143
uniqueSpellDocumentTag, 1-491
unlock, 280

Index-48 OpenStep Programming Reference—September 1996

unlockFocus, 1-327, 1-603
unlockWithCondition:, 5-59
unmountAndEjectDeviceAtPath:, 1-657
unordered collection, 5-140
unordered collections, 5-213
unregisterDraggedTypes, 1-603, 1-644
unregisterImageRepClass:, 1-334
unscript:, 1-557
unsignedCharValue, 5-167
unsignedIntValue, 5-167
unsignedLongLongValue, 5-167
unsignedLongValue, 5-167
unsignedShortValue, 5-167
update, 1-644
updateCell:, 1-194
updateCellInside:, 1-194
updateFromPrintInfo, 1-438
updateNameMap, 9-10
updateScroller, 1-76
updateSpellingPanelWithMisspelledWord

:, 1-494
updateWindows, 1-32
updateWindowsItem:, 1-32
uppercaseLetterCharacterSet, 5-45
uppercaseString, 5-242
usableParts, 1-462
useFont:, 1-267
useOptimizedDrawing:, 1-645
user defaults, 8-12
userData, 1-262
userDefaultsChanged, 1-658
userFixedPitchFontOfSize:, 1-267
userFontOfSize:, 1-268
userInfo, 5-108, 5-149, 5-248
userKeyEquivalent, 1-374
usesEPSOnResolutionMismatch, 1-327
usesFontPanel, 1-557
usesUserKeyEquivalents, 1-374
Using NSDate, 5-78

V
validateEditing, 1-195
validateItem:, 679
validateVisibleColumns, 1-76, 1-451
validRequestorForSendType:andReturnT

ype: (SoundView), 50
validRequestorForSendType:returnType:,

1-33, 1-229, 1-445, 1-645
value:withObjCType:, 5-273
valueWithBytes:objCType:, 5-272
valueWithNonretainedObject:, 5-272
valueWithPoint:, 5-273
valueWithPointer:, 5-273
valueWithRect:, 5-273
valueWithSize:, 5-273
version, 5-179
versionForClassName:, 5-56
verticalPagination, 1-430
verticalScroller, 1-471
view, 1-438
view hierarchy, 1-606
viewFrameChanged:, 1-143
viewSizeChanged:, 1-174, 666
viewsNeedDisplay, 1-645
viewWillMoveToSuperview:, 1-604
viewWillMoveToWindow:, 1-604
viewWithTag:, 1-604
visibleRect, 1-604
volatileDomainForName:, 5-269
volatileDomainNames, 5-270

W
wait, 9-10
weightOfFont:, 1-285
whiteColor, 1-154
whiteComponent, 1-159
whitespaceAndNewlineCharacterSet, 5-4

6
whitespaceCharacterSet, 5-46
width, 1-509

Index-49

widthAdjustLimit, 1-604
widthOfString:, 1-273
widths, 1-273
willFree: (SoundView), 52
willPlay: (Sound), 29
willPlay: (SoundView), 50, 52
willRecord: (Sound), 29
willRecord: (SoundView), 50, 52
window, 1-109, 1-263, 1-605
window levels, 1-628
window style, 1-624
window styles, 4-39
windowDidBecomeKey:, 1-646
windowDidBecomeMain:, 1-646
windowDidChangeScreen:, 1-646
windowDidDeminiaturize:, 1-647
windowDidExpose:, 1-647
windowDidMiniaturize:, 1-647
windowDidMove:, 1-647
windowDidResignKey:, 1-648
windowDidResignMain:, 1-648
windowDidResize:, 1-648
windowDidUpdate:, 1-648
windowNumber, 1-263, 1-645
windows, 1-33
windowShouldClose:, 1-649
windowsMenu, 1-33
windowWillClose:, 1-649
windowWillReturnFieldEditor:toObject:,

1-649
windowWithWindowNumber:, 1-34
Working with Bundles, 5-28
worksWhenModal, 1-289, 1-387, 1-646
wraps, 1-138
writeBinaryObjectSequence:length:, 9-11
writeBOSArray:count:ofType:, 9-10
writeBOSNumString:length:ofType:scale:,

9-10
writeBOSString:length:, 9-10
writeData:, 9-11

writeEPSInsideRect:toPasteboard:, 1-605
writeFileContents:, 1-398
writePostScriptWithLanguageEncodingC

onversion:, 9-11
writePrintInfo, 1-384
writeRTFDToFile:atomically:, 1-557
writeSelectionToPasteboard:types:, 1-229,

683
writeSelectionToPasteboard:types:

(SoundView), 51
writeSoundfile: (Sound), 28
writeToFile:, 1-164
writeToFile:atomically:, 5-17, 5-76, 5-97,

5-242
writeToPasteboard:, 1-159
writeToPasteboard: (Sound), 28

X
xHeight, 1-273

Y
yearOfCommonEra, 5-41
years:months:days:hours:minutes:second

s:sinceDate:, 5-42
yellowColor, 1-154
yellowComponent, 1-160

Z
zone, 288

Index-50 OpenStep Programming Reference—September 1996

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX Systems Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut être protege par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des
demandes en cours d’enregistrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS, et
NEO sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. OpenStep
est une marque enregistrée de NeXT Software, Inc. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays,
et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc. PostScript et
Display PostScript sont des marques d’Adobe Systems, Inc. Object Design est une marque deposée et le logo Object Design
est une marque enregistrée d’Object Design, Inc.

Toutes les marques SPARC sont des marques deposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

Ce produit incorpore la technologie licencié par Object Design, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

